题目)士兵考军校数学模拟试题

合集下载

武警士兵考军校军考模拟题:数学部分(四)

武警士兵考军校军考模拟题:数学部分(四)

武警士兵考军校军考模拟题:数学部分(四)关键词:武警考军校 军考模拟题 京忠教育 军考数学 武警考试资料1(2010-11)已知向量(3,2),(1,0)a b =-=- ,向量ka b + 与2a b - 垂直,则k=2(2012-16)(10分)在平面直角坐标系xOy 中,已知点(1,2),(2,3),(2,1)A B C ----.(1)求已线段AB ,AC 为邻边的平行四边形的两条对角线的长;(2)设实数t 满足()0AB tOC OC -⋅= ,求t 的值.3(2013-17)(7分)已知12,e e 是夹角为23π的两个单位向量,122a e e =-,12b ke e =+,若a b ⊥,求实数k 的值.4(2014-19)(10分)已知a 、b 、c 是同一平面内的三个向量,其中a=(1,2).(1)若c =c//a ,求向量c 的坐标;(2)若2b =,且a+2b 与2a-b 垂直,求向量a 与b 的夹角. 5.(2007-13)若复数Z 满足(1)Z i +=2,则Z 的实部是6.(2009-9)若复数1a i z i-=+是纯虚数,则a= 7.(2010-10)复数3(1)(2)i i i --+的共轭复数是 8.(2012-1)若复数2(1)a i -是纯虚数,则实数a 的值 ( ) A.1± B.-1 C.0 D.19.(2014-2)在复平面内,复数52i i-的对应点位于 ( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限10.(2008-9)已知复数1121,1z i z z i =-=+ ,则复数2z =11.(2010-2)复数z 满足1(1)z z i -=+,则z 的值是 ( )A.1i +B.1i -C.iD.i -12(2011-2)设复数122z =-+,则2z z +的值为 ( )A.iB.i -C.1D.-113(2013-4)复数23201...i i i i +++++的值等于 ( )A.1B.-1C.iD.-i14(2014-8)两个圆锥有等长的母线,而他们的侧面展开图恰好拼成一个圆,若它们的侧面积之比为1:2,则它们的高之比为 ( )A .2:1B C.1:215(2007-15)球O 的截面把垂直于截面的直径分为1:3球O 的表面积为16.(2009-13)在北纬60︒圈上有A 、B 两地,它们在此纬度圈上的弧长为2R π(R 是地球的半径),则AB 两地的球面距离是17(2010-15)用平面α截半径R 的球,如果球心到平面α的距离是2R ,那么截得的小圆的面积与球的表面积的比值是18(2011-9)已知球与正方体的表面积相等,则球与正方体的体积之比为 ( )π D.π19.(2013-12)如果球的直径,圆锥的底面直径和圆锥的高三者相等,那么球与圆锥的体积之比是=20(2009-6)设,,m n l 是三条不同的直线,,,αβγ是三阿哥不同平面,则下列命题是真命题的是( )A.若m,n 与l 所成的角相等,则m//nB.若γ与,αβ所成的角相等,则//αβC.若//αβ,m α⊂,则//m βD.若m,n 与α所成的角相等,则m//n21.(2010-7)设,,l m n 是互不相同的空间直线,,αβ是不重合的平面,则下列命题中真命题是( )A.