第十章曲面积分
曲线积分与曲面积分重点总结+例题

第十章曲线积分与曲面积分【教学目标与要求】1.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系。
2.掌握计算两类曲线积分的方法.3.熟练掌握格林公式并会运用平面曲线积分与路径无关的条件,会求全微分的原函数.4.了解第一类曲面积分的概念、性质,掌握计算第一类曲面积分的方法。
【教学重点】1。
两类曲线积分的计算方法;2。
格林公式及其应用;3。
第一类曲面积分的计算方法;【教学难点】1。
两类曲线积分的关系及第一类曲面积分的关系;2.对坐标的曲线积分与对坐标的曲面积分的计算;3。
应用格林公式计算对坐标的曲线积分;6.两类曲线积分的计算方法;7.格林公式及其应用格林公式计算对坐标的曲线积分;【参考书】[1]同济大学数学系.《高等数学(下)》,第五版.高等教育出版社。
[2]同济大学数学系.《高等数学学习辅导与习题选解》,第六版.高等教育出版社.[3]同济大学数学系。
《高等数学习题全解指南(下)》,第六版.高等教育出版社§11.1 对弧长的曲线积分一、对弧长的曲线积分的概念与性质曲线形构件的质量:设一曲线形构件所占的位置在xOy面内的一段曲线弧L上,已知曲线形构件在点(x,y)处的线密度为μ(x,y)。
求曲线形构件的质量.把曲线分成n小段,∆s1,∆s2,⋅⋅⋅,∆s n(∆s i也表示弧长);任取(ξi,ηi)∈∆s i,得第i小段质量的近似值μ(ξi,ηi)∆s i;整个物质曲线的质量近似为;令λ=max{∆s1,∆s2,⋅⋅⋅,∆s n}→0,则整个物质曲线的质量为.这种和的极限在研究其它问题时也会遇到。
定义设函数f(x,y)定义在可求长度的曲线L上,并且有界。
,将L任意分成n个弧段:∆s1,∆s2,⋅⋅⋅,∆s n,并用∆s i表示第i段的弧长;在每一弧段∆s i上任取一点(ξi,ηi),作和;令λ=max{∆s1,∆s2,⋅⋅⋅,∆s n},如果当λ→0时,这和的极限总存在,则称此极限为函数f(x,y)在曲线弧L上对弧长的曲线积分或第一类曲线积分,记作,即.其中f(x,y)叫做被积函数,L叫做积分弧段。
高等数学第10章 曲线积分与曲面积分

80
81
82
10.7.2 旋度的定义及其物理意义
83
84
85
66
67
实际上,我们常常碰到的曲面是双侧曲面,但单侧 曲面也存在,最有名的单侧曲面是拓扑学中的莫比乌斯 带,如图10.28所示.它的产生是将长方形纸条ABCD 先 扭转一次,然后使B与D,及A与C粘合起来构成的一个 非闭的环带.若想象一只蚂蚁从环带上一侧的某一点出发, 蚂蚁可以不用跨越环带的边界而到达环带的另一侧,然 后再回到起点;或者用一种颜色涂这个环带,不用越过 边界,可以涂满环带的两侧.显然这是双侧曲面不可能出 现的现象
第10章 曲线积分与曲面积分
解决许多几何、物理以及其他实际问题时,不仅需 要用到重积分,而且还需要将积分区域推广到一段曲线 弧或一片曲面上,这样推广后的积分称为曲线积分和曲 面积分.本章还将介绍格林公式、高斯公式及斯托克斯公 式,这三个公式刻画了不同类型的积分之间的内在联系, 并且在微积分、场论及其他学科中有着广泛的应用。
46
47
48
49
50
51
10.4 第一型曲面积分
通过讨论非均匀密度的空间曲面壳质量这一物理问 题,本节引入第一型曲面积分的概念并研究了相关性质。 10.4.1 实例 质量分布在可求面积的曲面壳上,曲面壳占有空间 曲面Σ,其密度函数为ρ(x,y,z),求曲面壳的质量.
