2013年北京高考数学(理)答案解析

合集下载

2013年高考理科数学北京卷word解析版

2013年高考理科数学北京卷word解析版

2013年普通高等学校夏季招生全国统一考试数学理工农医类(北京卷)本试卷共5页,150分,考试时长120分钟,考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(2013北京,理1)已知集合A ={-1,0,1},B ={x |-1≤x <1},则A ∩B =( ).A .{0}B .{-1,0}C .{0,1}D .{-1,0,1} 答案:B 解析:{-1,0,1}∩{x |-1≤x <1}={-1,0}.2.(2013北京,理2)在复平面内,复数(2-i)2对应的点位于( ).A .第一象限B .第二象限C .第三象限D .第四象限 答案:D解析:∵(2-i)2=3-4i ,∴该复数对应的点位于第四象限,故选D.3.(2013北京,理3)“φ=π”是“曲线y =sin(2x +φ)过坐标原点”的( ).A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 答案:A解析:∵φ=π,∴y =sin(2x +π)=-sin 2x , ∴曲线过坐标原点,故充分性成立; ∵y =sin(2x +φ)过原点, ∴sin φ=0,∴φ=k π,k ∈Z .故必要性不成立.故选A.4.(2013北京,理4)执行如图所示的程序框图,输出的S 值为( ).A .1B .23C .1321D .610987 答案:C解析:依次执行的循环为S =1,i =0;23S =,i =1;1321S =,i =2.故选C. 5.(2013北京,理5)函数f (x )的图象向右平移1个单位长度,所得图象与曲线y =e x 关于y 轴对称,则f (x )=( ).A .e x +1B .e x -1C .e -x +1D .e -x -1 答案:D解析:依题意,f (x )向右平移1个单位之后得到的函数应为y =e -x ,于是f (x )相当于y =e -x 向左平移1个单位的结果,∴f (x )=e -x -1,故选D.6.(2013北京,理6)若双曲线22221x y a b-=( ).A .y =±2x B.y =C .12y x =± D.y x = 答案:B解析:c,∴ba .∴渐近线方程为by x a=±=,故选B. 7.(2013北京,理7)直线l 过抛物线C :x 2=4y 的焦点且与y 轴垂直,则l 与C 所围成的图形的面积等于( ).A .43 B .2 C .83D.3答案:C解析:由题意可知,l 的方程为y =1. 如图,B 点坐标为(2,1),∴所求面积S =4-222d 4xx ⎰=4-3202|12x ⎛⎫ ⎪⎝⎭=83,故选C. 8.(2013北京,理8)设关于x ,y 的不等式组210,0,0x y x m y m -+>⎧⎪+<⎨⎪->⎩表示的平面区域内存在点P (x 0,y 0),满足x 0-2y 0=2,求得m 的取值范围是( ).A .4,3⎛⎫-∞ ⎪⎝⎭B .1,3⎛⎫-∞ ⎪⎝⎭C .2,3⎛⎫-∞- ⎪⎝⎭D .5,3⎛⎫-∞- ⎪⎝⎭答案:C解析:图中阴影部分表示可行域,要求可行域内包含y =12x -1上的点,只需要可行域的边界点(-m ,m )在y =12x -1下方,也就是m <12-m -1,即23m <-.故选 C.第二部分(非选择题 共110分) 二、填空题共6小题,每小题5分,共30分. 9.(2013北京,理9)在极坐标系中,点π2,6⎛⎫⎪⎝⎭到直线ρsin θ=2的距离等于__________. 答案:1解析:在极坐标系中,点π2,6⎛⎫⎪⎝⎭对应直角坐标系中坐标为1),直线ρsin θ=2对应直角坐标系中的方程为y =2,所以点到直线的距离为1.10.(2013北京,理10)若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q =__________;前n 项和S n =__________.答案:2 2n +1-2解析:由题意知352440220a a q a a +===+.由a 2+a 4=a 2(1+q 2)=a 1q (1+q 2)=20,∴a 1=2.∴S n =21212n (-)-=2n +1-2.11.(2013北京,理11)如图,AB 为圆O 的直径,P A 为圆O 的切线,PB 与圆O 相交于D ,若P A =3,PD ∶DB =9∶16,则PD =__________,AB =__________.答案:954 解析:设PD =9k ,则DB =16k (k >0). 由切割线定理可得,P A 2=PD ·PB , 即32=9k ·25k ,可得15k =. ∴PD =95,PB =5.在Rt △APB 中,AB=4.12.(2013北京,理12)将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是__________.答案:96解析:连号有4种情况,从4人中挑一人得到连号参观券,其余可以全排列,则不同的分法有4×1343C A =96(种).13.(2013北京,理13)向量a ,b ,c 在正方形网格中的位置如图所示,若c =λa +μb (λ,μ∈R ),则λμ=__________.答案:4解析:可设a =-i +j ,i ,j 为单位向量且i ⊥j , 则b =6i +2j ,c =-i -3j.由c =λa +μb =(6μ-λ)i +(λ+2μ)j ,∴6123,μλλμ-=-⎧⎨+=-⎩,解得21.2λμ=-⎧⎪⎨=-⎪⎩,∴4λμ=. 14.(2013北京,理14)如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E 为BC 的中点,点P 在线段D 1E 上,点P 到直线CC 1的距离的最小值为__________.答案:5解析:过E 点作EE 1垂直底面A 1B 1C 1D 1,交B 1C 1于点E 1, 连接D 1E 1,过P 点作PH 垂直于底面A 1B 1C 1D 1,交D 1E 1于点H , P 点到直线CC 1的距离就是C 1H ,故当C 1H 垂直于D 1E 1时,P 点到直线CC 1距离最小,此时,在Rt △D 1C 1E 1中,C 1H ⊥D 1E 1,D 1E 1·C 1H =C 1D 1·C 1E 1,∴C 1H5=. 三、解答题共6小题,共50分.解答应写出文字说明,演算步骤.15.(2013北京,理15)(本小题共13分)在△ABC 中,a =3,b =B =2∠A , (1)求cos A 的值; (2)求c 的值.解:(1)因为a =3,b =B =2∠A ,所以在△ABC 中,由正弦定理得3sin A =.所以2sin cos sin A A A =故cos A(2)由(1)知,cos A所以sin A =.又因为∠B =2∠A ,所以cos B =2cos 2A -1=13.所以sin B 3=.在△ABC 中,sin C =sin(A +B )=sin A cos B +cos A sin B . 所以c =sin sin a CA=5. 16.(2013北京,理16)(本小题共13分)下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.(1)求此人到达当日空气重度污染的概率;(2)设X 是此人停留期间空气质量优良的天数,求X 的分布列与数学期望; (3)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明) 解:设A i 表示事件“此人于3月i 日到达该市”(i =1,2,…,13). 