H264规范

合集下载

h.264标准的特点及应用

h.264标准的特点及应用

H.264标准的特点及应用随着人类精神需求和空间需求的提升,人们不再满足面对面的语言交流,空间距离的增加导致人们面对面的语言交流变得越来越少,人们更需要在时空中交流与交往。

当传统的交流方式难以实现时,更需要视觉、感观以及信息交流。

正因为如此,促进了卫星通信、微波通信、有线/无线传输技术的发展,也推动信息压缩技术和宽带传输技术,同时推动了安防业的迅猛发展。

视频信息传输和视频通讯的猛增,给视频压缩技术带来了很大挑战。

无论是互联网还是无线网络,都需要一种新型的压缩算法,新算法要求高压缩比,且能适应不同的网络环境。

以较小的失真、较高的压缩比、更小的花费、较低的码率在信道中传递视频,进行多媒体通信是今后视频压缩技术研究的一个方向。

H.264,又称MPEG-4part10,也称AVC(AdvancedVideoCoding),是一个数字视频压缩标准,由VCEG(ITU-TVideoCodingExpertsGroup)和MPEG(ISO/IECMovingPictureExpertsGroup)联合组成的JVT(JointVideoTeam)于2003年3月正式发布[1,2]。

H.264标准的主要目标就是在同等保真条件下,提高编码效率。

这是一对矛盾,既然要求图像不失真,则图像传输的比特数就大,在网络带宽一定的情况下,图像信号传输的速度就快,因此,只有提高编码效率才能实现。

H.264的源起在以往众多的视频编码算法中,被广泛认可并应用于实际的是ISO/IEC制定的MPEG-X和ITU-T制定的H.26x两大系列视频编码国际标准。

H.261是早期的编码标准,主要是规范ISDN网上的会议电视和可视对讲。

它采用的是可减少时间冗余的帧间预测和减少空间冗余的DCT变换的混合编码方法,以及ISDN信道匹配,其输出码率是P×64kbit/s。

P较小时,传输清晰度不太高的图像;P较大时,可以传输清晰度较好的会议电视图像。

H264编解码协议详解

H264编解码协议详解

H264编解码协议详解H.264编解码协议,也被称为AVC(Advanced Video Coding),是一种广泛应用于视频压缩的标准。

它是一种基于帧的压缩算法,可以将高质量的视频数据以较低的比特率传输和存储。

以下是H.264编解码协议的详细解释:1.压缩结构H.264使用了多种技术来实现高效率的视频压缩。

它使用了预测编码、变换编码和熵编码等多种技术。

预测编码通过利用帧间和帧内的冗余性,对视频进行空间和时间上的预测。

变换编码则通过对预测误差进行离散余弦变换(DCT),在频域上进行编码。

最后,熵编码使用了熵编码表将变换后的数据进行进一步的压缩。

2.帧结构H264将视频数据划分为一系列的帧,每个帧包含了许多宏块(macroblock)。

其中,关键帧(I帧)是完全独立的帧,它包含了视频的全局信息。

预测帧(P帧)和双向预测帧(B帧)则通过对前一帧和前后一帧进行预测来进行编码。

P帧只依赖前一帧,而B帧则依赖前后两帧。

这种结构可以进一步提高视频压缩的效率。

3.量化参数H.264使用量化参数对预测误差进行编码。

量化参数决定了每个预测误差值的精度,较大的量化参数会导致更高的压缩率,但也会导致较大的失真。

编码器和解码器可以通过动态调整量化参数来平衡压缩率和失真。

4.帧间预测帧间预测是H.264压缩的核心技术之一、它通过对前后帧的像素进行比较,预测当前帧的像素值。

如果在帧间没有大的运动,那么预测误差就会较小,从而达到更好的压缩效果。

帧间预测有多种模式,包括帧间直接模式(inter-direct mode)、帧间双向模式(inter-bidirect mode)和帧间skip模式(inter-skip mode)等。

5.熵编码H.264使用了基于上下文的自适应变长编码(CAVLC)和基于上下文的自适应二进制算术编码(CABAC)两种熵编码技术。

CAVLC主要用于编码量化系数和运动矢量等数据,而CABAC主要用于编码预测模式和其他语法元素。

H264编码详细说明

H264编码详细说明

序列、图像(存储单元)、宏块、像素一个序列的第一个图像叫做IDR 图像(立即刷新图像),IDR 图像都是I 帧图像。

H.264 引入IDR 图像是为了解码的重同步,当解码器解码到IDR 图像时,立即将参考帧队列清空,将已解码的数据全部输出或抛弃,重新查找参数集,开始一个新的序列。