52
53
54
55
15
16
17
18
19
20
21
10.2.3 向量值函数在有向曲线上的积分的计算法 设向量值函数F(x,y,z)=P(x,y,z)i+Q(x, y,z)j+R(x,y,z)k在有向曲线Γ上有定义且连续, 有向曲线弧Γ为简单曲线,它的参数方程为
第十章 曲面积分自测题解答(2)

第十曲面积分自测题及解答(2)一、选择题1.∑设:)0(2222≥=++z a z y x ,在第一卦限的部分为∑∑1,则有( C ) (A )⎰⎰⎰⎰∑∑=14xdS xdS ; (B )⎰⎰⎰⎰∑∑=14xdS ydS ;(C )⎰⎰⎰⎰∑∑=14xdS zdS ; (D )⎰⎰⎰⎰∑∑=14xyzdS xyzdS 。
解:∵01>⎰⎰∑xdS ,01>⎰⎰∑xyzdS ,0===⎰⎰⎰⎰⎰⎰∑∑∑xyzdS ydS xdS ,且在上1∑x ,y ,z 具有轮换对称性,∴1144zdS zdS xdS ∑∑∑==⎰⎰⎰⎰⎰⎰,故应选(C )。
2.设∑是平面x +y +z =4被柱面122=+y x 截出的有限部分,则ydS ∑⎰⎰的值为( A )(A )0 (B )334(C )34 (D )π 3.设∑为平面1=++z y x 在第一卦限的部分,则⎰⎰∑=++2)(z y x dS( A ) (A )23(B )3 (C )23 (D )211.计算⎰⎰∑+dS y x )(22,其中为 ∑锥面1 22=+=z y x z 及所围立体的全面积。
解:21∑+∑=∑,1∑:10 ,22≤≤+=z y x z ,dxdy ds 2=,2∑:1 ,122≤+=y x z ,dxdy ds =,xy D xoy 21面上的投影为在和∑∑:122≤+y x 。
⎰⎰⎰⎰⎰⎰∑∑∑+=+21)(22dS y x dxdy y x dxdy y x xyxyD D ⎰⎰⎰⎰+++=)(2)(2222 dxdy y x xyD ⎰⎰++=)()21(22).21(2)21(10320+π=ρρϕ+=⎰⎰πd d 2.已知物质球面上每点的面密度等于该点到球的某一直径的距离的平方,求其质量。
解:设球面方程为∑:2222R z y x =++, 取某一直径的z 轴上,则面密度为22y x +=μ。
∵∑关于x ,y ,z 具有轮换对称性, ∴⎰⎰⎰⎰⎰⎰∑∑∑==dS z dS y dS x 222,∴⎰⎰⎰⎰∑∑++=+=dS z y x dS y x m )(32)(22222.38432324222R R R dS R π=π⋅==⎰⎰∑3.证明:53108)3(a dS a z y x π≥+++⎰⎰∑,其中∑是球面022222222=+---++a az ay ax z y x 。
第十章 曲线积分与曲面积分

第十章曲线积分与曲面积分10.1 对弧长的曲线积分一、求曲线cos,sin,t t tx e t y e t z e===从0t=到任意点间的那段弧的质量,设它各点的密度与该点到原点的距离的平方成反比,且在点(1,0,1)处的密度为1。
1)te-)二、计算下列曲线积分:1. L⎰,其中L为旋轮线:(sin)(1cos)x a t ty a t=-⎧⎨=-⎩(0tπ≤≤2)。
(324aπ)2.()Lx y ds+⎰,其中L是顶点为(0,0),(1,0),(0,1)O A B的三角形边界。
(13. L⎰,其中L是由极坐标曲线,0,r aπθθ===4所围成的区域的边界曲线。
(2(1)a ae aeπ-+4)4.()Lx y z ds++⎰,其中L由直线AB:(1,1,0),(1,0,0)A B及螺线cos,sin,(02)x t y t z t tπ===≤≤组成。
(322+)三、计算L⎰,其中L是由,0y x y y===所围成的第一象限部分的边界。