若//,,l n αβαβ⊂⊂,则//l nB.若,,l αβα⊥⊂则l β⊥C.若,l n m n ⊥⊥,则//l mD.若//,l l βα⊥,则αβ⊥22(2011-8)设有不同的直线a ,b 和不同的平面,,αβγ,给出下列三个命题: ( ) ①若//,,l n αβαβ⊂⊂,则//l n②若,,l αβα⊥⊂则l β⊥③若,l n m n ⊥⊥,则//l m④若//,l l βα⊥,则αβ⊥A.0个B.1个C.2个D.3个23.(2012-15)已知,l m 是两条不同的直线,,αβ是两个不同的平面,下列命题: ①若,,//,l m l ααβ⊂⊂则//αβ②若,//,l l m αβαβ⊂⋂=,则//l m③若,//,l l m αβαβ⊂⋂=,则//l m④若,//,//l m l ααβ⊥,则m β⊥其中真命题是24.(2013-5)设有不同的直线a 、b 和不同的平面,,αβγ,给出下列三个命题: ①若//a α,//b α,则//a b ②若//a α,//a β,则//αβ③若若a γ⊥,βγ⊥,则//αβ其中正确的个数是 () A.0 B.1 C.2 D.325.(2014-9)平面α//β的一个充分条件是( )A.存在一条直线a ,a//α,a//βB.存在一条直线a,a α⊂,//a βC.存在两条平行直线a,b ,,,//,//a b a b αββα⊂⊂D.存在两条异面直线a,b ,,.//,//a b a b αββα⊂⊂26.(2007-19)(14分)在正方体中,M ,N 分别是正方体1111ABCD A B C D -的面对角线1CD 与AB 的中点.(1)求证:MN//平面11ADD A ;(2)求异面直线MN 和AC 所成角的余弦值.27.(2009-22)(13分)如图,在三棱锥P-ABC 中,,,30PA PB PA PB AB BC BAC ==⊥⊥∠=︒,平面PAB ABC ⊥.(1)求证:PA ⊥平面PBC ;(2)求二面角P-AC-B 的平面角的正切值.28(2010-21)(12分)如图,PA ⊥平面ABC ,底面ABC 是以AB 为斜边的直角三角形.(1)求证:平面PBC ⊥平面PAC ;(2)若22PA PB BC ===,求A 点到平面PBC 的距离.29(2011-20)(14分)三棱锥P ABC -中,ABC ∆是正三角形,90PCA ∠=︒,D 为PA的中点,二面角P-AC-B 为120︒,PC=2,AB =(1)求证:AC BD ⊥;(2)求BD 与底面ABC 所成角的正弦值. 30(2012-21)(13分)如图,在三棱锥A-BCD 中,AB ⊥平面BCD ,BC=DC=1,90BCD ∠=︒,E ,F 分别为AC ,AD 上的动点,且EF//平面BCD ,二面角B-CD-A 为60︒.(1)求证:EF ⊥平面ABC ;(2)若BE ⊥AC ,求直线BF 和平面ACD 所成角的余弦值.31(2013-21)(12分)如图,在三棱柱111ABC A B C -中,AC=3,BC=4,AB=5, 点D 是AB 的中点.求证:(1)1AC BC ⊥;(2)1AC ⊥平面1CDB .32.(2014-21)(12分)如图,在三棱锥S-ABC 中,平面SAB SBC ⊥,,AB BC AS AB ⊥=,过A 作AF SB ⊥,垂足为F ,点E 、G 分别为棱SA 、SC 的中点.求证:(1)平面EFG ABC ⊥;(2)BC SA ⊥.。

