2019年山西中考数学试题(解析版)
2019年山西省中考数学复习模拟卷压轴【几何模型问题】解析

2019年山西省中考数学复习模拟卷压轴【几何模型问题】精选解析模型一、一线三等角型基本经验图形1.如图, 折痕EF,D 是等边△ABC 边AB 上的一点,且A 。
: BD=1: 2,现将如也(7折叠,.使点C 与D 重合, 点E 、F 分别在AC 和BC 上,则CE: CF=( )563A. 一44B.—5 c.6D.一7【答案]B【解析】...三角形ABC 为等边三角形,.•.ZA=£B=,C=60°,又•折叠△ABC,使得点C 恰好与边AB 上的点D 重合,折痕为EF, :. ZEDF=ZC=60°, CE=CE,CF=CF,二 /ADE+/FDB=120°, :. ZAED =ZFDB,・.・ 4AEDs/\BDF,AD DEfiF _ FD .AE * BD设等边△ABC 边长为 6 个单位,CE=x, CF=y, AE=6 - x, BF=6 - y,6—x2x147----=-----=—,解得x=—,y=—,x:y=4:5,故选择B.4 6-y y5-272.如图,在ZSABC中,AB=AC=LO,点D是边BC±一动点(不与B,C重合),ZADE=ZB=a,DE交AC于点E,且cosa=—.下列结论:①△ADEs^ACD;②当BD=6时,AABD与Z\DCE全等;5③左DCE为直角三角形时,BD为8或类;©0<CE<6.4.其中正确的结论是.(把你认2为正确结论的序号都填上)[答案]①②③④【解析】VAB=AC,.,.ZB=ZC,又V ZADE=ZB.\ZADE=ZC,AAADE^AACD故①正确;作4AG J_BC于G,AB=AC=10,/ADE=NB=a,cosa=—,BG=ABcosB,.•.BC=2BG=2ABcosB=2xl0xy=16,VBD=6,.,.DC=10,.,.AB=DC,AAABD^ADCE(ASA).故②正确;当ZAED=90°时,由①可知:AADE^AACD,A ZADC=ZAED,V ZAED=90°,4.•.ZADC=90°,即AD_LBC,VAB=AC,.-.BD=CD,A ZADE=ZB=a且cosa=—,AB=10,BD=8.当ZCDE=90。
人教版八下数学09 三角形(第01期)-2019年中考真题数学试题分项汇编(解析版)

专题09三角形1.(2019•金华)若长度分别为a,3,5的三条线段能组成一个三角形,则a的值可以是A.1 B.2 C.3 D.8【答案】C【解析】由三角形三边关系定理得:5-3<a<5+3,即2<a<8,即符合的只有3,故选C.2.(2019•杭州)在△ABC中,若一个内角等于另外两个内角的差,则A.必有一个内角等于30°B.必有一个内角等于45°C.必有一个内角等于60°D.必有一个内角等于90°【答案】D【解析】如图,∵∠A+∠B+∠C=180°,∠A=∠C-∠B,∴2∠C=180°,∴∠C=90°,∴△ABC是直角三角形,故选D.3.(2019•台湾)如图,△ABC中,AC=BC<AB.若∠1、∠2分别为∠ABC、∠ACB的外角,则下列角度关系何者正确A.∠1<∠2 B.∠1=∠2C.∠A+∠2<180°D.∠A+∠1>180°【答案】C【解析】∵AC=BC<AB,∴∠A=∠ABC<∠ACB,∵∠1、∠2分别为∠ABC、∠ACB的外角,∴∠2=∠A+∠ABC,∴∠A+∠2=∠A+∠A+∠ABC<∠ACB+∠A+∠ABC=180°,故选C.4.(2019•河南)如图,在四边形ABCD中,AD∥BC,∠D=90°,AD=4,BC=3.分别以点A,C为圆心,大于12AC 长为半径作弧,两弧交于点E ,作射线BE 交AD 于点F ,交AC 于点O .若点O 是AC 的中点,则CD 的长为A .B .4C .3D【答案】A【解析】如图,连接FC ,则AF =FC .∵AD ∥BC ,∴∠FAO =∠BCO .在△FOA 与△BOC 中,FAO BCO OA OC AOF COB ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△FOA ≌△BOC (ASA ),∴AF =BC =3,∴FC =AF =3,FD =AD -AF =4-3=1.在△FDC 中,∵∠D =90°,∴CD 2+DF 2=FC 2,∴CD 2+12=32,∴CD.故选A .5.(2019•潍坊)如图,已知AOB ∠.按照以下步骤作图:①以点O 为圆心,以适当的长为半径作弧,分别交AOB ∠的两边于C ,D 两点,连接CD .②分别以点C ,D 为圆心,以大于线段OC 的长为半径作弧,两弧在AOB ∠内交于点E ,连接CE ,DE .③连接OE 交CD 于点M .下列结论中错误的是A .CEO DEO ∠=∠B .CM MD =C .OCD ECD ∠=∠D .12OCED S CD OE =⋅四边形 【答案】C【解析】由作图步骤可得:OE 是AOB ∠的角平分线,∴∠COE =∠DOE , ∵OC =OD ,OE =OE ,OM =OM ,∴△COE ≌△DOE ,∴∠CEO =∠DEO , ∵∠COE =∠DOE ,OC =OD ,∴CM =DM ,OM ⊥CD , ∴S 四边形OCED =S △COE +S △DOE =111222OE CM OE DM CD OE ⋅+⋅=⋅,但不能得出OCD ECD ∠=∠, ∴A 、B 、D 选项正确,不符合题意,C 选项错误,符合题意,故选C .6.