●I帧(帧内编码帧)是一种自带全部信息的独立帧,无需参考其它图像便可独立进行解码。

视频序列中的第一个帧始终都是I帧。

I帧可以用来实现快进、快退以及其它随机访问功能。

如果新的客户端将参与查看视频流,编码器将以相同的时间间隔或者根据要求自动插入I帧。

I帧的缺点在于它们会占用更多的数据位,但I帧不会产生可觉察的模糊现象。

●P帧(帧间预测编码帧)需要参考前面的I帧和/或P帧的不同部分才能进行编码。

与I帧相比,P帧通常占用更少的数据位,但其缺点是,由于P帧对前面的P和I参考帧有着复杂的依赖性,因此对传输错误非常敏感。

●B帧(双向预测编码帧)需要同时以前面的帧和后面的帧作为参考帧。

不是参考帧,不会造成解码错误的扩散。

运算比较复杂,CPU占用较高。

I、B、P各帧是根据压缩算法的需要人为定义的,它们都是实实在在的物理帧。

一般来说,I帧的压缩率是7(跟JPG差不多),P帧是20,B帧可以达到50。

网络打包、网络抽象层单元(NALU)、片NALU的网络打包:(1) 额外开销要少,使MTU尺寸在100~64k字节范围都可以;(2) 不用对包内的数据解码就可以判别该包的重要性;(3) 载荷规范应当保证不用解码就可识别由于其他的比特丢失而造成的包不可解码;(4) 支持将NALU分割成多个RTP包;(5) 支持将多个NALU汇集在一个RTP包中。

●灵活宏块次序(FMO) 可以通过设置宏块次序映射表(MBAmap)来任意地指配宏块到不同的片组,FMO模式打乱了原宏块顺序,降低了编码效率,增加了时延,但增强了抗误码性能。

划分图像的模式各种各样,主要的有棋盘模式、矩形模式等。

H264编码原理详解

H264编码原理详解

H264编码原理详解前言•在日常生活中我们知道,电脑中的视频文件先要通过视频采集设备对物体进行采集,然后通过编码核心部件得到mp4,rmvb等格式进行保存。

有没有可能不经过上述核心编码部件采集之后直接进行显示呢?答案是可以的。

那为什么还要进行编码呢?答案是原始采集到的视频数据为YUV格式,这种格式不经过处理的话特别大,对于网络传输和永久保存非常不利,为了解决这个问题,就需要对原原始的视频数据进行压缩处理。

而H264则是目前一种流传广泛,成熟的视频压缩算法。

•先来看一个例子在学习H.264编码之前,我们先了解一下在手机相机拍摄视频的过程,如果Camera采集的YUV图像不做任何处理进行传输,那么每秒钟需要传输的数据量是多少?Camera采集的YUV图像通常为YUV420,根据YUV420的采样结构,YUV图像中的一个像素中Y、U、V分量所占比例为1:1/4:1/4,而一个Y分量占1个字节,也就是说对于YUV图像,它的一个像素的大小为(1+1/4+1/4)Y=3/2个字节。

如果直播时的帧率设置为30fps,当分辨率为1280x720,那么每秒需要传输的数据量为1280720(像素)30(帧)3/2(字节)=39.5MB;当分辨率为1920x720,那么每秒需要传输的数据量接近60MB,这对于手机的存储空间有很大考验,因此,我们就必须在拍摄形成视频文件保存在本地之前对采集的视频数据进行压缩编码。

H26X简介H261•目前国际上制定视频编解码技术的组织有两个,一个是“国际电联(ITU-T)”,它制定的标准有H.261、H.263、H.263+等,另一个是“国际标准化组织(ISO)”它制定的标准有MPEG-1、MPEG-2、MPEG-4等。

•H.261是1990年ITU-T制定的一个视频编码标准,属于视频编解码器。

设计的目的是能够在带宽为64kbps的倍数的综合业务数字网(ISDN forIntegrated Services Digital Network)上质量可接受的视频信号。

H.264编码技术简介.

H.264编码技术简介.