军校数学考试题库及答案

军校数学考试题库及答案

军校数学考试题库及答案1. 题目:求函数f(x) = 2x^3 - 3x^2 + 4x - 5在x=1处的导数值。

答案:首先求出函数f(x)的导数f'(x) = 6x^2 - 6x + 4。

然后将x=1代入f'(x)中,得到f'(1) = 6(1)^2 - 6(1) + 4 = 4。

2. 题目:解方程3x^2 - 5x + 2 = 0。

答案:使用求根公式,首先计算判别式Δ = b^2 - 4ac = (-5)^2 - 4(3)(2) = 25 - 24 = 1。

然后求解x = (-b ± √Δ) / 2a,得到x = (5 ± 1) / 6,即x1 = 1,x2 = 2/3。

3. 题目:计算定积分∫(0到1) (x^2 + 3x) dx。

答案:首先求出被积函数的原函数F(x) = (1/3)x^3 + (3/2)x^2 + C。

然后计算F(1) - F(0) = [(1/3)(1)^3 + (3/2)(1)^2] -[(1/3)(0)^3 + (3/2)(0)^2] = (1/3) + (3/2) = 11/6。

4. 题目:证明函数f(x) = x^2在区间(-∞, +∞)上是偶函数。

答案:根据偶函数的定义,若对于任意x∈(-∞, +∞),都有f(-x) = f(x),则f(x)是偶函数。

对于f(x) = x^2,我们有f(-x) = (-x)^2 = x^2 = f(x),因此f(x)是偶函数。

5. 题目:求极限lim(x→0) (sin(x) / x)。

答案:根据极限的性质,我们知道lim(x→0) (sin(x) / x) = 1。

这是因为当x趋近于0时,sin(x)与x的比值趋近于1。

6. 题目:计算二重积分∬(D) xy dA,其中D是由x^2 + y^2 ≤ 1定义的圆盘。

答案:首先将二重积分转换为极坐标形式,即∬(D) xy dA = ∫(0到2π) ∫(0到1) (r*cos(θ) * r*sin(θ)) * r dr dθ。

军校考试题目及答案数学

军校考试题目及答案数学

军校考试题目及答案数学一、选择题(每题4分,共40分)1. 若函数f(x) = 2x^2 + 3x - 5,求f(-2)的值。

A. 1B. -1C. 3D. -3答案:B2. 计算下列极限:lim(x→0) (sin(x)/x)。

A. 1B. 0C. -1D. 2答案:A3. 已知向量a = (1, 2),向量b = (3, 4),求向量a与向量b的数量积。

A. 5B. 10C. 11D. 14答案:C4. 求解方程2x^3 - 5x^2 + 3x - 1 = 0的实根个数。

A. 0B. 1C. 2D. 3答案:C5. 计算定积分∫(0到1) x^2 dx。

A. 1/3B. 1/2C. 1D. 2答案:C6. 已知矩阵A = [[1, 2], [3, 4]],求矩阵A的行列式。

A. -2B. 2C. -1D. 1答案:B7. 若函数g(x) = x^3 - 6x^2 + 11x - 6,求g(1)的值。

A. 0B. 1C. 2D. 3答案:B8. 计算级数1/1 + 1/2 + 1/3 + ... + 1/n的和。

A. ln(n+1)B. ln(n)C. nD. n+1答案:A9. 求函数y = sin(x) + cos(x)的导数。

A. cos(x) - sin(x)B. cos(x) + sin(x)C. -sin(x) + cos(x)D. -sin(x) - cos(x)答案:B10. 已知抛物线方程y = ax^2 + bx + c,若抛物线经过点(1, 2)和(2,3),求a的值。

A. 1/2B. 1C. 3/2D. 2答案:A二、填空题(每题4分,共20分)11. 计算圆的面积,半径为3,面积为_______。

答案:9π12. 已知等差数列的首项为2,公差为3,求第10项的值。

答案:2913. 计算复数z = 3 + 4i的模。

答案:514. 已知函数h(x) = x^4 - 4x^3 + 6x^2 - 4x + 1,求h(1)的值。

征兵智力测试题目数学(3篇)

征兵智力测试题目数学(3篇)

一、选择题1. 下列哪个数不是素数?A. 7B. 14C. 17D. 202. 下列哪个数是3的倍数?A. 8B. 15C. 20D. 253. 一个长方形的长是10cm,宽是5cm,它的面积是多少平方厘米?A. 25B. 50C. 100D. 1504. 一个班级有40名学生,其中有男生25名,女生15名,男生和女生的人数比是多少?A. 5:3B. 3:5C. 2:3D. 3:25. 一个正方形的边长是8cm,它的周长是多少厘米?B. 32C. 40D. 486. 下列哪个数是5的倍数?A. 7B. 15C. 22D. 257. 一个梯形的上底是6cm,下底是12cm,高是8cm,它的面积是多少平方厘米?A. 48B. 64C. 96D. 1288. 下列哪个数是9的倍数?A. 16B. 18C. 21D. 249. 一个圆的半径是3cm,它的面积是多少平方厘米?A. 9B. 18C. 2710. 一个长方体的长、宽、高分别是6cm、4cm、3cm,它的体积是多少立方厘米?A. 72B. 96C. 108D. 120二、填空题1. 2的平方加3的平方等于______。