根据题意,P (A i )=113,且A i ∩A j = (i ≠j ). (1)设B 为事件“此人到达当日空气重度污染”,则B =A 5∪A 8. 所以P (B )=P (A 5∪A 8)=P (A 5)+P (A 8)=213. (2)由题意可知,X 的所有可能取值为0,1,2,且P (X =1)=P (A 3∪A 6∪A 7∪A 11)=P (A 3)+P (A 6)+P (A 7)+P (A 11)=413, P (X =2)=P (A 1∪A 2∪A 12∪A 13)=P (A 1)+P (A 2)+P (A 12)+P (A 13)=413,P (X =0)=1-P (X =1)-P (X =2)=513.所以X 的分布列为:故X 的期望EX =0×513+1×413+2×13=13.(3)从3月5日开始连续三天的空气质量指数方差最大.17.(2013北京,理17)(本小题共14分)如图,在三棱柱ABC -A 1B 1C 1中,AA 1C 1C 是边长为4的正方形.平面ABC ⊥平面AA 1C 1C ,AB =3,BC =5,(1)求证:AA 1⊥平面ABC ;(2)求二面角A 1-BC 1-B 1的余弦值;(3)证明:在线段BC 1上存在点D ,使得AD ⊥A 1B ,并求1BDBC 的值. 解:(1)因为AA 1C 1C 为正方形,所以AA 1⊥AC .因为平面ABC ⊥平面AA 1C 1C ,且AA 1垂直于这两个平面的交线AC ,所以AA 1⊥平面ABC . (2)由(1)知AA 1⊥AC ,AA 1⊥AB .由题知AB =3,BC =5,AC =4,所以AB ⊥AC .如图,以A 为原点建立空间直角坐标系A -xyz ,则B (0,3,0),A 1(0,0,4),B 1(0,3,4),C 1(4,0,4).设平面A 1BC 1的法向量为n =(x ,y ,z ),则1110,0,A B A C ⎧⋅=⎪⎨⋅=⎪⎩n n 即340,40.y z x -=⎧⎨=⎩令z =3,则x =0,y =4,所以n =(0,4,3). 同理可得,平面B 1BC 1的法向量为m =(3,4,0). 所以cos 〈n ,m 〉=16||||25⋅=n m n m .由题知二面角A 1-BC 1-B 1为锐角,所以二面角A 1-BC 1-B 1的余弦值为1625. (3)设D (x ,y ,z )是直线BC 1上一点,且BD =λ1BC ,所以(x ,y -3,z )=λ(4,-3,4). 解得x =4λ,y =3-3λ,z =4λ. 所以AD =(4λ,3-3λ,4λ).由AD ·1A B =0,即9-25λ=0,解得925λ=. 因为925∈[0,1],所以在线段BC 1上存在点D ,使得AD ⊥A 1B . 此时,1925BD BC λ==. 18.(2013北京,理18)(本小题共13分)设L 为曲线C :ln xy x=在点(1,0)处的切线.(1)求L 的方程;(2)证明:除切点(1,0)之外,曲线C 在直线L 的下方. 解:(1)设()ln x f x x =,则()21ln xf x x -'=.所以f ′(1)=1.所以L 的方程为y =x -1.(2)令g (x )=x -1-f (x ),则除切点之外,曲线C 在直线L 的下方等价于g (x )>0(∀x >0,x ≠1).g (x )满足g (1)=0,且g ′(x )=1-f ′(x )=221ln x xx-+. 当0<x <1时,x 2-1<0,ln x <0,所以g ′(x )<0,故g (x )单调递减; 当x >1时,x 2-1>0,ln x >0,所以g ′(x )>0,故g (x )单调递增. 所以,g (x )>g (1)=0(∀x >0,x ≠1). 所以除切点之外,曲线C 在直线L 的下方.19.(2013北京,理19)(本小题共14分)已知A ,B ,C 是椭圆W :24x +y 2=1上的三个点,O 是坐标原点.(1)当点B 是W 的右顶点,且四边形OABC 为菱形时,求此菱形的面积;(2)当点B 不是W 的顶点时,判断四边形OABC 是否可能为菱形,并说明理由.解:(1)椭圆W :24x +y 2=1的右顶点B 的坐标为(2,0).因为四边形OABC 为菱形,所以AC 与OB 相互垂直平分.所以可设A (1,m ),代入椭圆方程得14+m 2=1,即m =2±.所以菱形OABC 的面积是12|OB |·|AC |=12×2×2|m |.(2)假设四边形OABC 为菱形.因为点B 不是W 的顶点,且直线AC 不过原点,所以可设AC 的方程为y =kx +m (k ≠0,m ≠0).由2244,x y y kx m⎧+=⎨=+⎩消y 并整理得(1+4k 2)x 2+8kmx +4m 2-4=0. 设A (x 1,y 1),C (x 2,y 2),则1224214x x km k +=-+,121222214y y x x mk m k++=⋅+=+. 所以AC 的中点为M 224,1414km m k k ⎛⎫- ⎪++⎝⎭. 因为M 为AC 和OB 的交点,所以直线OB 的斜率为14k-.因为k ·14k ⎛⎫- ⎪⎝⎭≠-1,所以AC 与OB 不垂直.所以OABC 不是菱形,与假设矛盾.所以当点B 不是W 的顶点时,四边形OABC 不可能是菱形.20.(2013北京,理20)(本小题共13分)已知{a n }是由非负整数组成的无穷数列,该数列前n 项的最大值记为A n ,第n 项之后各项a n +1,a n +2,…的最小值记为B n ,d n =A n -B n .(1)若{a n }为2,1,4,3,2,1,4,3,…,是一个周期为4的数列(即对任意n ∈N *,a n +4=a n ),写出d 1,d 2,d 3,d 4的值;(2)设d 是非负整数,证明:d n =-d (n =1,2,3,…)的充分必要条件为{a n }是公差为d 的等差数列; (3)证明:若a 1=2,d n =1(n =1,2,3,…),则{a n }的项只能是1或者2,且有无穷多项为1.解:(1)d 1=d 2=1,d 3=d 4=3.(2)(充分性)因为{a n }是公差为d 的等差数列,且d ≥0,所以a1≤a2≤…≤a n≤….因此A n=a n,B n=a n+1,d n=a n-a n+1=-d(n=1,2,3,…).(必要性)因为d n=-d≤0(n=1,2,3,…),所以A n=B n+d n≤B n.又因为a n≤A n,a n+1≥B n,所以a n≤a n+1.于是,A n=a n,B n=a n+1,因此a n+1-a n=B n-A n=-d n=d,即{a n}是公差为d的等差数列.(3)因为a1=2,d1=1,所以A1=a1=2,B1=A1-d1=1.故对任意n≥1,a n≥B1=1.假设{a n}(n≥2)中存在大于2的项.设m为满足a m>2的最小正整数,则m≥2,并且对任意1≤k<m,a k≤2.又因为a1=2,所以A m-1=2,且A m=a m>2.于是,B m=A m-d m>2-1=1,B m-1=min{a m,B m}≥2.故d m-1=A m-1-B m-1≤2-2=0,与d m-1=1矛盾.所以对于任意n≥1,有a n≤2,即非负整数列{a n}的各项只能为1或2.因为对任意n≥1,a n≤2=a1,所以A n=2.故B n=A n-d n=2-1=1.因此对于任意正整数n,存在m满足m>n,且a m=1,即数列{a n}有无穷多项为1.。

