IT直流斩波电路的设计精选文档
直流斩波电路设计

第一章电路总体思路,基本结构和原理框图1.1 电路总体思路直流斩波电路功能是将直流电变为另一固定电压或可调电压的直流电,也称为直接直流—直流变换器。
在设计直流斩波电路过程中,日常所用的电源一般都是220V 交流电,在设计中首先通过变压器降压,然后用整流电路将交流电转变为直流电,经过绿波电路滤掉高次谐波,从而获得直流斩波电路的输入电压。
控制和驱动电路,采用直接产生PWM的专用芯片SG3525,该芯片的外围电路只需简单的连接几个电阻电容,就能产生特定频率的PWM波,通过改变IN+输入电阻就能改变输出PWM波的占空比,故在IN+端接个可调电阻就能实现PWM控制。
为了减少不同电源之间的相互干扰,SG3525输出的PWM经过光电耦合之后才送至驱动电路,通过驱动电路对信号进行放大,放大后的电压可以直接驱动IGBT。
此电路具有信号稳定,安全可靠等优点。
因此他适用于中小容量的PWM斩波电路。
过压和过流保护电路,均采用反馈控制,将过流过压信号反馈到芯片SG3525的输入,从而起到调节保护作用。
1.2 基本结构直流斩波电路一般主要可分为主电路模块,控制电路模块和驱动电路模块三部分组成。
主电路模块,主要由电源变压器、整流电路、滤波电路和直流斩波电路组成,其中主要由全控器件IGBT的开通与关断的时间占空比来决定输出电压u。
的大小。
控制电路模块,可用直接产生PWM的专用芯片SG3525来控制IGBT的开通与关断。
驱动电路模块,驱动电路把控制信号转换为加在IGBT控制端和公共端之间,用来驱动IGBT的开通与关断。
1.3 原理框图电力电子器件在实际应用中,一般是由控制电路,驱动电路,保护电路和以电力电子器件为核心的主电路组成一个系统。
由信息电子电路组成的控制电路按照系统的工作要求形成控制信号,通过驱动电路去控制主电路中电力电子器件的导通或者关断。
来完成整个系统的功能。
因此,一个完整的降压斩波电路也应包括主电路,控制电路,驱动电路和保护电路这些环节。
直流斩波电路设计

一、设计项目与要求1、输入直流电压U i=60V,R=8Ω;2、输出电压范围为0-100V,试选用合适斩波电路;3、计算占空比α=23%和α=59%时,负载两端输出电压和电流;4、画出α=23%和α=59%时斩波电路的电压电流波形分析图;5、IGBT的工作特性分析。
二、电路原理图设计2.1主电路的设计斩波电路:将直流电变为另一固定电压或可调电压的直流电。
也称为直流-直流变换器(DC/DCConverter)。
一般指直接将直流电变为另一直流电,不包括直流-交流-直流。
升降压斩波斩波电路结构Boost型升降压斩波变换器的特点是输出电压可以低于电源电压,也可以高于电源电压,是将降压斩波和升压斩波电路结合的一种直接变换电路。
主要由功率开关、二极管、储能电感、输出滤波电容等组成。
本次课题是在输入直流电压为60V时,想要输出电压的范围为0-100V,故而要选择的斩波电路应为升降压斩波斩波电路。
图1升降压斩波电路原理图2.2触发电路设计斩波器触发电路由三部分组成,图2为斩波器触发电路的原理图。
第一部分为由幅值比较电路U1和积分电路U2组成一个频率和幅值均可调的锯齿波发生器。
电位器RP1用来调节锯齿波的上下位置,电位器RP2用来调节锯齿波的频率,频率从100到700Hz可调。
由于晶闸管的开关速度及LC振荡频率所限,所以在斩波实验中我们一般选用200Hz这一范围。
第二部分是比较器部分。
比较器U3输入的一路是锯齿波信号,另一路是给定的电平信号,输出为前沿固定后沿可调的方波信号。
改变输入的电平信号的值,则相应改变了输出方波的占空比。
第三部分是比较器产生的方波送到4098双单稳电路U4,单稳电路则在方波的前沿和后沿分别产生两个脉冲,如图4所示,其后沿脉冲随方波的宽度变化而移动,前沿脉冲相位则保持不变,输出的脉冲经三极管放大通过脉冲变压器输出。
将上述两脉冲分别送至主晶闸管及辅助晶闸管,其中方波前沿触发脉冲G1、K1接主晶闸管VT1,而后沿触发脉冲G2、K2接辅助晶闸管VT2。
直流斩波电路课设资料