2. 下列数列中,下一个数是______。

2,4,6,8,______。

3. 下列数列中,下一个数是______。

1,3,5,7,______。

4. 下列数列中,下一个数是______。

2,4,8,16,______。

5. 一个正方形的边长是12cm,它的面积是______平方厘米。

6. 一个圆的半径是5cm,它的面积是______平方厘米。

7. 一个长方体的长、宽、高分别是8cm、6cm、4cm,它的体积是______立方厘米。

8. 下列数列中,下一个数是______。

9,27,81,243,______。

9. 下列数列中,下一个数是______。

1,1,2,3,5,______。

10. 下列数列中,下一个数是______。

4,9,16,25,______。

军校数学考试题库及答案

军校数学考试题库及答案

军校数学考试题库及答案一、选择题(每题3分,共30分)1. 以下哪个选项是二次方程的解?A. x = 2B. x = -2C. x = 1D. x = 3答案:A2. 函数f(x) = 2x + 3的反函数是?A. f^(-1)(x) = (x - 3) / 2B. f^(-1)(x) = (x + 3) / 2C. f^(-1)(x) = 2x - 3D. f^(-1)(x) = x / 2 + 3答案:A3. 圆的面积公式是什么?A. A = πr^2B. A = 2πrC. A = πrD. A = 4πr^2答案:A4. 以下哪个选项是向量(3, -4)和向量(2, 6)的点积?A. 6B. -6C. 12D. -12答案:B5. 以下哪个选项是矩阵的行列式?A. det(A) = 3B. det(A) = -3C. det(A) = 5D. det(A) = -5答案:C6. 以下哪个选项是函数y = sin(x)的导数?A. dy/dx = cos(x)B. dy/dx = sin(x)C. dy/dx = -sin(x)D. dy/dx = -cos(x)答案:A7. 以下哪个选项是等差数列的通项公式?A. a_n = a_1 + (n - 1)dB. a_n = a_1 - (n - 1)dC. a_n = a_1 + ndD. a_n = a_1 - nd答案:A8. 以下哪个选项是复数z = 3 + 4i的模?A. |z| = 5B. |z| = √(3^2 + 4^2)C. |z| = √(3^2 - 4^2)D. |z| = √(4^2 - 3^2)答案:B9. 以下哪个选项是二项式定理的展开式?A. (x + y)^n = Σ C_n^k * x^(n-k) * y^kB. (x + y)^n = Σ C_n^k * x^k * y^(n-k)C. (x + y)^n = Σ C_n^k * x^(n-k) * y^(n-k)D. (x + y)^n = Σ C_n^k * x^(n-k) * y^k答案:B10. 以下哪个选项是曲线y = x^2在点(1, 1)处的切线方程?A. y = 2x - 1B. y = 2x + 1C. y = -2x + 3D. y = -2x - 1答案:A二、填空题(每题4分,共20分)11. 已知函数f(x) = x^3 - 3x^2 + 2,求f'(x) = ______。

消防士兵考军校真题试卷:数学部分(四)

消防士兵考军校真题试卷:数学部分(四)