2013年北京高考理科数学试题及答案(排版紧奏形)

2013年北京高考理科数学试题及答案(排版紧奏形)

2013年普通高等学校招生全国统一考试数学(理)(北京卷)一、选择题(共8小题,每小题5分,共40分。

1.已知集合{}1,0,1A =-,{}|11B x x =-≤<,则A B = ( )A .{}0B .{}1,0-C .{}0,1D .{}1,0,1- 2.在复平面内,复数2(2)i -对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 3.“ϕπ=”是“曲线sin(2)y x ϕ=+过坐标原点” 的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分与不必要条件 4.执行如图所示的程序框图,输出的S 值为( )A .1B .23 C .1321D .610987 5.函数()f x 的图像向右平移1个单位长度,所得图像与曲线xy e =关于y 轴对称,则()f x =( )A .1x e+ B .1x e- C .1x e-+ D .1x e--6.若双曲线22221x y a b-=)A.2y x =±B.y =C.12y x =±D.2y x =± 7.直线l 过抛物线C :24x y =的焦点且与y 轴垂直,则l 与C 所围成的图形的面积等于( )A .43 B .2 C .83D.38.设关于x 、y 的不等式组21000x y x m y m -+>⎧⎪+<⎨⎪->⎩所表示的平面区域内存在点00(,)P x y 满足0022x y -=,则m 的取值范围是( )A .4(,)3-∞B .1(,)3-∞C .2(,)3-∞-D .5(,)3-∞-二、填空题(共6小题,每小题5分,共30分) 9.在极坐标系中,点(2,)6π到直线sin 2ρθ=的距离等于 。