H.264编码技术简介摘要:本文介绍了H.264编码基本概况,技术特点,并与其他标准进行了比较。

简单介绍了H.264视频编码标准的几个关键技术,并针对目前H.264在监控领域的应用做了讲解。

目录摘要: (1)一.引言 (2)二. H.264视频编码基本概况 (2)2.1 什么是H.264编码? (2)2.2 720P H.264高清成市场主流 (2)2.3 H.264 视频编码标准状况 (2)2.4 H.264 视频编码技术先进性 (3)2.5 H.264的核心竞争力是什么? (5)2.6 Main Profile (6)三、H.264与其他标准的比较 (6)3.1H.264与其他标准的比较 (6)3.2 H.264的技术特点 (8)3.2.1 分层设计 (8)3.2.2 高精度、多模式运动设计 (8)3.2.3 帧内预测功能 (8)3.2.4 4×4块的整数变换 (8)3.2.5 统一的VLC (8)3.3 H.264的主要特点 (9)四、关键技术 (10)五、H.264在监控的应用 (12)5.1 TOYA SDVR 7IV 系统简介 (12)5.2 TOYA SDVR 7IV 系统主要特点 (12)5.3 主要技术规格 (13)5.4 系统功能 (13)5.5 TOYA SDVR 7IV系统应用 (13)六、H.264的总体优缺点 (14)七、小结 (15)八、参考文献 (16)一.引言随着社会的不断进步和多媒体信息技术的发展,人们对信息的需求越来越丰富,方便、快捷、灵活地通过语音、数据、图像与视频等方式进行多媒体通信已成不可或缺的工具。

其中视觉信息给人们直观、生动的形象,因此图像与视频的传输更受到广泛的关注。

然而,视频数据具有庞大的数据量,以普通的25帧每秒,CIF格式(分辨率为352×288)的视频图像为例,一秒钟的原始视频数据速率高达3.8M字节。

不对视频信号进行压缩根本无法实时传输如此庞大的数据量,因此,视频压缩技术成为研究热点。

H.264视频压缩标准

H.264视频压缩标准

2.
H.264的发展
H.264是ITU-T 的视频编码专家组 (VCEG) 和ISO/IEC 运动图像专家组 (MPEG) 联合制定的新一代视频压缩 标准。 ITU-T是一个代表国际电信联盟协调制定电信标准的部门。 ISO 是指国际标准化组织。 IEC是指国际 电气和相关技术的标准。 H.264是ITU-T所使用的名称, 而ISO/IEC 将其命 电工委员会, 负责制定所有电子、 名为MPEG-4 Part 10/AVC, 因为它代表的是MPEG-4系列标准中的一个新标准。 MPEG-4系列标准包括了 MPEG-4 Part 2等标准, MPEG-4 Part 2是一个应用于基于IP的视频编码器和网络摄像机的标准。 为了解决先前视频压缩标准中存在的不足, H.264的目标是支持: > 高效压缩, 在某一特定的视频质量下, 与采用任何其它视频标准相比, 可以使比特率平均降低 50%。 > 更强大的容错能力, 能够纠正各种网络的传输错误 > 低时延功能, 并能够在更高时延的情况下提供更高质量的图像 > 通过简单的句法规范简化实施 > 精确匹配解码, 严格规定了编码器和解码器如何进行数值计算, 以避免错误累积 此外, H.264 还能够灵活地支持有着不同比特率要求的各种监控应用。 例如, 在娱乐视频应用 (包括广 中, H.264 能够以高时延实现1-10Mbit/ 秒的性能。 而对于电信服务来 播、 卫星电视、 有线电视和 DVD) 说, H.264能够以低时延实现低于1Mbit/ 秒的比特率。
4
4.
H.264类别和等级
参与制定H.264 标准的联合组织致力于创建一个简单明了的解决方案, 最大限度地限制选项和特性的数 量。 和其它视频标准一样, H.264 标准的一个重要方面是通过类别 (算法特性集) 和等级 (性能等级) 中 提供的功能, 以最佳的方式支持常见应用和通用格式。 H.264 有7个类别, 每个类别都针对某一类特定的应用。 此外, 每个类别都定义了编码器能够使用哪些特 性集, 并限制了解码器在实施方面的复杂性。 网络摄像机和视频编码器最有可能使用的是基准类别, 此类别主要针对计算资源有限的应用。 对于嵌入 在网络视频产品中的实时编码器来说, 在特定的可用性能下, 基准类别最为适用。 此类别能够实现低延 时, 这对监控视频来说是一个很重要的要求, 而且对于支持 PTZ 网络摄像机实现实时的平移 / 倾斜 / 缩放 (PTZ) 控制来说尤为重要。 H.264分为11个功能等级, 对性能、 带宽和内存需求进行了限制。 每个等级都规定了从QCIF 到HDTV 等各种 分辨率所对应的比特率和编码速率 (每秒宏块数) 。 分辨率越高, 要求的等级就越高。