消防士兵考军校真题试卷:数学部分(四)关键词:消防考军校 真题试卷 京忠教育 军考数学 消防考试资料 一.单项选择题(每小题5分)1.设全集{}1,0,1,2,3I =-,集合{}1,3M =,则CIM=(A ){}1,0,1,2,3- (B )∅ (C ){}1,3(D ){}1,0,2-2.已知向量(1,1)=- a ,(2,5)= b ,则2=-a b(A )(4,3)(B )(0,7)-(C )(0,6)-(D )(0,3)3.在等比数列{}n a 中,若2=2a ,51=4a ,则公比=q(A )12-(B )2- (C )2(D )124.函数10)y x =-<≤的反函数为(A )1)y x =<≤ (B )1)y x <≤(C )10)y x =-<≤(D )10)y x =-<≤5.已知平面向量a ,b ,a 4=,b 5=,10⋅=a b ,则向量a 与b 的夹角θ=(A )90︒(B )60︒(C )45︒(D )30︒6.若0.33a =,b=3,0.23c =-,则a ,b ,c 之间的大小关系是(A )a b c << (B )b a c << (C )b c a << (D )c b a << 7.若直线40x y +-=与圆22240x y x y a ++--=相切,则实数a 的值为(A )12- (B )2-(C )152(D 8.函数11y x x =+-(1)x >的最小值为 (A )4(B )3 (C )2 (D )19.若双曲线22214x y b-=(0b >)的一条准线方程为x =,则b 的值为(A(B(C )1 (D )2 10.已知直线l α⊥平面,直线m β⊂平面,则下列四个命题中,正确的命题是(A )若αβ⊥,则//l m (B )若αβ⊥,则l m ⊥ (C )若l m ⊥,则//αβ(D )若//l m ,则αβ⊥11.已知函数sin()y A x ωϕ=+()x ∈R ,其中0A >,0ω>,π||2ϕ<,它在长度为一个周期的闭区间6π⎡-⎢⎣,5π⎤⎥6⎦上的图象如图所示,则该函数的解析式是 (A )π3sin 26y x ⎛⎫=+ ⎪⎝⎭()x ∈R(B )π3sin 23y x ⎛⎫=+ ⎪⎝⎭()x ∈R (C )1π3sin 212y x ⎛⎫=+ ⎪⎝⎭()x ∈R (D )17π3sin 212y x ⎛⎫=+⎪⎝⎭()x ∈R 12.有6名即将退伍的战士与排长合影留念,7人站成一排,排长站在正中间,并且甲、乙两名战士相邻,则不同的站法有(A )48种 (B )96种 (C )192种(D )240种二.填空题(本大题共6小题,每小题5分,共30分) 13.sin 330︒= .14.二项式41x x ⎛⎫+ ⎪⎝⎭的展开式中,常数项为 (用数字作答).15.已知数列{}n a 中,14a =,132n n a a +=-()n *∈N ,则4a = . 16.设集合{},A x x m x =<∈R ,{}|2|3,B x x x =-<∈R .若A B B =I ,则实数m 的取值范围是 .O 3-6π- 56π xy17.在正方形ABCD 中,E ,F 分别是AD ,BC 的中点,现沿EF 将正方形折成直二面角(如图),M 为CF 的中点,则异面直线CE 与BM 所成角的余弦值为 .18.已知定义在区间[]22,- 上的奇函数()f x 单调递减.若2(2)(21)0f m f m -+->,则实数m 的取值范围是 .三.解答题(本大题共5小题,共60分.解答应写出文字说明,证明过程或演算步骤)19.(10分)已知cos θ=,π0,2θ⎛⎫∈ ⎪⎝⎭. (1)求πsin 3θ⎛⎫+ ⎪⎝⎭的值;(2)求tan 2θ的值.20.(12分)已知二次函数2()1f x ax bx =++ 是偶函数,且(1)0f =.(1)求a ,b 的值;(2)设()(2)g x f x =+若()g x 在区间[2,]m - 上的最小值为3-,求实数m 的值.21.(12分)在等比数列{}n a 中,已知公比2q =,n S 是{}n a 的前n 项和,N n *∈,且328S =.(1)求数列{}n a 的通项公式; (2)设23log n n b a =,N n *∈.① 求证{}n b 是等差数列; ② 求{}n b 的前10项和10T .22.(12分)已知椭圆22221x y a b+=(0)a b >>过点(2,0),离心率12e =.(1)求椭圆的方程;(2)过椭圆右焦点的直线与椭圆交于A ,B 两点,若线段AB 中点的横坐标为12,求AB 的值.23.(14分)如图,正三棱柱111ABC A B C -中,12AA AB ==,点E 是棱AC 的中点.(1)求证BE ⊥平面11ACC A ; (2)求二面角1C BC E --的大小; (3)求点1A 到平面1BC E 的距离.ABC1A1B1CE。

部队士兵考军校数学综合练习测试卷及答案

部队士兵考军校数学综合练习测试卷及答案

每题仅 1 人作答,则不同的题目分配方案种数为( )
A.24
B.30
C.36
D.42
第 1页(共 5页)
8.记 Sn 为等差数列{an} 的前 n 项和,已知 a2 0 , a6 8 ,则 S10 (
)
A.66
B.68
C.70
D.80
9.设奇函数
f
(x) 对任意的 x1 ,x2
( ,0)(x1
第 3页(共 5页)
所以 a2 b2 的最小值为 5. 故选: C . 7.【解答】解:根据题意,分 2 步进行分析:
①将 4 道题分为 3 组,有 C42=6 种分组方法,
②将三组题目安排给 3 人作答,有 A33=6 种情况,
则有 6×6=36 种分配方案, 故选:C.
8.【解答】解:等差数列{an} 中, a2 0 , a6 8 ,
)
A.充要条件
B.充分不必要条件
C.必要不充分条件
D.既不充分也不必要条件
4.已知 a=20.3,b=0.60.3,c=log0.60.3,则( )
A.a>b函数 y x2 x 6 1 的定义域为 (
)
x 1
A.[2 , 3]
B.[2 ,1) (1 , 3]
f (x) f (x) 0 2 f (x) 0 x f (x) 0 ,
x
x
则有 x (2021 , 0) (0 , 2021) ,
故选: D . 10.【解答】解:将函数 f (x) cos x 图象上所有点的横坐标都缩短到原来的 1 ,可
2
得 y cos 2x 的图象,
再向左平移
x2 ) ,有
f (x2 ) f (x1) x2 x1