10.若等比数列{}n a 满足2420a a +=,3540a a +=,则公比q = ;前n 项和n S = 。

11.如图,AB 为圆O 的直径,PA 为圆O 的切线,PB 与圆O 相交于D ,若3PA =,:9:16PD DB =,则PD = ,AB = 。

2013年北京市高考数学试卷(理科)答案与解析

2013年北京市高考数学试卷(理科)答案与解析
考 正弦定理;余弦定理.菁优网版权所有 点: 专 解三角形. 题: 分 (Ⅰ)由条件利用正弦定理和二倍角公式求得cosA的值. 析: (Ⅱ)由条件利用余弦定理,解方程求得c的值. 解 解:(Ⅰ)由条件在△ABC中,a=3, 答:
题.
5.(5分)(2013•北京)函数f(x)的图象向右平移1个单位长度,所
得图象与曲线y=ex关于y轴对称,则f(x)=( )
A. ex+1
B. ex﹣1
C.e﹣x+1 D.e﹣x﹣1
考 函数解析式的求解及常用方法;函数的图象与图象变化.菁优网版权所有 点:
专 函数的性质及应用. 题:
分 析:
考 点的极坐标和直角坐标的互化;点到直线的距离公式.菁优网版权所有 点: 专 直线与圆. 题: 分 先将点的极坐标化成直角坐标,极坐标方程化为直角坐标方程, 析: 然后用点到直线的距离来解. 解 解:在极坐标系中,点 答:
化为直角坐标为(
,1),直线ρsinθ=2化为直角坐标方程为y=2, (
,1),到y=2的距离1,即为点
8.(5分)(2013•北京)设关于x,y的不等式组
表示的平面区域内存在点P(x0,y0),满足x0﹣2y0=2,求得m的取值
范围是( )
A.
B.
C.
D.
考 简单线性规划.菁优网版权所有 点:
专 不等式的解法及应用. 题:
分 先根据约束条件 析:
画出可行域.要使可行域存在,必有m<﹣2m+1,要求可行域包 含直线y=
7.(5分)(2013•北京)直线l过抛物线C:x2=4y的焦点且与y轴垂
直,则l与C所围成的图形的面积等于( )
A.
B. 2
C.
D.

2013年普通高等学校招生全国统一考试数学理试题(北京卷含答案)

2013年普通高等学校招生全国统一考试数学理试题(北京卷含答案)

2013北京高考理科数学试题第一部分 (选择题 共40分)一、选择题共8小题。

每小题5分,共40分。

在每个小题给出的四个选项中,只有一项是符合题目要求的一项。

1.已知集合A={-1,0,1},B={x |-1≤x <1},则A∩B= ( )A.{0}B.{-1,0}C.{0,1}D.{-1,0,1}2.在复平面内,复数(2-i)2对应的点位于( )A.第一象限B. 第二象限C.第三象限D. 第四象限3.“φ=π”是“曲线y=sin(2x +φ)过坐标原点的”A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件 4.执行如图所示的程序框图,输出的S 值为A.1B.23C.1321D.610987 5.函数f (x )的图象向右平移一个单位长度,所得图象与y =e x 关于y 轴对称,则f (x )=A.1e x +B. 1e x -C. 1e x -+D. 1e x --6.若双曲线22221x y a b-=3则其渐近线方程为 A.y =±2x B.y =2x C.12y x =± D.22y x =± 7.直线l 过抛物线C :x 2=4y 的焦点且与y 轴垂直,则l 与C 所围成的图形的面积等于 A.43 B.2 C.83162 8.设关于x ,y 的不等式组210,0,0x y x m y m -+>⎧⎪+<⎨⎪->⎩表示的平面区域内存在点P (x 0,y 0)满足x 0-2y 0=2,求得m 的取值范围是A.4,3⎛⎫-∞- ⎪⎝⎭B. 1,3⎛⎫-∞ ⎪⎝⎭C. 2,3⎛⎫-∞- ⎪⎝⎭D. 5,3⎛⎫-∞- ⎪⎝⎭第二部分(非选择题 共110分)二、填空题共6题,每小题5分,共30分.9.在极坐标系中,点(2,6π)到直线ρsin θ=2的距离等于 10.若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q = ;前n 项和S n =.11.如图,AB 为圆O 的直径,PA 为圆O 的切线,PB 与圆O 相交于D,PA=3,916PD DB =,则PD= ,AB= .12.将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少一张,如果分给同一人的两张参观券连号,那么不同的分法种数是 .13.向量a ,b ,c 在正方形网格中的位置如图所示,若c =λa +μb (λ,μ∈R ),则λμ=14.如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E 为BC 的中点,点P 在线段D 1E 上,点P 到直线CC 1的距离的最小值为 .三、解答题共6小题,共80分。

2013年北京高考数学理科试卷(带详解)

2013年北京高考数学理科试卷(带详解)