电力电子技术课程设计说明书直流降压斩波电路的设计院、部:__________________________学生姓名:________________________指导教师:_________ 职称__________专业:___________________________班级:___________________________完成时间:________________________直流降压斩波电路又称为Buck变换器,它对输入电压进行降压变换。
通过控制电路的占空比即通过IGBT来控制降压斩波电路的输出电压。
直流斩波电路作为将直流电变成另一种固定电压或可调电压的 DC-DC变换器,在直流传动系统、充电蓄电电路、开关电源、电力电子变换装置及各种用电设备中得到普通的应用•随之出现了诸如降压斩波电路、升压斩波电路、升降压斩波电路、复合斩波电路等多种方式的变换电路。
直流斩波技术已被广泛用于开关电源及直流电动机驱动中,使其控制获得加速平稳、快速响应、节约电能的效果。
全控型电力电子器件IGBT在牵引电传动电能传输与变换、有源滤波等领域得到了广泛的应用。
首先分析了直流斩波主电路(即 Buck变换器)的工作原理,计算了电路的电压电流和IGBT承受的正反向电压,按照留有裕量的选型原则,选择了 IRG4PC40U型号的IGBT,并对其参数进行了介绍。
利用PWM控制芯片SG3525 作为触发电路的核心部件,最后利用 MATLAB建立了仿真模型,设置了模型的参数,并进行了仿真。
仿真结果证明了设计的正确性。
关键字:设计;仿真;直流降压斩波;Buck1 绪论 (1)1.1设计的背景与意义 (1)1.2直流斩波发展现状 (1)1.3本设计主要内容 (2)2直流斩波主电路的设计 (3)2.1设计原始参数 (3)2.2直流斩波电路原理 (3)2.3主电路的设计 (4)2.3.1直流降压斩波电路 (4)2.3.2直流降压斩波电路参数计算 (4)2.3.3主电路参数分析 (5)3控制电路设计 (7)3.1PWM控制芯片SG3525简介及特点 (7)3.2SG3525内部结构及工作特性 (7)3.3触发电路 (9)4仿真调试 (10)4.1仿真软件的介绍 (10)4.2仿真模型建立 (10)4.3仿真结果分析 (12)结束语 (15)参考文献 (16)致谢 (17)附录 (18)附录A:元件清单 (18)附录B:主电路CAD图 (19)1绪论1.1设计的背景与意义直流斩波主要应用于低压大电流领域,其目的是为了解决续流管的导通损耗问题。
直流斩波电路研究实验报告

直流斩波电路研究实验报告直流斩波电路研究实验报告引言直流斩波电路是一种常见的电子电路,它可以将直流电转换为可变的脉冲电流。
在本次实验中,我们将研究直流斩波电路的原理和性能,并通过实验验证其工作效果。
一、实验目的本次实验旨在通过搭建直流斩波电路,研究其工作原理和性能,并通过实验结果验证理论分析的正确性。
二、实验原理直流斩波电路由三个主要部分组成:输入直流电源、可变电阻和输出负载。
当输入直流电压经过可变电阻调节后,通过开关控制,形成一系列脉冲电流,最后通过输出负载得到所需的电压波形。
三、实验步骤1. 搭建直流斩波电路:将输入直流电源与可变电阻相连,并接入开关和输出负载。
2. 调节可变电阻:通过调节可变电阻的阻值,控制输出电压的大小。
3. 控制开关:通过控制开关的开关频率和占空比,调节输出脉冲的频率和宽度。
4. 观察输出波形:使用示波器观察输出波形,并记录实验数据。
四、实验结果与分析通过实验观察和数据记录,我们得到了直流斩波电路的输出波形。
根据理论分析,我们可以得出以下结论:1. 输出波形的频率和宽度与开关的开关频率和占空比有关。
当开关频率较高且占空比较大时,输出波形的频率较高且宽度较宽。
2. 输出波形的幅值与输入直流电压和可变电阻的阻值有关。
当输入直流电压较高且可变电阻的阻值较小时,输出波形的幅值较大。
五、实验结论通过本次实验,我们验证了直流斩波电路的工作原理和性能。
我们发现,通过调节可变电阻和控制开关,我们可以得到不同频率、宽度和幅值的输出波形。
这种电路在实际应用中具有广泛的用途,例如在电力变换、电子通信和电动机控制等领域都有重要的应用。
六、实验总结通过本次实验,我们对直流斩波电路有了更深入的了解。
我们通过实验验证了理论分析的正确性,并掌握了搭建和调节直流斩波电路的方法。
在实验过程中,我们还学会了使用示波器观察和记录波形数据的技巧。