武警士兵考军校军考模拟题:数学部分(六)

武警士兵考军校军考模拟题:数学部分(六)

武警士兵考军校军考模拟题:数学部分(六)武警士兵考军校军考模拟题:数学部分(六)关键词:武警考军校军考模拟题京忠教育军考数学武警考试资料x2y231(2021-21)(12分)已知椭圆C:2?2?1(a?b?0)的离心率是,直线l:y?x?2ab3与原点为圆心,以椭圆C的短半轴长为半径的圆相切. (1)求椭圆C的方程;(2)设椭圆C的左焦点为F1,右焦点F2,直线l1过点F1且垂直于椭圆的长轴,动直线l2垂直于l1于点P,线段PF2的垂直平分线交l2于点M,求点M的轨迹方程.x2y2??1一个焦点的最短弦长为 2(2021-14)过椭圆43x2y2??1,3(2021-7)已知椭圆E的方程为左焦点为F1,如果椭圆E上的一点P到F1的259距离为2,M是线段PF1的中点,O为坐标原点,则OM= () A.4 B.2 C.223 D.8 24(2021-12)以双曲线x?4y?4的中心为顶点,右焦点为焦点的抛物线方程是 5(2021-14)抛物线的顶点坐标在坐标原点,焦点是椭圆x?2y?8的一个焦点,则此抛物线的焦点到准线的距离为6(2021-13)顶点在原点,准线方程是x=2的抛物线的方程是7(2021-20)(11分)已知双曲线16x?9y?144,F1,F2是两个焦点,点P在双曲线上,且满足PF1PF2的值. 1?PF2?32,求?F2222x2y2?1过点(?32,2),则该双曲线的焦点为 8(2021-15)若双曲线2?a49(2021-22)(13分)双曲线C的中心在坐标原点,顶点为A(0,2),A点关于一条渐近线的对称点为B(2,0),斜率为2且过点B的直线L交双曲线C与M,N两点. (1)求双曲线C的方程;(2)计算MN的值.10(2021-10)已知以原点为中心的双曲线的一条准线方程为x?5,离心率e?5,则5该曲线的标准方程为()x2?y2?1 A.4x?y?1 B.422y2?1 C.x?4y?1D.x?4222x2y2x2y2611(2021-8)已知双曲线2?2?1(a?b?0)的离心率是,则椭圆2?2?1的离abab2心率是() A.1223 B. C. D. 23222x2y212(2021-15)已知抛物线y?8x的准线过双曲线2?2?1(a?0,b?0)的一个焦点,ab且双曲线的离心率为2,则该双曲线的方程为213(2021-22)(12分)抛物线与直线y?4x与直线y?2x?k相交,截得的弦长为35,求k的值.x2y2314(2021-21)(12分)已知椭圆C:2?2?1(a?b?0)的离心率是,直线l:y?x?2ab3与原点为圆心,以椭圆C的短半轴长为半径的圆相切. (1)求椭圆C的方程;(2)设椭圆C的左焦点为F1,右焦点F2,直线l1过点F1且垂直于椭圆的长轴,动直线l2垂直于l1于点P,线段PF2的垂直平分线交l2于点M,求点M的轨迹方程.15(2021-22)(13分)双曲线C的中心在坐标原点,顶点为A(0,2),A点关于一条渐近线的对称点为B(2,0),斜率为2且过点B的直线L交双曲线C与M,N两点. (1)求双曲线C的方程;(2)计算MN的值.16(2021-21)14分)已知椭圆C经过点A(1,),两焦点坐标分别为(?1,0),(1,0). (1)求椭圆C的方程;(2)E,F是椭圆上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值.32x2y25217(2021-22)(13分)已知椭圆2?2?1(a?b?0)点P(a,a)在椭圆上.ab52(1)求椭圆的离心率;(2)设点A为椭圆的左顶点,O为坐标原点,若点Q在椭圆上且满足AQ?AO,求直线OQ的斜率.18(2021-5)百米决赛有6 名运动员A、B、C、D、E、F参赛,每个运动员的速度都不同,则远动员A比运动员F先到终点的比赛结果共() A.360种 B.240种 C.120种 D.48种19(2021-4)用数字1,2,3,4,5组成没有重复数字的数,则可以组成的六位数的个数为() A.720 B.240 C.120 D.60020(2021-6)甲、乙、丙三位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则这三位同学不同的选修方案共有() A.48种 B.36种 