H.264基础及RTP封包详解

H.264基础及RTP封包详解

H.264基础及RTP封包详解一. h264基础概念1、NAL、Slice与frame意思及相互关系1 frame的数据可以分为多个slice.每个slice中的数据,在帧内预测只用到自己slice的数据,与其他slice 数据没有依赖关系。

NAL 是用来将编码的数据进行大包的。

比如,每一个slice 数据可以放在NAL 包中。

I frame 是自己独立编码,不依赖于其他frame 数据。

P frame 依赖 I frame 数据。

B frame 依赖 I frame, P frame 或其他 B frame 数据。

一个frame是可以分割成多个Slice来编码的,而一个Slice编码之后被打包进一个NAL单元,不过NAL单元除了容纳Slice编码的码流外,还可以容纳其他数据,比如序列参数集SPS。

NAL指网络提取层,里面放一些与网络相关的信息Slice是片的意思,264中把图像分成一帧(frame)或两场(field),而帧又可以分成一个或几个片(Slilce);片由宏块(MB)组成。

宏块是编码处理的基本单元。

2、NAL nal_unit_type中的1(非IDR图像的编码条带)、2(编码条带数据分割块A)、3(编码条带数据分割块B)、4(编码条带数据分割块C)、5(IDR图像的编码条带)种类型与 Slice种的三种编码模式:I_slice、P_slice、B_sliceNAL nal_unit_type 里的五种类型,代表接下来数据是表示啥信息的和具体如何分块。

I_slice、P_slice、B_slice 表示I类型的片、P类型的片,B类型的片.其中I_slice为帧内预测模式编码;P_slice为单向预测编码或帧内模式;B_slice 中为双向预测或帧内模式。

3、还有frame的3种类型:I frame、P frame、 B frame之间有什么映射关系么?I frame、P frame、 B frame关系同 I_slice、P_slice、B_slice,slice和frame区别在问题1中已经讲明白。

H264基础简介

H264基础简介

H264基础简介前⾔H264是属于视频的编码层的标准格式,视频编码显然是为了压缩⼤⼩。

我们看下⼀个完全没压缩的视频数据⼤⼩。

假设视频是⾼清(1280 * 720),每秒30帧,也就是每秒的数据1280 * 720 *30 / 8(字节) /1024(KB)/1024(MB) = 3.11MB那么90分钟的电影就要16.7GB,这个数据量显然在当前⽹络下是不现实的。

视频压缩的原理就是去除视频冗余部分,下⾯列举下1,时间冗余时间冗余是序列图像(电视图像、动画)和语⾳数据中所经常包含的冗余。

图像序列中的两幅相邻的图像,后⼀幅图像与前⼀幅图像之间有较⼤的相关性,这反映为时间冗余。

同理,在语⾔中,由于⼈在说话时发⾳的⾳频是⼀连续的渐变过程,⽽不是⼀个完全的在时间上独⽴的过程,因⽽存在时间冗余。

2,空间冗余空间冗余是图像数据中经常存在的⼀种冗余。

在同⼀幅图像中,规则物体和规则背景(所谓规则是指表⾯颜⾊分布是有序的⽽不是杂乱⽆章的)的表⾯物理特性具有相关性,这些相关性的光成像结构在数字化图像中就表现为数据冗余。