2013年普通高等学校招生全国统一考试(北京卷)数学(理)本试卷共5页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上答无效.考试结束后,将本卷和答题卡一并交回.第一部分 (选择题 共40分)一、选择题共8小题.每小题5分,共40分.在每个小题给出的四个选项中,只有一项是符合题目要求的一项.1.已知集合{1,0,1}A =-,{|11}B x x =-<…,则A B = ( )A.{0}B.{1,0}-C.{0,1}D.{1,0,1}-【测量目标】集合的基本运算.【考查方式】给出两个集合求两者交集. 【难易程度】容易 【参考答案】B【试题解析】{-1,0,1} {x |-1…x <1}={-1,0}.2.在复平面内,复数2(2i)-对应的点位于 ( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 【测量目标】复数代数形式的四则运算,复平面.【考查方式】给出复数的代数形式先化简再判断该复数对应的点所在的复平面. 【难易程度】容易 【参考答案】D【试题解析】∵(2-i)2=3-4i ,∴该复数对应的点位于第四象限,故选D.3.“πϕ=”是“sin(2)y x ϕ=+过坐标原点”的 ( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 【测量目标】四种命题及其之间的关系.【考查方式】给出两个命题判断其之间的关系. 【难易程度】容易 【参考答案】A【试题解析】∵φ=π,∴y =sin(2x +π)=-sin 2x , ∴曲线过坐标原点,故充分性成立;(步骤1)∵y =sin(2x +φ)过原点,∴sin φ=0,∴φ=k π,k ∈Z . (步骤2) 故必要性不成立.故选A. 4.执行如图所示的程序框图,输出的S 值为 ( )第4题图 JC93A.1B.23C.1321D.610987【测量目标】循环结构的程序框图.【考查方式】阅读题中所给的循环结构的程序框图,运行并得出所需结果. 【难易程度】容易 【参考答案】C【试题解析】依次执行的循环为S =1,i =0;23S =,i =1;1321S =,i =2.故选C. 5.函数()f x 的图象向右平移1个单位长度,所得图象与曲线e x y =关于y 轴对称,则()f x =( )A.1ex + B.1ex - C.1ex -+ D.1ex --【测量目标】指数函数的图象及其性质.【考查方式】给出函数的图像进过平移所得与另一函数图像关于轴对称求原函数的解析式. 【难易程度】容易 【参考答案】D【试题解析】依题意,f (x )向右平移1个单位之后得到的函数应为y =e x -,于是f (x )相当于y=e x-向左平移1个单位的结果,∴f (x )=1ex --,故选D.6.若双曲线22221x y a b-=则其渐近线方程为 ( )A.2y x =±B.y =C.12y x =±D.2y x =± 【测量目标】双曲线的简单几何性质.【考查方式】已知双曲线的离心率求解双曲线的渐近线方程. 【难易程度】容易 【参考答案】Bc ,∴b .∴渐近线方程为by x a=±=,故选B.7.直线l 过抛物线2:4C x y =的焦点且与y 轴垂直,则l 与C 所围成的图形的面积等于( )A.43B.2C.83【测量目标】直线与抛物线的位置关系及抛物线的简单几何性质.【考查方式】已知直线与抛物线的位置关系求解直线与抛物线所围面积. 【难易程度】容易 【参考答案】C【试题解析】由题意可知,l 的方程为y =1.如图,B 点坐标为(2,1),∴所求面积S =4-2202d 4x x ⎰=4-3202|12x ⎛⎫ ⎪⎝⎭=83,故选C.第7题图 JC1008.设关于,x y 的不等式组210,0,0x y x m y m -+>⎧⎪+<⎨⎪->⎩表示的平面区域内存在点00(,)P x y ,满足0022x y -=,求得m 的取值范围是 ( ) A.4(,)3-∞ B.1(,)3-∞C.2(,)3-∞-D.5(,)3-∞-【测量目标】判断不等式组表示的平面区域.【考查方式】给出一个不等式组求在其所表示的平面区域内的点所满足的方程的未知参数. 【难易程度】中等 【参考答案】C【试题解析】图中阴影部分表示可行域,要求可行域内包含y =12x -1上的点,只需要可行域的边界点(-m ,m )在y =12x -1下方,也就是m <12-m -1,即23m <-.故选C.第8题图 JC101第二部分(非选择题 共110分)二、填空题共6题,每小题5分,共30分.9.在极坐标系中,点π(2,)6到直线sin 2ρθ=的距离等于_____. 【测量目标】极坐标系,点到直线的距离.【考查方式】直接求极坐标系中的点到直线的距离. 【难易程度】中等 【参考答案】1【试题解析】在极坐标系中,点π2,6⎛⎫⎪⎝⎭对应直角坐标系中坐标为1),直线ρsin θ=2对应直角坐标系中的方程为y =2,所以点到直线的距离为1.10.若等比数列{}n a 满足2420a a +=,3540a a +=,则公比q =__________;前n 项n S =_____.【测量目标】等比数列的性质及其前n 项和.【考查方式】已知等比数列中项之间的关系求解其公比与及其前n 项和. 【难易程度】中等 【参考答案】2 12n +-2【试题解析】由题意知352440220a a q a a +===+.由a 2+a 4=a 2(1+q 2)=a 1q (1+q 2)=20,∴a 1=2.∴S n =21212n (-)-=12n +-2.11.如图,AB 为圆O 的直径,PA 为圆O 的切线,PB 与圆O 相交于D ,若3PA =,:9:16PD DB =,则PD =__________,AB =__________.第11题图 JC94【测量目标】切割线定理.【考查方式】给出圆与有关该圆的某些直线,运用切割线定理求解线段的长度. 【难易程度】容易 【参考答案】954【试题解析】设PD =9k ,则DB =16k (k >0).由切割线定理可得,P A 2=PD PB , 即32=9k 25k ,可得15k =.∴PD =95,PB =5. 