C.96种 D.192种21(2021-8)名士兵拍成一排,其中甲乙两个必须排在一起的不同排法有() A.720种 B.360种 C.240种 D.120种22(2021-6)如果把4名干部分配到3个中队,每个中队至少要分配一名干部,那么不同的分配方法有() A.45种 B.36种 C.27种 D.9种23(2021-6)从4名男生和3名女生中选出3人,分别从事三项不同的工作,若这3人中至少有1名女生的选派方法有() A.108种 B.186种 C.216种 D.270种24(2021-7)在50件产品中有4件次品,从中任意抽取5件,至少有3件事次品的抽法共有()A.5种B.4140种C.96种D.4186种25(2021-7)我国第一艘航母“辽宁舰”在某次舰载机起降飞行训练中,有5架舰载机准备看舰,如果甲,乙二机必须相邻,丙,丁不能相邻,那么不同的着舰方法有() A.24种 B.18种 C.12种 D.48种 26(2021-11)过(a?b)20的展开式中第4r项与第r+2项的系数相等,则r= 27(2021-12)在(x?18)的展开式中,x5的系数为 2x28(2021-12)在(2x?18)的展开式中,常数项为3xn29(2021-13)已知(1?2n)的展开式中,二项式系数和为64,则它的二项展开式的中间项是30(2021-13)(2x?31(2021-13)(x?3110)的展开式中,常数项是 22x13x)18的展开式中含x15的项的系数为 12x32(2021-14)在(x?)8的展开式中常数项为33(2021-14)(x?110)的展开式中,x4的系数为 2x34(2021-21)(10分)已知8支球队中有3支弱队,以抽签的方式将8支球队分为A,B两组,每组4支,求:(1)3支弱队分在同一组的概率; (2)A组中至少有两支弱队的概率.35(2021-22)(13分)甲、乙、丙三位毕业生,同时应聘一个用人单位,其中甲被选中的概率是231,乙被选中的概率是,丙被选中的概率是,各自是否被选中相互独立. 543(1)求三人都被选中的概率;(2)求只有两人被选中的概率.36(2021-17)(10分)已知一个口袋中有大小、质地相同的8个球,其中有4个红球和4个黑球,现在从中任取4个球. (1)求取出的球的颜色相同的概率;(2)若取出的红球数不少于黑球数,则可获得奖品,求获得奖品的概率.37(2021-20)(10分)甲乙两人各射击一次,击中目标的概率分别是击是否击中目标之间相互独立,每人各次射击是否击中相互独立. (1)求甲射击4次,至少有1次击中目标的概率;23和,假设两人射34(2)求两人射击4次,甲恰好击中目标2次,且乙恰好击中目标3次的概率.38(2021-18)(12分)某项选拔共有四轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰,已知选手甲能正确回答第一、二、三、四轮问题的概率分别为4321,,,,且各轮问题能否正确回答互不影响. 5555(1)求选手甲进入第四轮才被淘汰的概率;(2)求选手甲至多进入第三轮考核的概率.39(2021-20)(14分)已知在3支不同编号的枪中有2支已经试射校正过,1支未经试射校正,某射手若使用其中校正过的枪,每次射击击中目标的概率为每次射击击中目标的概率为4,若使用没有校正的枪,51,假设没几是否击中之间相互没有影响. 5(1)若该射手用这2支已经校正过的枪各射击一次,求目标被击中的概率;(2)若该射手用这3支枪各射击一次,求目标至多被射中一次的概率.40(2021-16)(10分)战士小张考政治、语文、数学、外语4门课程,各课程考试成绩之间相互独立,其各门课程合格的概率分别为(1)求小张一门都不合格的概率;(2)求小张恰好有三门课程合格的概率.41(2021-20)(10分)袋中有大小相同的6个球,其中有4个红球,2个白球. (1)若任取3个球,求至少有一个白球的概率;(2)若有放回的取球3次,求恰好有1个白球的概率.4231,,,. 5342感谢您的阅读,祝您生活愉快。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学
一 选择题(本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一
项是符合题目要求的,把该选项的代号写在题后的括号内。