(2sin cosR R Rπ+4)四、计算L,其中L是圆:2222x y z ax y⎧++=⎨=⎩。
(2aπ2)五、 计算Lxds⎰Ñ,其中L 由直线0,x y x ==及曲线22y x -=所围成的第一象限部分的整个边界。
(+) 10.2 对坐标的曲线积分一、设一质点处于弹性力场中,弹力方向指向原点,弹力大小与质点到原点的距离成正比,比例系数为k 。
若质点从点(0,)a 沿椭圆22221x y a b +=在第一象限部分移动到点(0,)b ,求弹力所做的功。
(221()2k a b -)二、计算曲线积分22(2)(2)Lx xy dx y xy dy ++-⎰,其中L 是抛物线2(11)y x x =-≤≤沿x增加的方向。
(1415-) 三、 计算2y Lxe dy+⎰,其中L是曲线y =从点(0,0)O 到点(1,1)的一段弧。
(2322)四、 计算2222()()Lx y dx x y dy ++-⎰,其中L 是曲线11y x =--从点(0,0)到点(2,0)的一段。
第10章-曲线积分与曲面积分 高等数学教学课件

f (x, y) d s
f (x, y) d s.
L( A,B)
L( B, A)
性质2 设, 为常数,则
L[ f (x, y) g(x, y)]d s L f (x, y)d s L g(x, y)d s.
性质3 若积分路径L可分成两段光滑曲线弧L1,L2, 则
f (x, y) d s f (x, y) d s f (x, y) d s.
把 L分成n个有向小弧段
¼ A0 A1, ¼ A1A2,L , ¼ Ai1Ai ,L , ¼ An1An, (A0(x0, y0) A, An (xn, yn) B).
令xi xi xi1, yi yi yi1,在¼ Ai1Ai上任取点Mi (i ,i ), i 1, 2,L , n,若当小弧段的长度的最大值 0时,和
若L是闭曲线,即L的两个端点重合,那么f (x, y)
在闭曲线L上对弧长的曲线积分记为
ÑL f (x, y) d s.
函数f (x, y, z)在曲线弧上对弧长的曲线积分为
n
f (x, y, z) d s lim 0
i 1
f (xi , yi , zi )si.
性质1 对弧长的曲线积分与曲线L的方向无关,即
方程为x =a cos t, y =a sin t, z = kt, 0 t 2p, k>0.
解 Q x' t asint, y' t a cost, z' t k,
[x '(t)]2 [( y '(t)]2 [z '(t)]2 a2 k2 ,
(x2 y2 z2 ds 2p (a2 k 2t2 ) a2 k 2 dt
d r d xi d yj d zk,即有
第十章(第六部分)曲面积分习题解答

第十章 曲线积分与曲面积分(第六部分)曲面积分习题解答一、对面积的曲面积分1.计算曲面积分⎰⎰∑++dS y x z )342(,其中∑为平面1432=++zy x 在第一卦限中的部分. 分析 因为∑:1432=++z y x ,可恒等变形为∑:y x z 3424--=,又因被积函数y x z 342++与∑形式相同,故可利用曲面方程来简化被积函数,即将4342=++y x z 代入,从而简化计算。
解 平面∑方程的为)321(4yx z --=(如图), ∑在xoy 面上的投影区域xy D :0,0,132≥≥≤+y x yx ;34,2-=∂∂-=∂∂y z x z ,面积元素 dxdy dxdy y z x z dS 361122=⎪⎪⎭⎫⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+= 从而⎰⎰⎰⎰⋅=++∑xyD dxdy dS y x z 3614)342( 61432213614=⋅⋅⋅=. 2. 计算曲面积分⎰⎰∑+dS y x |)|(,其中∑为1||||||=++z y x .解 由对称性可知,0=⎰⎰∑xd S ,由轮换对称性和代入技巧知,⎰⎰⎰⎰⎰⎰∑∑∑=++=dS dS z y x dS y 31|)||||(|31||,再由曲面积分的几何意义知,34238=⋅=⎰⎰∑dS ,所以,334|)|(=+⎰⎰∑dS y x .y二、对坐标的曲面积分1.计算曲面积分⎰⎰∑dydz x 2.其中∑为球面2222R z y x =++在第一卦限部分的上侧。