这些实验技能对我们今后的学习和研究都具有重要的意义。
七、参考文献[1] 张三, 李四. 直流斩波电路原理与应用[M]. 北京:电子工业出版社,2010.[2] 王五, 赵六. 电子电路实验指导[M]. 北京:高等教育出版社,2015.以上为直流斩波电路研究实验报告的主要内容。
课程设计--直流斩波电路的设计

电力电子技术课程设计说明书题目直流斩波电路的设计学院:电气与信息工程学院前言直流斩波器(DC Chopper)又称为截波器,它是将电压值固定的直流电,转换为电压值可变的直流电源装置,是一种直流对直流的转换器(DC/DC Converter)已被被广泛使用,如直流电机之速度控制、交换式电源供应器(Switching-Power-Supply)等。
直流斩波是将固定的直流电压变换成可变的直流电压,也称为DC/DC变换。
斩波器的工作方式有两种,一是脉宽调制方式,Ts(周期)不变,改变Ton (通用,Ton为开关每次接通的时间),二是频率调制方式,Ton不变,改变Ts (易产生干扰)。
其具体的电路由以下几类:降压斩波器(Buck Chopper电路),其输出平均电压Uo小于输入电压Ui,输出电压与输入电压极性相同。
升压斩波器(Boost Chopper电路),其输出平均电压Uo大于输入电压Ui,输出电压与输入电压极性相同降压或升压斩波器(Buck-Boost Chopper电路)降压或升压斩波器(Cuk Chopper电路)Sepic斩波电路Zeta斩波电路,其中前两种是最基本的电路。
复合斩波电路——不同基本斩波电路组合多相多重斩波电路——相同结构基本斩波电路组合直流传动是斩波电路应用的传统领域,而开关电源则是斩波电路应用的新领域,前者的应用是逐渐萎缩,而后者的应用方兴未艾、欣欣向荣,是电力电子领域的一大热点。
用直流斩波器代替变阻器可节约电能(20~30)%。
直流斩波器不仅能起调压的作用(开关电源),同时还能起到有效地抑制电网侧谐波电流噪声的作用。
当今软开关技术使得DC/DC发生了质的飞跃,美国VICOR公司设计制造的多种ECI 软开关DC/DC变换器,其最大输出功率有300W、600W、800W等,相应的功率密度为(6、2、10、17)W/cm^3,效率为(80-90)%。
日本NemicLambda公司最新推出的一种采用软开关技术的高频开关电源模块RM系列,其开关频率为(200-300)kHz,功率密度已达到27W/cm^3,采用同步整流器(MOS-FET代替肖特基二极管),是整个电路效率提高到90%。
直流斩波电路原理实验报告新颖完整

直流斩波电路原理实验报告新颖完整实验报告:直流斩波电路原理及实验一、实验目的掌握直流斩波电路的基本原理,了解其在工程中的应用,进一步加深对电路的理解。
二、实验器材1.直流电源2.电阻、电容、二极管、晶体管等元器件3.示波器、万用表等测试仪器三、实验原理四、实验步骤1.搭建直流斩波电路按照实验原理搭建直流斩波电路,将直流电源连接到斩波器的输入端,然后将输出端连接到滤波电路。
2.测量电路参数使用万用表等测试仪器,依次测量电阻、电容、二极管等元器件的电阻值、电容值、正向电压降等参数。
3.进行示波器测量将示波器的探头分别连接到斩波器的输入端和输出端,观察输入信号和输出信号的波形,并记录下相关数据。
4.更换元器件在保持电路基本结构不变的情况下,更换其中一元器件,并观察输出信号的变化,记录下相关数据。
五、实验数据记录及分析1.电路参数记录测得的电阻、电容、二极管等元器件的电参数。
2.示波器测量数据记录输入信号和输出信号的波形,并分析其频率、幅值等特征。
3.元器件更换实验数据记录更换元器件后输出信号的波形,并分析其变化原因。
六、实验结果讨论通过实验数据的记录和分析,得出直流斩波电路的输入信号和输出信号的关系,进一步认识到电路中各元器件的作用与影响。
七、实验心得通过本次实验,我深入理解了直流斩波电路的原理和应用,并通过实际操作了解了不同元器件对输出信号的影响,加深了对电路的认识。
这次实验让我更加熟悉了直流斩波电路的特点,培养了动手实验的能力,提高了解决问题的能力。
希望今后能在工程中更好地应用直流斩波电路的知识。
(完整word版)电力电子课程设计直流斩波电路(优秀设计)..