(2019•宿迁)一副三角板如图摆放(直角顶点C 重合),边AB 与CE 交于点F ,DE BC ∥,则BFC ∠等于A .105︒B .100︒C .75︒D .60︒【答案】A【解析】由题意知45E ∠=︒,30B ∠=︒,∵DE CB ∥,∴45BCF E ∠=∠=︒, 在CFB △中,1801803045BFC B BCF ∠=︒-∠-∠=︒-︒-︒105=︒,故选A .7.(2019•青岛)如图,BD 是△ABC 的角平分线,AE ⊥BD ,垂足为F .若∠ABC =35°,∠C =50°,则∠CDE 的度数为A .35°B .40°C .45°D .50°【答案】C【解析】∵BD 是△ABC 的角平分线,AE ⊥BD ,∴∠ABD =∠EBD =12∠ABC =352︒,∠AFB =∠EFB =90°, ∴∠BAF =∠BEF =90°-17.5°,∴AB =BE ,∴AF =EF ,∴AD =ED ,∴∠DAF =∠DEF , ∵∠BAC =180°-∠ABC -∠C =95°,∴∠BED =∠BAD =95°,∴∠CDE =95°-50°=45°,故选C .8.(2019•重庆A 卷)如图,在△ABC 中,D 是AC 边上的中点,连接BD ,把△BDC ′沿BD 翻折,得到BDC'△,DC 与AB 交于点E ,连接AC',若AD =AC ′=2,BD =3则点D 到BC 的距离为A .2B .7CD 【答案】B【解析】如图,连接CC ′,交BD 于点M ,过点D 作DH ⊥BC ′于点H ,∵AD =AC '=2,D 是AC 边上的中点,∴DC =AD =2,由翻折知,△BDC ≌△BDC ′,BD 垂直平分CC ′,∴DC =DC ′=2,BC =BC ′,CM =C ′M ,∴AD =AC '=DC ′=2, ∴△ADC ′为等边三角形,∴∠ADC =∠AC ′D =∠C ′AC =60°, ∵DC =DC ′,∴∠DCC ′=∠DC ′C =12×60°=30°,在Rt △CDM 中,∠DC ′C =30°,DC ′=2,∴DM =1,C ′M DM .BM =BD -DM =3-1=2,在Rt △BMC 中,BC ==,∵1122BDC S'BC'DH BD CM =⋅=⋅△3=.BM =BD -DM =3-1=2, 在Rt △C 'DM中,BC '===∵1122BDC S'BC DH BD CM ='⋅=⋅△3=7DH =,故选B . 9.(2019•滨州)如图,在OAB △和OCD △中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠.其中正确的个数为A .4B .3C .2D .1【答案】B【解析】∵40AOB COD ∠=∠=︒,∴AOB AOD COD AOD ∠+∠=∠+∠,即AOC BOD ∠=∠,在AOC △和BOD △中,OA OBAOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩,∴AOC BOD △≌△,∴OCA ODB AC BD ∠=∠=,,①正确;∴OAC OBD ∠=∠,由三角形的外角性质得:AMB OAC AOB OBD ∠+∠=∠+∠, ∴40AMB AOB ∠=∠=°,②正确;作OG MC ⊥于G ,OH MB ⊥于H ,如图所示:则90OGC OHD ∠=∠=°,在OCG △和ODH △中,OCA ODBOGC OHD OC OD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴OCG ODH △≌△,∴OG OH =,∴MO 平分BMC ∠,④正确,正确的个数有3个,故选B .10.(2019•兰州)在△ABC中,AB=AC,∠A=40°,则∠B=__________.【答案】70°【解析】∵AB=AC,∴∠B=∠C,∵∠A+∠B+∠C=180°,∴∠B=12(180°-40°)=70°.故答案为:70°.11.(2019•南京)在△ABC中,AB=4,∠C=60°,∠A>∠B,则BC的长的取值范围是__________.【答案】4<BC【解析】作△ABC的外接圆,如图所示:∵∠BAC>∠ABC,AB=4,当∠BAC=90°时,BC是直径最长,∵∠C=60°,∴∠ABC=30°,∴BC=2AC,AB=4,∴AC,∴BC;当∠BAC=∠ABC时,△ABC是等边三角形,BC=AC=AB=4,∵∠BAC>∠ABC,∴BC长的取值范围是4<BC,故答案为:4<BC12.(2019•长沙)如图,要测量池塘两岸相对的A,B两点间的距离,可以在池塘外选一点C,连接AC,BC,分别取AC,BC的中点D,E,测得DE=50 m,则AB的长是__________m.【答案】100【解析】∵点D,E分别是AC,BC的中点,∴DE是△ABC的中位线,∴AB=2DE=2×50=100 m.