在Rt △APB 中,AB=4.12.将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是__________.【测量目标】排列组合的实际应用.【考查方式】运用排列组合的相关性质求解实际问题. 【难易程度】容易 【参考答案】96(种)【试题解析】连号有4种情况,从4人中挑一人得到连号参观券,其余可以全排列,则不同的分法有4×1343C A =96(种).13.向量,,a b c 在正方形网格中的位置如图所示,若λμ=+c a b (,)λμ∈R ,则λμ=__________.第13题图 JC95【测量目标】平面向量的数量积的综合应用.【考查方式】已知平面向量之间的关系求解未知量. 【难易程度】容易 【参考答案】4【试题解析】可设a =-i +j ,i ,j 为单位向量且i ⊥j ,则b =6i +2j ,c =-i -3j , (步骤1由c =λa +μb =(6μ-λ)i +(λ+2μ)j ,∴6123,μλλμ-=-⎧⎨+=-⎩,解得21.2λμ=-⎧⎪⎨=-⎪⎩,∴4λμ=.(步骤2) 14.如图,在棱长为2的正方体1111ABCD A BC D -中,E 为BC 的中点,点P 在线段1D E 上,点P 到直线1CC 的距离的最小值为__________.第14题图 JC96【测量目标】立体几何体中点到直线的距离.【考查方式】已知几何体中点与线之间的关系求解点到直线的距离. 【难易程度】中等【试题解析】过E 点作EE 1垂直底面A 1B 1C 1D 1,交B 1C 1于点E 1,连接D 1E 1,过P 点作PH 垂直于底面A 1B 1C 1D 1,交D 1E 1于点H ,P 点到直线CC 1的距离就是C 1H ,故当C 1H 垂直于D 1E 1时,P 点到直线CC 1距离最小,此时,在Rt △D 1C 1E 1中,C 1H ⊥D 1E 1,D 1E 1 C 1H =C 1D 1C 1E 1,∴C 1H=第14题图 JC97三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(本小题共13分)在ABC △中,3a =,b =2B A ∠=∠. (Ⅰ)求cos A 的值; (Ⅱ)求c 的值.【测量目标】正弦定理,解三角形.【考查方式】已知三角形中的角与边运用正弦定理求解未知的角与边. 【难易程度】容易【试题解析】(Ⅰ)因为a =3,b =B =2∠A ,所以在△ABC 中,由正弦定理得3sin sin 2A A=.所以2sin cos sin 3A A A =.故cos A =3(步骤1)(Ⅱ)由(Ⅰ)知,cos A =3sin A 3=.(步骤2)又因为∠B =2∠A ,所以cos B =2cos 2A -1=13.所以sin B 3=.(步骤3)在△ABC 中,sin C =sin(A +B )=sin A cos B +cos A sin B .所以c =sin sin a CA=5. (步骤4)16.(本小题共13分)下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择3月1日至3月15日中的某一天到达该市,并停留2天.第16题图 JC113(Ⅰ)求此人到达当日空气重度污染的概率;(Ⅱ)设X 是此人停留期间空气质量优良的天数,求X 的分布列与数学期望;(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)【测量目标】离散型随机变量的分布列,期望和方差;用样本数字特征估计总体数字特征. 【考查方式】运用概率的相关知识提取实际问题中的关键要素构成分布列求其数学期望并解答.【难易程度】中等【试题解析】(Ⅰ)设i A 表示事件“此人于3月i 日到达该市”(i =1,2,…,13). 根据题意,P (i A )=113,且i j A A =∅(i ≠j ). 设B 为事件“此人到达当日空气重度污染”,则B =58A A . 所以P (B )=P (58A A )=P (5A )+P (8A )=213.(步骤1) (Ⅱ)由题意可知,X 的所有可能取值为0,1,2,且P (X =1)=()()()()()3671136711413P A A A A P A P A P A P A =+++= , P (X =2)=()()()()()121213121213413P A A A A P A P A P A P A =+++=P (X =0)=1-P (X =1)-P (X =2)=513.所以X 的分布列为:2)故X 的期望EX =0×513+1×413+2×413=1213.(步骤3) (Ⅲ)从3月5日开始连续三天的空气质量指数方差最大.17.(本小题共14分)如图,在三棱柱111ABC A B C -中,11AAC C 是边长为4的正方形.平面ABC ⊥平面11AAC C ,3AB =,5BC =. (Ⅰ)求证:1AA ⊥平面ABC ;(Ⅱ)求二面角111A BC B --的余弦值;(Ⅲ)证明:在线段1BC 上存在点D ,使得1AD A B ⊥,并求1BDBC 的值.第17题图 JC98【测量目标】线面垂直,异面直线所成的角,线线垂直的判断.【考查方式】运用线面垂直的相关判定求解线面垂直与异面直线所成的角. 【难易程度】中等【试题解析】(Ⅰ)因为11AAC C 为正方形,所以1AA AC ⊥. 因为平面ABC ⊥平面11AAC C ,且1AA 垂直于这两个平面的交线AC , 所以1AA ⊥平面ABC . (步骤1) (Ⅱ)由(1)知1AA ⊥AC ,1AA ⊥AB .由题知AB =3,BC =5,AC =4,所以AB ⊥AC . (步骤2) 如图,以A 为原点建立空间直角坐标系A -xyz , 则B (0,3,0),1A (0,0,4),1B (0,3,4),1C (4,0,4).设平面11A BC 的法向量为n =(x ,y ,z ),则1110,0,A B A C ⎧=⎪⎨=⎪⎩ n n 即340,40.y z x -=⎧⎨=⎩ 令z =3,则x =0,y =4,所以n =(0,4,3). 同理可得,平面11B BC 的法向量为m =(3,4,0).(步骤3)所以cos 〈n ,m 〉=16||||25= n m n m .