课程设计报告课题名称:直流斩波电路的设计系:电气与信息工程系年级:专业:自动化直流斩波电路的功能是将直流电变为另一种固定的或可调的直流电,也称为直流-直流变换器(DC/DC Converter),直流斩波电路一般是指直接将直流变成直流的情况,不包括直流—交流-直流的情况;直流斩波电路的种类很多:降压斩波电路,升压斩波电路,这两种是最基本电路。
另外还有升降压斩波电路,Cuk斩波电路,Sepic斩波电路,Zeta斩波电路。
斩波器的工作方式有:脉宽调制方式(Ts不变,改变ton)和频率调制方式(ton不变,改变Ts)。
本设计是基于SG3525芯片为核心控制的脉宽调制方式的升压斩波电路和降压斩波电路,设计分为Multisim仿真和Protel两大部分构成。
Multisim主要是仿真分析,借助其强大的仿真功能可以很直观的看到PWM控制输出电压的曲线图,通过设置参数分析输出与电路参数和控制量的关系,利用软件自带的电表和示波器能直观的分析各种输出结果。
第二部分是硬件电路设计,它通过Protel等软件设计完成。
关键字:直流斩波;PWM;SG35251 直流斩波主电路的设计 (1)1.1 直流斩波电路原理 (1)1.1。
1 直流降压斩波电路 (1)1.2.2 直流升压斩波电路 (6)1。
2 主电路的设计 (7)1.2。
1 直流降压斩波电路 (7)1.2.2 直流降压斩波电路参数计数 (8)1。
2。
3 .......................................................... 直流升压斩波电路 81.2.4 直流升压斩波参数计算 (9)2 触发电路设计 (9)2.1 控制及驱动电路设计 (9)2.1.1 PWM控制芯片SG3525简介 (9)2。
1.2 S G3525内部结构及工作特性 (10)2.1。
3 触发电路 (11)2。
2 系统总电路图 (12)3 电路仿真 (12)3.1 触发电路的仿真 (12)3。
直流斩波电路实验报告模板

实验编号实验指导书实验项目:直流斩波电路(Buck-Boost变换器)所属课程: 电力电子技术基础课程代码: EE303面向专业: 电气工程学院(系): 电气工程系实验室: 电气工程与自动化代号: 030102010年4月27 日一、实验目的:1.掌握Buck—Boost变换器的工作原理、特点与电路组成。
2.熟悉Buck—Boost变换器连续与不连续工作模式的工作波形图。
3.掌握Buck—Boost变换器的调试方法。
二、实验内容:1.连接实验线路,构成一个实用的Buck—Boost变换器。
2.调节占空比,测出电感电流i L处于连续与不连续临界状态时的占空比D,并与理论值相比较。
3.将电感L增大一倍,测出i L处于连续与不连续临界状态时的占空比D,并与理论值相比较。
4.测出连续与不连续工作状态时的V be、V ce、V D、V L、i L、i C、i D等波形。
5.测出直流电压增益M=V O/V S与占空比D的函数关系。
6.测试输入、输出滤波环节分别对输入电流i S与输出电流i O影响。
三、实验主要仪器设备:1.MCL-08直流斩波及开关电源实验挂箱2.万用表3.双踪示波器五、实验有关原理及原始计算数据,所应用的公式:直流斩波器是利用功率组件对固定电压之电源做适当之切割以达成负载端电压改变之目的。
若其输出电压较输入之电源电压低,则称为降压式(Buck )直流斩波器,若其输出电压较输入之电源电压高,则称为升压式(Boost) 直流斩波器。
最常见的改变方式为1.周期T固定,导通时间Ton改变,称脉波宽度调变(Pulse-width Modulation PWM)。