1设集合{}(){}R x x y y x N R x x y y M ∈+==∈+==,1,,,12,则N M ( )
A ∅
B {}0
C {}1,0
D {}1
2已知不等式()
()012422<-+--x a x a 对R x ∈恒成立,则a 的取值范围是 ( ) A a ≤2- B 2-≤a 56< C 2-5
6<<a D 2-≤a 2< 3若则,8.0log ,6log ,log 273===c b a π ( )
A. c b a >>
B. c a b >>
C. b a c >>
D. a c b >>
4设0>ω,函数2)3sin(++=π
ωx y 的图像向右平移3
4π个单位后与原图像重合,则ω的最小值是 ( ) A 32 B 34 C 2
3 D 3 5设)(x f 为定义在R 上的奇偶数,当x ≥0时,b x x f x ++=22)((b 为常数),则()=-1f
( )
A 3
B 2
C -1
D -3
6 ()()3
411x x --的展开式2x 的系数是 ( ) A -6 B -3 C 0 D 3
7 设向量a ,b 满足:,4,3==b a a ·b = 0 ,以a ,b ,b a - 的模为边长构成三角
形,则它的边长与半径为1的圆的公共点的个数最多为 ( )
A 3
B 4
C 5
D 6
8 设n m ,是平面α内的两条不同直线,21,l l 是平面β内的两条相交直线,则α∥β的一个
充分而不必要条件是 ( )
A m ∥β且1l ∥α
B m ∥1l 且n ∥2l
C m ∥β且n ∥β
D m ∥β且n ∥2l
二 填空题(本大题共7小题,每小题5分,共35分,把答案填在题中横线上。

) 9 函数x x y sin 162+-=的定义域 。

10 设n S 为等差数列{}n a 的前n 项和,若,24,363==S S 则9a = 。

11 =++++∞→)3
131311(lim 2n x 。

12 在120°的两面角内放置一个半径为5的小球,它与二面角的两个面相切于A 、B 两点,则这两个点在球面上的距离为 。

13 的值域为2cos 4sin 2+-=x x y 。

14 设=⎪⎭
⎫ ⎝⎛'=21
cos )(πf x x f ,则 。

15 已知抛物线x y 42=,过点()0,4P 的直线与抛物线相交于()()2211,,,y x B y x A 两点,则
2221y y +的最小值是 。

三 解答题(本大题共7小题,共75分。

解答应写出文子说明、证明过程或演算步骤) 16 (本小题共10分)
求函数x x x x y 42cos 4cos 4cos sin 47-+-=的最大值与最小值。

17 (本小题共10分)
求解方程:()2313
log 13log 133=⎪⎭
⎫ ⎝⎛---x x
设数列{}n a 的前n 项和为n S ,已知24,111+==+n n a S a 。

(1) 设n n n a a b 21-=+,证明数列{}n b 是等比数列;
(2) 求数列{}n a 的通项公式。

19 (本小题共10分)
设向量()()()ββββααsin 4,cos ,cos 4,sin ,sin ,cos 4-===c b a 。

(1) 若a 与c b 2-,求()βα+tan 得值;
(2) 求c b +得最大值。

已知a 是实数,函数()a x x x f -=)(。

(1) 求函数)(x f 的单调区间,说明)(x f 在定义域上有最小值
(2) 设()a m 为)(x f 的定义域上的最小值,写出()a m 的表达式;
(3) 当a = 10 时,求出()10)(-=
x x x f 在区间[]3,0上的最小值。

21 (本小题共10分)
如图所示,已知ABC C B A -111是正棱柱,AC D 是的中点,11BC AB ⊥。

求二面角C BC D --1的度数。

1A A D 1C C
1B B
已知椭圆12
22
=+y x 的左焦点为F ,坐标原点为O 。

(1) 求过点F O 、,并且与椭圆的左准线l 相切的圆的方程;
(2) 设过点F 的直线交椭圆于B A 、两点,并且线段AB 的中点在直线0
=+y x 上,求直线AB 的方程。

相关文档
最新文档