,3,知识冗余有许多图像的理解与某些基础知识有相当⼤的相关性,例如:⼈脸的图像有固定的结构。

⽐如,嘴的上⽅有⿐⼦。

⿐⼦的上⽅有眼睛,⿐⼦位于正脸图像的中线上等等。

这类规律性的结构可由先验知识相背景知识得到,我们称此类冗余为知识冗余。

4,结构冗余有些图像从⼤域上看存在着⾮常强的纹理结构,例如布纹图像和草席图像,我们说它们在结构上存在冗余。

5,视觉冗余⼈类视觉系统对于图像场的任何变化,并不是都能感知的。

例如,对于图像的编码和解码处理时,由于压缩或量⽐截断引⼊了噪声⽽使图像发⽣了⼀些变化,如果这些变化不能为视觉所感知,则仍认为图像⾜够好。

事实上⼈类视觉系统⼀般的分辨能⼒约为26灰度等级,⽽⼀般图像量化采⽤28灰度等级,这类冗余我们称为视觉冗余。

通常情况下,⼈类视觉系统对亮度变化敏感,⽽对⾊度的变化相对不敏感;在⾼亮度区,⼈眼对亮度变化敏感度下降。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湘ICP备06016957号 站长:TIchinese
上一篇文章: H.264开源解码器评测 下一篇文章: 没有了
文章录入:admin 责任编辑:admin 【发表评论】【加入收藏】【告诉好友】【打印此文】【关闭窗口】
最新热点
最新推荐
相关文章
没有热门文章
没有推荐文章
H.264开源解码器评测 H.264/AVC编码器分数像素的插…
网友评论:(只显示最新10条。评论内容只代表网友观点,与本站立场无关!) 没有任何评论 | 设为首页 | 加入收藏 | 联系站长 | 友情链接 | 版权申明 | 网站公告 | 管理登录 |
1.多种更好的运动估计
高精度估计
在H.263中采用了半像素估计,在H.264中则进一步采用1/4像素甚至1/8像素的运动估计。即真正的运动矢量的位移可能是以1/4甚至1/8像 素为基本单位的。显然,运动矢量位移的精度越高,则帧间剩余误差越小,传输码率越低,即压缩比越高。
在H.264中采用了6阶FIR滤波器的内插获得1/2像素位置的值。当1/2像素值获得后, 1/4像素值可通过线性内插获得,
对于4:1:1的视频格式,亮度信号的1/4 像素精度对应于色度部分的1/8像素的运动矢量,因此需要对色度信号进行1/8像素的内插运算。
理论上,如果将运动补偿的精度增加一倍(例如从整像素精度提高到1/2像素精度),可有0.5bit/Sample的编码增益,但实际验证发现在 运动矢量精度超过1/8像素后,系统基本上就没有明显增益了,因此,在H.264中,只采用了1/4像素精度的运动矢量模式,而不是采用1/8像素 的精度。
二、H.264的特点
H.264和H.261、H.263一样,也是采用DCT变换编码加DPCM的差分编码,即混合编码结构。同时,H.264在混合编码的框架下引入了新的编码 方式,提高了编码效率,更贴近实际应用。 H.264没有繁琐的选项,而是力求简洁的“回归基本”,它具有比H.263++更好的压缩性能,又具有适应多种信道的能力。
一、H.264视频压缩系统
H.264标准压缩系统由视频编码层(VCL)和网络提取层(Network Abstraction Layer,NAL)两部分组成。VCL中包括VCL编码器与VCL解码 器,主要功能是视频数据压缩编码和解码,它包括运动补偿、变换编码、熵编码等压缩单元。NAL则用于为VCL提供一个与网络无关的统一接 口,它负责对视频数据进行封装打包后使其在网络中传送,它采用统一的数据格式,包括单个字节的包头信息、多个字节的视频数据与组帧、 逻辑信道信令、定时信息、于被参考的帧。类型标志用于 指示图像数据的类型。 VCL可以传输按当前的网络情况调整的编码参数。
没有公告
加入收藏 设为首页 联系站长
. 网站首页 . 资讯中心 . 技术 . 在线学院 . 会员下载 . 电子商城 . 助您选购 . 邮购需知 . 技术论 | TI 综合应用 | TI 解决方案 | 视频编码 | 音频编码 |
四、新的快速运动估值算法
新的快速运动估值算法UMHexagonS(中国专利)是一种运算量相对于H.264中原有的快速全搜索算法可节约90%以上的新算法,全名叫“非 对称十字型多层次六边形格点搜索算法”(Unsymmetrical-Cross Muti-Hexagon Search)”,这是一种整像素运动估值算法。由于它在高码率 大运动图像序列编码时,在保持较好率失真性能的条件下,运算量十分低,已被H.264标准正式采纳。
ITU和 ISO合作发展的 H.264(MPEG-4 Part 10)有可能被广播、通信和存储媒体(CD DVD)接受成为统一的标准,最有可能成为宽带交互 新媒体的标准。我国的信源编码标准尚未制定,密切关注H.264的发展,制定我国的信源编码标准的工作正在加紧进行。