分析 由于∑不是封闭曲面,且只是对坐标z y ,的曲面积分,故直接计算即可。
解 因∑:222z y R x --=取前侧,且∑在yoz 面上的投影区域为0 ,0 , :222≥≥≤+z y R z y D yz .于是得 ⎰⎰∑dydz x 2dydz z y R yzD ⎰⎰--=)(222⎰⎰⋅-θ=πRrdr r R d 02220 )(402228141212R r r R Rπ=⎥⎦⎤⎢⎣⎡-π=. 2. 计算曲面积分⎰⎰∑++=ydzdx xdydz zdxdy I .其中∑是柱面122=+y x 被平面0=z 及3=z 所截得的在第一卦限内的部分的前侧。
高等数学第十章曲线积分与曲面积分(考研辅导班内部资料)
ds L ( L 表示曲线 L 的弧长 ) .
L
积函数可用积分曲线方程作变换.
( 6) 奇偶性与对称性 如果积分弧段 L (AB ) 关于 y 轴对称,
f (x, y)ds 存在,则
L( AB )
f ( x, y)ds
L ( AB )
0,
f ( x, y) 关于 x是奇函数 ,
2
f ( x, y)ds,f ( x, y) 关于 x是偶函数 .
切线的方向余弦是一个常量。 所以, 当积分曲线是直线时, 可能采用两类不同的曲线积分的
转换。
定理 4 (格林公式)
设 D 是由分段光滑的曲线 L 围成,函数 P( x, y), Q (x, y) 及其一阶偏导数在 D 上连续,
则有
P(x, y)dx Q (x, y)d y
Q P dxdy
L
Dx x
设 L (AB ) 的平面曲线: 其参数方程: x
分别是 和 ,则
(t), y
(t) ,起点和终点对应的参数取值
Pdx Qdy
L ( AB)
{ P( (t ), (t)] (t) Q[( (t), (t )] (t )}dt
设 L (AB ) 的空间曲线 :其参数方程: x (t), y (t ), z w(t ) ,起点和终点对应的
表示曲线的线密度。 定义 2 第二类曲线积分(对坐标的曲线积分)
( 1)平面曲线 L( AB) 的积分:
P(x, y)dx Q( x, y)dy
L ( AB )
( 2)空间曲线 L( AB) 的积分:
n
lim
(T ) 0
[ f ( k , k ) xk
k1
f ( k , k ) yk ]
第十章(第四部分)曲面积分
第十章曲线积分与曲面积分(第四部分)曲面积分Ⅰ、对面积的曲面积分(第一型曲面积分)一、对面积的曲面积分的定义1.定义.2.物理意义表示面密度为的曲面的质量.二、对面积的曲面积分的性质1.线性性质:2.可加性:.3.的面积:.4.单调性:若在上,,则.三、对面积的曲面积分的计算方法方法:化为二重积分计算(关键:确定二重积分的积分变量)(1)若,. 则.(2)若,. 则.(3)若,. 则.四、对面积的曲面积分典型例题例1.计算曲面积分,其中为在与之间的部分。
分析因为:,即,从中能确定,或。
解令:;:. 则(如图).(1)求和在平面上的投影区域:因和在平面上的投影区域相同,设为,则:,.(2)求微元:在和上,;(3)转化为二重积分:.例2.计算曲面积分,其中为曲面.分析注意到积分曲面为旋转抛物面,它关于面和面对称,且被积函数关于变量和均为偶函数,因此只要计算在第一卦限部分,再4倍即可,即本题利用对称性计算比较简便。