(步骤4)由题知二面角111A BC B --为锐角,所以二面角111A BCB --的余弦值为1625.(步骤5)第17题(Ⅱ)图 JC99(Ⅲ)设D (x ,y ,z )是直线1BC 上一点,且BD =λ1BC ,所以(x ,y -3,z )=λ (4,-3,4). 解得x =4λ,y =3-3λ,z =4λ.所以AD=(4λ,3-3λ,4λ).(步骤6) 由AD 1A B =0,即9-25λ=0,解得925λ=. 因为925∈[0,1],所以在线段1BC 上存在点D ,使得AD ⊥1A B .此时,1925BD BC λ==.(步骤7) 18.(本小题共13分)设l 为曲线ln :xC y x=在点(1,0)处的切线. (Ⅰ)求l 的方程;(Ⅱ)证明:除切点(1,0)之外,曲线C 在直线l 的下方. 【测量目标】利用导数求直线方程,导数的几何意义.【考查方式】已知直线是另一曲线在某点处的切线,求解直线方程. 【难易程度】中等【试题解析】(Ⅰ)设()ln x f x x =,则()21ln xf x x -'=.所以()11f '=. 所以l 的方程为y =x -1.(步骤1)(Ⅱ)令g (x )=x -1-f (x ),则除切点之外,曲线C 在直线l 的下方等价于g (x )>0(∀x >0,x ≠1).(步骤2)g (x )满足g (1)=0,且()g x '=1-()f x '=221ln x x x -+.当0<x <1时,2x -1<0,ln x <0,所以()g x '<0,故g (x )单调递减;当x >1时,2x -1>0,ln x >0,所以()g x '>0,故g (x )单调递增.所以,g (x )>g (1)=0(∀x >0,x ≠1). (步骤3) 所以除切点之外,曲线C 在直线l 的下方.(步骤4)19.(本小题共14分)已知A ,B ,C 是椭圆22:14x W y +=上的三个点, O 为坐标原点. (Ⅰ)当点B 是W 的右顶点,且四边形OABC 为菱形时,求此菱形的面积;(Ⅱ)当点B 不是W 的顶点时,判断四边形OABC 是否可能为菱形,并说明理由. 【测量目标】椭圆的简单几何性质.【考查方式】已知椭圆的基本量,利用椭圆的简单几何性质判定椭圆内四边形是否存在以及其面积的求解. 【难易程度】中等【试题解析】(Ⅰ)椭圆W :24x +y 2=1的右顶点B 的坐标为(2,0).因为四边形OABC 为菱形,所以AC 与OB 相互垂直平分.所以可设A (1,m ),代入椭圆方程得14+m 2=1,即m=±(步骤1)所以菱形OABC 的面积是12OB AC =12×2×2m (步骤2) (Ⅱ)假设四边形OABC 为菱形.因为点B 不是W 的顶点,且直线AC 不过原点,所以可设AC 的方程为y =kx +m (k ≠0,m ≠0).(步骤3)由2244,x y y kx m⎧+=⎨=+⎩消y 并整理得()2214k x ++8kmx +24m -4=0. 设()()1122,,,A x y C x y ,则1224214x x km k +=-+,121222214y y x x mk m k++=+=+ . 所以AC 的中点为M 224,1414kmm k k ⎛⎫- ⎪++⎝⎭.(步骤4) 因为M 为AC 和OB 的交点,所以直线OB 的斜率为14k-.因为k 14k ⎛⎫- ⎪⎝⎭≠-1,所以AC 与OB 不垂直.所以OABC 不是菱形,与假设矛盾.所以当点B 不是W 的顶点时,四边形OABC 不可能是菱形.(步骤5)20.(本小题共13分)已知{}n a 是由非负整数组成的无穷数列,该数列前n 项的最大值记为n A ,第n 项之后各项12,,n n a a ++⋅⋅⋅的最小值记为n B ,n n n d A B =-.(Ⅰ)若{}n a 为2,1,4,3,2,1,4,3,⋅⋅⋅,是一个周期为4的数列,(即对任意n *∈N ,4n n a a +=),写出1d ,2d ,3d ,4d 的值;(Ⅱ)设d 是非负整数,证明:n d d =-(1,2,3,)n =⋅⋅⋅的充分必要条件为{}n a 是公差为d 的等差数列.(Ⅲ)证明:若12a =,1n d =(1,2,3,)n =⋅⋅⋅,则{}n a 的项只能是1或者2,且有无穷多项为1.【测量目标】数列的综合运用,数列的性质.【考查方式】给出一个数列,运用其相关性质求解未知数. 【难易程度】较难【试题解析】(Ⅰ)1d =2d =1,3d =4d =3.(步骤1) (Ⅱ)(充分性)因为{}n a 是公差为d 的等差数列,且d …0, 所以12n a a a ……剟.剟因此1,,n n n n A a B a +==,1n n n d a a +=- =-d (n =1,2,3,…).(步骤2) (必要性)因为n d =-d …0(n =1,2,3,…),所以n n n n A B d B =+….(步骤3) 又因为1,,n n n n a A a B +剠所以1n n a a +….于是1,n n n n A a B a +==,因此1n n n n n a a B A d d +-=-=-=, 即{}n a 是公差为d 的等差数列.(步骤4) (Ⅲ)因为112,1a d ==,所以111112,1A a B A d ===-=. 故对任意11,1n n a B =厖.(步骤5) 假设{}n a (n …2)中存在大于2的项. 设m 为满足m a >2的最小正整数, 则m …2,并且对任意1…k <m ,2k a ….(步骤6) 又因为12a =,所以12,m A -=2m m A a =>. 于是m m m B A d =->2-1=1,{}1min ,2m m m B a B -=…. 故111220m m m d A B ---=--=…,与1m d -=1矛盾. 所以对于任意1n …,有2n a …,即非负整数列{}n a 的各项只能为1或2. (步骤7) 因为对任意1n …,2n a …=1a ,所以2n A =.(步骤8) 故211n n n B A d =-=-=.因此对于任意正整数n ,存在m 满足m >n ,且1m a =, 即数列{}n a 有无穷多项为1. (步骤9)。