2.导通时间Ton固定,周期T改变,称频率调变(Frequency Modulation FM)。
3.周期T及导通时间Ton 同时改变,即波宽调变及频率调变混合使用。
在实际应用中,因直流斩波器常需在负载端接上滤波电感及滤波电容,若频率改变过大对电感及电容影响大,因此多数采用脉波宽度调变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
I T直流斩波电路的设计精选文档TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-目录1设计原理分析 (1)1.1总体结构分析 (1)1.2主电路的设计 (1)1.3触发电路的设计 (2)1.4驱动电路设计 (3)1.5保护电路分析 (5)2仿真分析与调试 (6)2.1建立仿真模型 (6)2.2仿真结果分析 (8)3确定实际参数 (11)心得体会 (12)参考文献 (14)附录: (15)IGBT直流斩波电路的设计1设计原理分析1.1总体结构分析直流斩波电路的功能是将直流电变为另一固定电压或可调电压的直流电。
它在电源的设计上有很重要的应用。
一般来说,斩波电路的实现都要依靠全控型器件。
在这里,我所设计的是基于IGBT 的降压斩波短路。
直流降压斩波电路主要分为三个部分,分别为主电路模块,控制电路模块和驱动电路模块。
电路的结构框图如下图(图1)所示。
图1 电路结构框图除了上述主要结构之外,还必须考虑电路中电力电子器件的保护,以及控制电路与主电路的电器隔离。
1.2主电路的设计主电路是整个斩波电路的核心,降压过程就由此模块完成。
其原理图如图2所示。
io L 开始断,而电感L 足够大,使得负载电流连续,而电压断续。
从总体上看,输出电压的平均值减小了。
输出电压与输入电压之比α由控制信号的占空比来决定。
这也就是降压斩波电路的工作原理。
降压斩波的典型波形如下图所示。
t O Ti G t on t off i oa)E Mi G i图2中的负载为电动机,是一种放电动式负载。
反电动势负载有电流断续和电流连续两种工作状态。
分别入图3中b )和a )所示。
无论哪一种情况,输出电压的平均值都与负载无关,其大小为:(1-1)T on 表示导通的时;T off 表示截止的时间 ;A 表示导通时间占空比。
对于输出电流,当Uo>E 时电流连续,输出电流平均值大小为:(1-2)当Uo<E 时,电流既无法通过IGBT 也无法通过二极管。
于是便出现了电流断续的现象。
一般不希望出现电流断续的现象,因此需要通过控制信号占空比的调节来维持负载的电流。
1.3触发电路的设计斩波电路有三种控制方式:1) 保持开关周期T 不变,调节开关导通时间ton ,称为脉冲宽度调制或脉冲调宽型:2)保持导通时间不变,改变开关周期T ,成为频率调制或调频型; 3) 导通时间和周期T 都可调,是占空比改变,称为混合型。
其中第一种是最常用的方法。
PWM 控制信号的产生方法有很多。
这里我使用的是IGBT 的专用触发芯片SG3525,其电路原理图如下。
图4 PWM 信号产生电路SG3525所产生的仅仅只是PWM 控制信号,强度不够,不能够直接去驱动IGBT ,中间还需要有驱动电路就爱你过信号放大。
另外,主电路会产生很大的谐E E T t E t t t U α==+=on off on on o R E U I Mo o -=波,很可能影响到控制电路中PWM信号的产生。
因此,还需要对控制电路和主电路进行电气隔离。
1.4驱动电路设计IGBT是电力电子器件,控制电路产生的控制信号一般难以以直接驱动IGBT。
因此需要信号放大的电路。
另外直流斩波电路会产生很大的电磁干扰,会影响控制电路的正常工作,甚至导致电力电子器件的损坏。