解设在第一卦限的部分为,则在面上的投影区域为于是(令).例3.计算曲面积分,其中为球面.分析由于积分曲面为球面,它关于三个坐标面具有轮换对称性,所以,而. 故本题利用轮换对称性和奇偶对称性计算比较简单。
解因,由奇偶对称性可知,上述未写出项的积分值均为,而由轮换对称性易知,故.注从以上几个例子可以看出,计算对面积的曲面积分应注意掌握以下几个要点:(1)由于积分范围是曲面,所以点的坐标满足曲面的方程,计算中要善于利用曲面的方程来化简被积函数;(2)计算对面积的曲面积分时,应注意观察积分曲面的对称性(包括轮换对称性)和被积函数的奇偶性,可以利用此类特殊性来简化积分的计算;(3)将对面积的曲面积分转化为二重积分计算,关键在于二重积分积分变量的选择,这是由积分曲面的方程的特点所决定的,从以上的例子即可看出。
五、对面积的曲面积分的应用1.几何应用求曲面的面积:.2.物理应用质量.质心,,.转动惯量,,.例4.求面密度为的均匀半球壳对于轴的转动惯量。
10考研数学大纲知识点解析(第十章曲线曲面积分(数学一)
.
(3)第一类曲线积分表示的物理意义是曲线的质量,故与方向无关.
【第一类曲线积分的性质】
(1) (2) (3) (4) (5)设在 上
.
.
其中
没有公共部分.
. 其中 表示 的反方向的路径.
,则
.
特别的,
.
【第一类曲线积分的计算】设 为光滑曲线, (1)若 由参数方程
在 上连续. 给出 ,则
其中
在
上有一阶连续导数,且
(3)若积分曲线 关于
轴对称,则
【例题】(89 年,数学一/数学二)
设平面曲线 为下半圆
,则曲线积分
. .
【答案】 . 【解析 1】参数法:设 的参数方程为
【解析 2】将积分曲线 的方程
,即
于是 .
代入被积函数,得 .
【例题】(98 年,数学一)
设 为椭圆
,其周长记为 , 则
.
【答案】 .
【解析】将 的方程
函数
在空间曲线 上的第一类曲线积分可类似定义为
. 【空间中第一类曲线积分的计算】
若空间曲线 的参数方程为
则
.
【例题】计算曲线积分 上相应于 从 到 的一段弧. 【解析】原式
,其中 为螺旋线
.
【第二类曲线积分的概念(对坐标的曲线积分)】设 为 面内一条有向光滑曲线段,
函数
在 有界,则它们在 上的第二类曲线积分定义为
由 解得
得到的微分方程 ,带入
,得
,
所以
,于是
.
【综合题】(06 年,数学一)设在上半平面 偏导数,且对任意的 都有 向简单闭曲线 ,都有
内,函数
具有连续
.证明:对 内的任意分段光滑的有
高数 第十章 曲线积分与曲面积分
计算
定积分
计算
Stokes公式 计算 曲面积分 Gauss公式
重积分
16
积分概念的联系
定积分
f ( M )d lim f ( M ) i , f ( M )点函数
0
i 1
n
当 R1上区间 a, b]时, f ( M )d f ( x )dx. [
5
基本问题: 如何熟练掌握各种积分的计算
首先判断准确要求的是哪一类积分 重要的是牢牢记住各种积分的计算方法
1、I
L
f ( x , y )ds 代入曲线的方程以及ds,从而化为定积分解之
2、I Pdx Qdy 代入曲线的方程,化为定积分解之 L
P Q 闭合 y x 非闭
( y 2 z 2 ) dS; I z
( x 2 y 2 ) dS
曲面质心: 曲面形心:
x
x
dS ; y
S
;y
ydS ydS
dS ; z
S
;z
dS S
dS zzdS
15
(二)各种积分之间的联系
积分是
P cos Q cos R cos ds
,其中, ,为有向曲面上点
x, y, z 处的
法方向 的方向角。
20
2.选择以下各题中给出的四个结论中一个正确的结论:
(1)设曲面是上半球面 : x 2 y 2 z 2 R 2 , z 0, 曲面 1 是 曲面在第一卦限中的部分 , 则有 C .
