微分几何第四版习题集规范标准答案解析

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§1曲面的概念

1.求正螺面r r

={ u v cos ,u v sin , bv }的坐标曲线.

解 u-曲线为r r

={u 0cos v ,u 0sin v ,bv 0 }={0,0,bv 0}+u {0cos v ,0sin v ,0},为曲线的直母线;v-曲线为r r

={0u v cos ,0u v sin ,bv }为圆柱螺线.

2.证明双曲抛物面r r

={a (u+v ), b (u-v ),2uv }的坐标曲线就是它的直母线。

证 u-曲线为r r

={ a (u+0v ), b (u-0v ),2u 0v }={ a 0v , b 0v ,0}+ u{a,b,20v }表示过点{ a 0v , b 0v ,0}以{a,b,20v }为方向向量的直线;

v-曲线为r r ={a (0u +v ), b (0u -v ),20u v }={a 0u , b 0u ,0}+v{a,-b,20u }表示过点(a 0u , b 0u ,0)以{a,-b,20u }为方向向量的直线。

3.求球面r r

=}sin ,sin cos ,sin cos {ϑϕϑϕϑa a a 上任意点的切平面和法线方程。

解 ϑr ρ

=}cos ,sin sin ,cos sin {ϑϕϑϕϑa a a -- ,ϕr ρ=}0,cos cos ,sin cos {ϕϑϕϑa a -

任意点的切平面方程为00

cos cos sin cos cos sin sin cos sin sin sin cos cos cos =------ϕ

ϑϕ

ϑϑϕϑϕ

ϑϑϕϑϕϑa a a a a a z a y a x

即 xcos ϑcos ϕ + ycos ϑsin ϕ + zsin ϑ - a = 0 ; 法线方程为

ϑ

ϑ

ϕϑϕϑϕϑϕϑsin sin sin cos sin cos cos cos cos cos a z a y a x -=-=- 。

4.求椭圆柱面22

221x y a b

+=在任意点的切平面方程,并证明沿每一条直母线,此

曲面只有一个切平面 。

解 椭圆柱面22

221x y a b +=的参数方程为x = cos ϑ, y = asin ϑ, z = t ,

}0,cos ,sin {ϑϑθb a r -=ρ , }1,0,0{=t r ρ

。所以切平面方程为:

01

0cos sin sin cos =----ϑϑϑϑb a t

z b y a x ,即x bcos ϑ + y asin ϑ - a b = 0 此方程与t 无关,对于ϑ的每一确定的值,确定唯一一个切平面,而ϑ的每一数值对应一条直母线,说明沿每一条直母线,此曲面只有一个切平面 。

5.证明曲面},,{3

uv

a v u r =ρ的切平面和三个坐标平面所构成的四面体的体积是常

数。

证 },0,1{23v u a r u -=ρ,},1,0{23uv

a r v -=ρ。切平面方程为:33=++z a uv

v y u x 。

与三坐标轴的交点分别为(3u,0,0),(0,3v,0),(0,0,uv

a 2

3)。于是,四面体的体积为:

3

32

9||3||3||361a uv a v u V ==是常数。

§2 曲面的第一基本形式

1. 求双曲抛物面r r

={a (u+v ), b (u-v ),2uv }的第一基本形式.

解 ,4},2,,{},2,,{2222v b a r E u b a r v b a r u v u ++==-==ρ

ρρ 2222224,4u b a r G uv b a r r F v v u ++==+-=⋅=ρ

ρρ,

∴ 错误!未找到引用源。 =

+++2222)4(du v b a 2222222)4()4(dv u b a dudv uv b a ++++-。

2.求正螺面r r

={ u v cos ,u v sin , bv }的第一基本形式,并证明坐标曲线互相垂直。

解 },cos ,sin {},0,sin ,{cos b v u v u r v v r v u -==ρρ,12==u r E ρ,0=⋅=v u r r F ρ

ρ,222b u r G v +==ρ

,∴ 错误!未找到引用源。 =2222)(dv b u du ++,∵F=0,∴

坐标曲线互相垂直。

3.在第一基本形式为错误!未找到引用源。 =222sinh udv du +的曲面上,求方程为u = v 的曲线的弧长。

解 由条件=2ds 222sinh udv du +,沿曲线u = v 有du=dv ,将其代入2ds 得

=2ds 222sinh udv du +=22cosh vdv ,ds = coshvdv , 在曲线u = v 上,从1v 到2v 的

弧长为|sinh sinh ||cosh |122

1

v v vdv v v -=⎰。

4.设曲面的第一基本形式为错误!未找到引用源。 = 2222)(dv a u du ++,求

它上面两条曲线u + v = 0 ,u –v = 0的交角。

分析 由于曲面上曲线的交角是曲线的内蕴量,即等距不变量,而求等距不变量只须知道曲面的第一基本形式,不需知道曲线的方程。

解 由曲面的第一基本形式知曲面的第一类基本量1=E ,0=v F ,22a u G +=,曲线u + v = 0与u – v = 0的交点为u = 0, v = 0,交点处的第一类基本量为1=E ,

0=v F ,2a G =。曲线u + v = 0的方向为du = -dv , u – v = 0的方向为δu=

δv , 设两曲线的夹角为ϕ,则有

cos ϕ=

22

222211a a v

G u E Gdv Edu u Gdv u Edu +-=+++δδδδ 。 5.求曲面z = axy 上坐标曲线x = x 0 ,y =0y 的交角.

解 曲面的向量表示为r r

={x,y,axy}, 坐标曲线x = x 0的向量表示为

r r ={

x 0,y,ax 0y } ,其切向量y r ρ={0,1,ax 0};坐标曲线y =0y 的向量表示为r r

={x , 0y ,ax 0y },其切向量x r ρ

={1,0,a 0y },设两曲线x = x 0与y =0y 的夹角为ϕ,则

有cos ϕ = 20

22020

0211||||y a x a y x a r r r r y x y x ++=⋅ρρρρ

6. 求u-曲线和v-曲线的正交轨线的方程.

解 对于u-曲线dv = 0,设其正交轨线的方向为δu:δv ,则有

Edu δu + F(du δv + dv δu)+ G d v δv = 0,将dv =0代入并消去du 得u-曲线的正交轨线的微分方程为E δu + F δv = 0 .

同理可得v-曲线的正交轨线的微分方程为F δu + G δv = 0 .

相关文档
最新文档