H264标准使运动图像压缩技术上升到了一个更高的阶段,在较低带宽上提供高质量的图像传输是H.264的应用亮点。H.264的推广应用对视 频终端、网守、网关、MCU等系统的要求较高,将有力地推动视频会议软、硬件设备在各个方面的不断完善。
2.小尺寸4?4的整数变换
视频压缩编码中以往的常用单位为8?8块。在H.264中却采用小尺寸的4?4块,由于变换块的尺寸变小了,运动物体的划分就更为精确。这种 情况下,图像变换过程中的计算量小了,而且在运动物体边缘的衔接误差也大为减少。
当图像中有较大面积的平滑区域时,为了不产生因小尺寸变换带来的块间灰度差异,H.264可对帧内宏块亮度数据的16个4?4块的DCT系数进 行第二次4?4块的变换,对色度数据的4个4?4块的DC系数(每个小块一个,共4个DC系数)进行2?2块的变换。
H.264的应用目标广泛,可满足各种不同速率、不同场合的视频应用,具有较好的抗误码和抗丢包的处理能力。
H.264的基本系统无需使用版权,具有开放的性质,能很好地适应IP和无线网络的使用,这对目前因特网传输多媒体信息、移动网中传输宽 带信息等都具有重要意义。
尽管H.264编码基本结构与H.261、H.263是类似的,但它在很多环节做了改进,现列举如下。
统一的VLC(即UVLC:Universal VLC)。UVLC使用一个相同的码表进行编码,而解码器很容易识别码字的前缀,UVLC在发生比特错误时能 快速获得重同步。
内容自适应二进制算术编码(CABAC:Context Adaptive Binary Arithmetic Coding)。其编码性能比UVLC稍好,但复杂度较高。
H.263不仅使图像变换块尺寸变小,而且这个变换是整数操作,而不是实数运算,即编码器和解码器的变换和反变换的精度相同,没有“反 变换误差”。
3.更精确的帧内预测
在H.264中,每个4?4块中的每个像素都可用17个最接近先前已编码的像素的不同加权和来进行帧内预测。
4.统一的VLC
H.264中关于熵编码有两种方法。
H.264标准可分为三档:
基本档次(其简单版本,应用面广);
主要档次(采用了多项提高图像质量和增加压缩比的技术措施,可用于SDTV、HDTV和DVD等);
扩展档次(可用于各种网络的视频流传输)。
H.264不仅比H.263和MPEG-4节约了50%的码率,而且对网络传输具有更好的支持功能。它引入了面向IP包的编码机制,有利于网络中的分 组传输,支持网络中视频的流媒体传输。H.264具有较强的抗误码特性,可适应丢包率高、干扰严重的无线信道中的视频传输。H.264支持不同 网络资源下的分级编码传输,从而获得平稳的图像质量。H.264能适应于不同网络中的视频传输,网络亲和性好。
多宏块划分模式估计
在H.264的预测模式中,一个宏块(MB)可划分成7种不同模式的尺寸,这种多模式的灵活、细微的宏块划分,更切合图像中的实际运动物 体的形状,于是,在每个宏块中可包含有1、2、4、8或16个运动矢量。
多参数帧估计
在H.264中,可采用多个参数帧的运动估计,即在编码器的缓存中存有多个刚刚编码好的参数帧,编码器从其中选择一个给出更好的编码效 果的作为参数帧,并指出是哪个帧被用于预测,这样就可获得比只用上一个刚编码好的帧作为预测帧的更好的编码效果。
您现在的位置: Tgt; 正文
H.264 规范
★★★
【字体:小 大】
H.264 规范
作者:Free 文章来源:Free 点击数: 13 更新时间:2009-9-14
JVT(Joint Video Team,视频联合工作组)于2001年12月在泰国Pattaya成立。它由ITU-T和ISO两个国际标准化组织的有关视频编码的专家联 合组成。JVT的工作目标是制定一个新的视频编码标准,以实现视频的高压缩比、高图像质量、良好的网络适应性等目标。目前JVT的工作已被I TU-T接纳,新的视频压缩编码标准称为H.264标准,该标准也被ISO接纳,称为AVC(Advanced Video Coding)标准,是MPEG-4的第10部分。
三、性能优势
H.264与MPEG-4、H.263++编码性能对比采用了以下6个测试速率:32kbit/s、10F/s和QCIF;64kbit/s、15F/s和QCIF;128kbit/s、15F/s和 CIF;256kbit/s、15F/s和QCIF;512kbit/s、30F/s和CIF;1024kbit/s、30F/s和CIF。测试结果标明,H.264具有比MPEG和H.263++更优秀的PSN R性能。 H.264的 PSNR比MPEG-4平均要高2dB,比H.263++平均要高3dB。
相关文档
最新文档