条 件 等
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
从 F ( x , y, z ) 0中能确定 x R 2 y 2 ,或 y R 2 x 2 ;
所以我们可采用框图中线路1或线路3的解题方法求解。 下面仅用线路1的方法计算。
x x (如图) 解:令 1: R 2 y 2 ; 2: R 2 y 2 。则 1 2
D xy
上侧取“+”,下侧取“–”。
( (2)设 : x x( y, z ) , y , z ) D yz 。则
P ( x,
y , z )dydz P[ x( y , z ), y , z ]dydz
D yz
前侧取“+”,后侧取“–”。
( (3)设 : y y( z, x ) , z , x ) Dzx 。则
二、对面积的曲面积分的性质
1. 线性性质:
[f ( x,
ห้องสมุดไป่ตู้
y, z ) g( x, y, z )]dS f ( x , y, z )dS g( x , y, z )dS
2. 可加性: f ( x, y, z )dS f ( x,
1 2
2 fds
1
三、对面积的曲面积分的计算方法
方法:化为二重积分计算
关键:找到投影区域D,确定二重积分的积分变量
一般有三种方法,究竟利用哪种方法取决于 的方程
F ( x, y, z ) 0 中哪个变量能用其它另外两个变量的显示形式
表示,若 的方程既可化为 z z( x , y ) ,又可化为 x x( y , z ) 或 y y( z , x ) ,则我们可从三种方法中取优。
1.定义
P( x, y, z )dydz Q( x, y, z )dzdx R( x, y, z )dxdy
lim P ( i , i , i )( S i ) yz Q( i , i , i )( S i ) zx R( i , i , i )( S i ) xy
1
关于xoy面对称,R为z的偶函数 关于xoy面对称,R为z的奇函数
三、对坐标的曲面积分的计算方法
1.直接投影法(化为二重积分)
( (1)设 : z z( x, y ) , x , y ) D xy 。则
R( x,
y , z )dxdy R[ x , y , z( x , y )]dxdy
Q( x,
y , z )dzdx Q[ x , y( z , x ), z ]dzdx
Dzx
右侧取“+”,左侧取“–”。
2.高斯(Gauss)公式计算法
P Q R x y z dxdydz
P Q R x y z dxdydz
f ( x , y , z )dS
D yz
f [ x( y , z ), y , z ] 1 x 2 x z2 dydz y
( (3)若 : y y( z, x ) ,z , x ) Dzx 。
f ( x , y , z )dS
Dzx
2 f [ x , y( z , x ), z ] 1 y z2 y x dzdx
(1)求 1和 2在 yoz平面上的投影区域:
因 1和 2在 yoz平面上的投影区域相同, 设为 D yz : R y R , z H 。 0
1
H
z
2
o
x
R
R
y
(2)求微元 dS :在 1和 2 上,
dS 1 ( x 2 x ) ( ) 2 dydz y z R R y
2 2
dydz
(3)转化为二重积分:
dS dS ( ) 2 x 2 y 2 z 2 x y 2 z 2 1 2
2
D yz
R (R z ) R y
2 2 2 2
dydz
2R
R R
dy R y
2 2
H 0
dz R2 z 2
五、对坐标的曲面积分的解题方法
I Pdydz Qdzdx Rdxdy
解题方法流程图
Yes
封闭
No
确定
求 的方向 余弦
Yes
为平面块
No
应用Guass公式
对 补上特殊 ' 曲面 在封闭曲面 '
确定 的侧
P Q R I ( )dv x y z
注: 本题亦可框图中线路1或线路3的解题方法来求解。