2013北京高考数学真题(理科)及答案

2013北京高考数学真题(理科)及答案
(Ⅲ)从 3 月 5 日开始连续三天的空气质量指数方差最大. (17)(共 14 分)
解:(Ⅰ)因为 AA1C1C是正方形 ,所以 AA1⊥AC .
因为 平面ABC 平面AA1C1C ,且 AA1 垂直于这两个平面的交线 AC,
所以 AA1 ⊥平面 ABC .
z A1
B1
(Ⅱ)由(Ⅰ)知 AA1⊥AC , AA1 ⊥ AB .
gx
1
f
x=
x2
1 x2
ln
x

当 0<x<1 时, x2 1<0,ln x<0,所以 g x<0,故 g x 单调递减;
当 x>1 时, x2 1>0,ln x>0,所以 g x>0,故 g x 单调递减.
所以 g x>g 1 =0x 0,x 1.
(9)1
(10)2
2n1 2
(11) 9 5
(6)B 4
(7)C
(8)C
(12)96 (13)4
三、解答题(共 6 小题,共 80 分) (15)(共 13 分)
(14) 2 5 5
解:(Ⅰ)因为 a 3 , b 2 6 , B 2A ,
所以在△ABC 中由正弦定理得 3 2 6 . sin A sin 2A
指指指指指指
250 200 150 100 86 50
220 160
143
57
217 160 158
121 86 79
25
37
0 1指
2指
指指 3指 4指 5指 6指 7指 8指 9指 10指 11指 12指13指 14指
(Ⅰ)求此人到达当日空气重度污染的概率; (Ⅱ)设 X 是此人停留期间空气质量优良的天数,求 X 的分布列与数学期望; (Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)

2013年普通高等学校招生全国统一考试数学理试题(北京卷,含答案)

2013年普通高等学校招生全国统一考试数学理试题(北京卷,含答案)

2013北京高考理科数学试题第一部分 (选择题 共40分)一、选择题共8小题。

每小题5分,共40分。

在每个小题给出的四个选项中,只有一项是符合题目要求的一项。

1.已知集合A={-1,0,1},B={x |-1≤x <1},则A∩B= ( )A.{0}B.{-1,0}C.{0,1}D.{-1,0,1}2.在复平面内,复数(2-i)2对应的点位于( )A.第一象限B. 第二象限C.第三象限D. 第四象限3.“φ=π”是“曲线y=sin(2x +φ)过坐标原点的”A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.执行如图所示的程序框图,输出的S 值为 A.1 B.23 C.1321D.610987 5.函数f (x )的图象向右平移一个单位长度,所得图象与y =e x 关于y 轴对称,则f (x )=A.1e x +B. 1e x -C. 1e x -+D. 1e x --6.若双曲线22221x y a b-=3 A.y =±2x B.y =2x C.12y x =± D.22y x =± 7.直线l 过抛物线C :x 2=4y 的焦点且与y 轴垂直,则l 与C 所围成的图形的面积等于 A.43B.2C.83D.1623 8.设关于x ,y 的不等式组210,0,0x y x m y m -+>⎧⎪+<⎨⎪->⎩表示的平面区域内存在点P (x 0,y 0)满足x 0-2y 0=2,求得m的取值范围是A.4,3⎛⎫-∞- ⎪⎝⎭ B. 1,3⎛⎫-∞ ⎪⎝⎭ C. 2,3⎛⎫-∞- ⎪⎝⎭ D. 5,3⎛⎫-∞- ⎪⎝⎭第二部分(非选择题 共110分)二、填空题共6题,每小题5分,共30分.9.在极坐标系中,点(2,6π)到直线ρsin θ=2的距离等于 10.若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q = ;前n 项和S n = . 11.如图,AB 为圆O 的直径,PA 为圆O 的切线,PB 与圆O 相交于D ,PA=3,916PD DB =,则PD= ,AB= .12.将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少一张,如果分给同一人的两张参观券连号,那么不同的分法种数是 .13.向量a ,b ,c 在正方形网格中的位置如图所示,若c =λa +μb (λ,μ∈R ) ,则λμ=14.如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E 为BC 的中点,点P 在线段D 1E 上,点P 到直线CC 1的距离的最小值为 .三、解答题共6小题,共80分。

2013年普通高等学校招生全国统一考试数学理试题(北京卷,含答案)

2013年普通高等学校招生全国统一考试数学理试题(北京卷,含答案)
2013 北京高考理科数学试题
一 选择题共 8 小题 目要求的一项 小题 5 第一部 共 40 选择题 共 40 在 个小题给出的四个选项中 只 一项是符合题
1.已知集合 A称{ 1 0 1} B称{x| 1≤x 1} 则 A∩B称 Ⅲ A.{0} B.{ 1 0} C.{0 1} D.{ 1,0,1} 2 2.在复 面内 复数Ⅲ2 i) 对应的点位于Ⅲ ) A.第一象限 B. 第二象限 C.第 象限 D. 第四象限 3. φ称π 是 曲线 y称sinⅢ2x φ)过坐标原点的 A.充 而 必要条件 B.必要而 充 条件 C.充 必要条件 D.既 充 也 必要条件 4.执行如图所示的程序框图 输出的 分 值为 A.1 B.
求 人到达当日空气重度污染的概率 设 下 是 人停留期间空气质 优良的天数 求 下 的 列 数学期望 由图判断从哪天开始连续 天的空气质 指数方差最大? 结论 要求证明 17. Ⅲ本小题共 14 ) 如图 在 棱柱 ABC-A1B1C1 中 AA1C1C 是边长为 4 的 方形. 面 ABC⊥ 面 AA1C1C AB称3 BC称5. 求证 AA1⊥ 面 ABC 求二面角 A1-BC1-B1 的余弦值 证明 在线段 BC1 在点 D 使得 AD⊥A1B 并求
B.2 C.
4 3
的取值范围是
A. −∞, −

4 3
B. −∞,

1 3
C. −∞, − 共 30 .
Байду номын сангаас

2 3
D. −∞, −

5 3
第二部 非选择题 共 110 二 填空题共 6 题 小题 5 9.在极坐标系中 点Ⅲ2
π )到直线 ρsinθ称2 的距离等于 6
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档