因而还设计中还学要有带电器隔离的部分。
具体来讲IGBT的驱动要求有一下几点:1)动态驱动能力强,能为IGBT栅极提供具有陡峭前后沿的驱动脉冲。
否则IGBT会在开通及关延时,同时要保证当IGBT损坏时驱动电路中的其他元件不会被损坏。
2)能向 IGBT提供适当的正向和反向栅压,一般取+15 V左右的正向栅压比较恰当,取-5V反向栅压能让IGBT可靠截止。
3)具有栅压限幅电路,保护栅极不被击穿。
IGBT栅极极限电压一般为土20 V,驱动信号超出此范围可能破坏栅极。
4)当 IGBT处于负载短路或过流状态时,能在IGBT允许时间内通过逐渐降低栅压自动抑制故障电流,实现IGBT的软关断。
驱动电路的软关断过程不应随输入信号的消失而受到影响。
当然驱动电路还要注意其他几个问题。
主要是要选择合适的栅极电阻Rg和Rge。
以及要有足够的输入输出电隔离能力,要能够保证输入输出信号无这里,我是使用了EXB841集成电路作为IGBT的驱动电路。
其具体电路原理图参见附件原理图。
EXB841芯片具有单电源、正负偏压、过流检测、保护、软关断等主要特性,是一种比较典型的驱动电路。
其功能比较完善,在国内得到了广泛应用。
当EXB841输人端脚14和脚15有10m A的电流流过时,光祸ISO1导通,A点电位迅速下降至0 V,V1和V2截止;V2截止使D点电位上升至20 V,V4导通,V5截止,EXB841通过V4及栅极电阻Rg向一个IGBT提供电流使之迅速导通。
控制电路使EXB841输入端脚14和脚15无电流流过,光藕ISO1不通,A点电位上升使V1和V2导通;V2导通使V4截止、V5导通,IGBT栅极电荷通过V5迅速放电,使EXB841的脚3电位迅速下降至0V(相对于EXB841脚1低5 V),使IGBT 可靠关断。
设IGBT已正常导通,则V1和V2截止,V4导通,V5截止,B点和C点电位稳定在8V左右,Vzi不被击穿,V3截止,E点电位保持为20 V,二极管VD6截止。
若此时发生短路,IGBT承受大电流而退饱和,uce上升很多,二极管VD7截止,则EXB841的脚6"悬空”,B点和C点电位开始由8V上升;当上升至13V时,VZ,被击穿,V3导通,C4通过R,和V3放电,E点电位逐步下降,二极管VU6导通时D点电位也逐步下降,使EXB 841的脚3电位也逐步下降,缓慢关断IGBT。
对于EXB841,它本身存在一些不足之处。
例如过流保护阈值过高,保护存在盲区,软关断保护不可靠,负偏压不足,过流保护五自锁功能等。
为此,对驱动电路进行了一些优化,还增加了故障信号封锁电路。
这些主要都是为了加强对电路的保护,属于保护电路的范畴。
驱动电路原理图如下所示。
图5 驱动电路原理图1.5保护电路分析保护电路主要是依靠EXB841及其相配合的故障信号封锁电路。
下面便来做具体分析。
驱动电路中VZ5起保护作用,避免EXB841的6脚承受过电压,通过VD1检测是否过电流,接VZ3的目的是为了改变EXB模块过流保护起控点,以降低过高的保护阀值从而解决过流保护阀值太高的问题。
R1和C1及VZ4接在+20 V电源上保证稳定的电压。
VZ1和VZ2避免栅极和射极出现过电压,电阻Rge是防止IGBT误导通。
针对 EXB841存在保护盲区的问题,可如图5所示将EXB841的6脚的超快速恢复二极管VDI换为导通压降大一点的超快速恢复二极管或反向串联一个稳压二极管,也可采取对每个脉冲限制最小脉宽进行封锁,从而保证软关断的顺利进行。
该电路解决了EXB841存在的过电流保护无自锁功能这一问题。
经过试验发现该电路在正常工作时,可以通过EXB841的3脚发出+15V和-5V 电压信号驱动IGBT开通和关断,当IGBT发生过流时该电路能可靠地进行软关断。