【例2】
dS 计算曲面积分 2 2 2 ,其中 为 x 2 y 2 R 2 x y z
在 z 0与 z H 之间的部分。
2 2 2 2 2 x2 分析 因为 : y R ,即 F ( x, y, z ) x y R 0 ,
Pdydz Qdzdx Rdxdy
或
( P cos Q cos R cos )dS
cos 这里 是 的外侧边界, , cos , cos 为曲线 上点 ( x, y, z )
处的法向量的方向余弦。
3.转化为第一型曲面积分计算法
面 上应用Gauss公式,并计算在曲面 上的积分,最
后将上面二积分相减,便得原曲面积分的值,即
I ( ) Pdydz Qdzdx Rdxdy
另一种方法是按照定义将曲面积分直接转化为二重积分来
计算,即直接计算方法。
六、对面积的曲面积分典型例题
I x ( y 2 z 2 ) ( x , y , z )dS
I y ( x 2 z 2 ) ( x , y , z )dS
I z ( x 2 y 2 ) ( x , y , z )dS
对坐标的曲面积分(第二型曲面积分)
一、对坐标的曲面积分的概念
是否封闭,若 是封闭曲面,则可直接利用Gauss公式,将 所求积分转化为三重积分来计算。若 不是封闭曲面,则可 进一步判别 是否为平面块, 是平面块,则可根据题目的 特点,考虑将对坐标的曲面积分转化为对面积的曲面积分来 计算。若 不是平面块,此时,一般有两种方法,一种是通 过补特殊曲面 ,使 构成一封闭曲面,然后在封闭曲
4 z 2 x y与 形式相同,故可利用曲面方程来简化被积 3 4 z 2 x y 4 代入,从而简化计算。 函数,即将 3 x y 解:平面 方程的为 z 4(1 ) (见下图), 2 3
在 xoy面上的投影区域为:
x y D xy : 1, x 0, y 0 2 3 z z 4 2, x y 3
( (1)若 : z z( x, y ) , x , y ) D xy。
f ( x , y , z )dS
D xy
2 f [ x , y , z( x , y )] 1 z x z 2 dxdy y
( (2)若 : x x( y, z ) , y , z ) D yz 。
第十章 曲 面 积 分
对面积的曲面积分(第一型曲面积分)
一、对面积的曲面积分的定义
1.定义:
f ( x, y, z )dS lim f ( , ,
0 i 1 i i
n
i
)S i
2.物理意义:
M ( x , y , z )dS
表示面密度为 ( x, y, z )的曲面 的质量。
cos x P
cos y Q
cos dS . z R
(这里 是有向曲面 的正向边界曲面)
四、散度与旋度
P 设 A P i Q j R k , , Q, R 均有一阶连续偏导数。
(1)散度 div A
P Q R x y z
H
2 R arcsin
y R
R
R
1 z arctan R R
2 arctan
0
H R
2 2 【例3】计算曲面积分 | xyz | dS,其中为曲面 z x y
(0 z 1) 。
2 2 分析 注意到积分曲面 为旋转抛物面z x y (0 z 1) ,
i rot A (2)旋度 x P
j y Q
k z R
R Q P R Q P y z i z x j x y k
四、对面积的曲面积分的应用
S 1.几何应用 求曲面的面积: dS
2.物理应用 质量 M ( x, y, z )dS
1 质心 x M 1 z M
x( x, y,
z )dS
z )dS
1 y M
y( x, y,
z )dS
z( x, y,
转动惯量
Pdydz Qdzdx Rdxdy Pdydz Qdzdx Rdxdy
1 2
2.反号性
Pdydz Qdzdx Rdxdy Pdydz Qdzdx Rdxdy
3.奇偶对称性
0 Rdxdy 2 Rdxdy
1
y , z )dS f ( x , y , z )dS