针对EXB841软关断保护不可靠的问题,可以在EXB841的5脚和4脚间接一个可变电阻,4脚和地之间接一个电容,都是用来调节关断时间,保证软关断的可靠性。
针对负偏压不足的问题,可以考虑提高负偏压。
一般采用的负偏压是-5V,可以采用-8V的负偏压(当然负偏压的选择受到IGBT栅射极之间反向最大耐压的限制)。
图5下半部分所示为故障信号的封锁电路。
当IGBT正常工作时EXB841的5脚是高电平,此时光耦6N137截止,其6脚为高电平,从而V1导通,于是电容C6不充电,NE555 P的3脚输出为高电平,输人信号被接到15脚,EXB841正常工作驱动IGBT。
当EXB841检测到过电流时EXB841的5脚变为低电平,于是光耦导通使V1截止,+5V电压经凡和R4对几充电,R5和R,的总阻值为90KΩ,C6为100 pF,经过5 us后NE555P的3脚输出为低电平,通过与门将输人信号封锁。
因为EXB84从检测到IGBT过电流到对其软关断结束要10 ms,此电路延迟5us,工作是因为EXB841检测到过电流到EXB841的5脚信号为低电平需要5 us,这样经过NE555 P 定时器延迟5 ms使IGBT软关断后再停止输人信号,避免立即停止输人信号造成硬关断。
2仿真分析与调试2.1建立仿真模型在电力电子设计过程中利用MATLAB来进行仿真建模分析有很大的好处,它不但非常方便而且能够在很大程度范围内减少因设计问题而造成的浪费。
这里的仿真主要是运用MATLAB软件中的simulink工具。
先从simulink的元件库中找到需要用的元件,然后搭建相应的主电路,设置好参数后即可进行仿真。
仿真电路图如下图所示。
图6 仿真电路图仿真电路中,用虚拟的示波器监控了斩波电路输出电压输出电流的波形,以及IGBT电压电流的波形。
另外我还在电路中加了一个滤波电容。
根据题目要求输出电压平均值为100V,电流为10A。
这里是首先指定电源为200V直流。
则最大占空比为50%。
先用纯电阻负载,则负载理论阻值应该为10Ω。
至于负载回路中的大电感,我在这里取的700mH。
设定好元器件的参数之后,还需要设置仿真算法和仿真时间。
我的设置如下图所示。
图7 仿真设置界面由图可见,我定1S的仿真时间。
设置的仿真算法是ode45。
2.2仿真结果分析纯电阻负载时,仿真波形如下图所示:图8 纯电阻10%占空比波形图9 纯电阻50%占空比波形图由上述波形图可以看出,电压电流的波形都近似为一条直线。
电压平均值大约为99.8V ,电流平均值大约为9.955A。
即输出电压,电流与理论值都存在很小的误差。
但考虑到其他元件自身的阻抗作用,这种误差是能够容许的。
此时占空比的控制从0到50%即可实现输出电压从0到100V的调整。
当负载为反电动势负载时,Uo>E时才会有电流。
设定E为40V,内阻为6Ω。
要使输出电压100V时电流连续可调,则占空比必须大于20%。
此时波形图如下。
图10 反电动势20%占空比图11 反电动50%占空比波形由上述波形图可以看出,电压电流的波形仍然都近似为一条直线。
电压浮动从59.091V到59.099V,平均值约为59.095V电流浮动从9.82V到9.88V,平均值约为9.85V。
此时要维持电压的连续可调,则占空比至少要达到20%。
综合分析从20%到50%即可实现让斩波电路能够连续可调。
3确定实际参数结合仿真过程的想象和分析,先确定纯电阻负载时R=10Ω。
占空比从0到50%调整,但其间必然会产生电流断续。
带反电动势负载时,R=6Ω, E=40V,占空比从20%到50%调控时,可以保证负载电流连续。