故答案为:100.13.(2019•成都)如图,在△ABC中,AB=AC,点D,E都在边BC上,∠BAD=∠CAE,若BD=9,则CE 的长为__________.【答案】9【解析】∵AB =AC ,∴∠B =∠C ,在△BAD 和△CAE 中,BAD CAE AB AC B C ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BAD ≌△CAE ,∴BD =CE =9,故答案为:9.14.(2019•北京)如图所示的网格是正方形网格,则∠PAB +∠PBA =__________°(点A ,B ,P 是网格线交点).【答案】45【解析】延长AP 交格点于D ,连接BD ,则PD 2=BD 2=1+22=5,PB 2=12+32=10,∴PD 2+DB 2=PB 2,∴∠PDB =90°,∴∠DPB =∠PAB +∠PBA =45°, 故答案为:45.15.(2019•威海)如图,在四边形ABCD 中,AB CD ∥,连接AC ,BD .若90ACB ∠=︒,AC BC =,AB BD =,则ADC ∠=__________︒.【答案】105【解析】作DE AB ⊥于E ,CF AB ⊥于F ,如图所示,则DE CF =,∵CF AB ⊥,90ACB ∠=︒,AC BC =,∴12CF AF BF AB ===, ∵AB BD =,∴1122DE CF AB BD ===,BAD BDA ∠=∠, ∴30ABD ∠=︒,∴75BAD BDA ∠=∠=︒,∵AB CD ∥,∴180ADC BAD ∠+∠=︒,∴105ADC ∠=︒,故答案为:105.16.(2019•南京)如图,在△ABC 中,BC 的垂直平分线MN 交AB 于点D ,CD 平分∠ACB .若AD =2,BD =3,则AC 的长为__________.【解析】作AM ⊥BC 于E ,如图所示,∵CD 平分∠ACB ,∴23AC AD BC BD ==, 设AC =2x ,则BC =3x ,∵MN 是BC 的垂直平分线,∴MN ⊥BC ,BN =CN =32x ,∴MN ∥AE , ∴23EN AD BN BD ==,∴NE =x ,∴BE =BN +EN =52x ,CE =CN −EN =12x ,由勾股定理得:AE 2=AB 2−BE 2=AC 2−CE 2,即52−(52x )2=(2x )2−(12x )2,解得x=2, ∴AC =2x.17.(2019•临沂)如图,在ABC △中,120ACB ∠=︒,4BC =,D 为AB 的中点,DC BC ⊥,则ABC△的面积是__________.【答案】【解析】∵DC BC ⊥,∴90BCD ∠=︒,∵120ACB ∠=︒,∴30ACD ∠=︒, 如图,延长CD 到H 使DH CD =,∵D 为AB 的中点,∴AD BD =,在ADH △与BCD △中,CD DHADH BDC AD BD =⎧⎪∠=∠⎨⎪=⎩,∴ADH BCD △≌△,∴4AH BC ==,90H BCD ∠=∠=︒,∵30ACH ∠=︒,∴CH ==CD =∴ABC △的面积12242BCD S ==⨯⨯⨯=△18.(2019•广州)如图,D 是AB 上一点,DF 交AC 于点E ,DE =FE ,FC ∥AB ,求证:ADE CFE △≌△.【解析】∵FC ∥AB , ∴∠A =∠FCE ,∠ADE =∠F ,所以在△ADE与△CFE中,A FCEADE F DE EF∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADE≌△CFE.19.(2019•兰州)如图,AB=DE,BF=EC,∠B=∠E,求证:AC∥DF.【解析】∵BF=EC,∴BF+FC=EC+FC,∴BC=EF,在△ABC和△DEF中,AB DEB E BC EF=⎧⎪∠=∠⎨⎪=⎩,∴△ABC≌△DEF(SAS),∴∠ACB=∠DFE,∴AC∥DF.20.(2019•山西)已知:如图,点B,D在线段AE上,AD=BE,AC∥EF,∠C=∠F.求证:BC=DF.【解析】∵AD=BE,∴AD-BD=BE-BD,∴AB=ED,∵AC∥EF,∴∠A=∠E,在△ABC和△EDF中,C FA E AB ED∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△EDF (AAS ), ∴BC =DF .21.(2019•南京)如图,D 是△ABC 的边AB 的中点,DE ∥BC ,CE ∥AB ,AC 与DE 相交于点F .求证:△ADF ≌△CEF .【解析】∵DE ∥BC ,CE ∥AB , ∴四边形DBCE 是平行四边形, ∴BD =CE , ∵D 是AB 的中点, ∴AD =BD , ∴AD =EC , ∵CE ∥AD ,∴∠A =∠ECF ,∠ADF =∠E , ∴△ADF ≌△CEF .22.(2019•桂林)如图,AB =AD ,BC =DC ,点E 在AC 上.(1)求证:AC 平分∠BAD ; (2)求证:BE =DE .【解析】(1)在△ABC 与△ADC 中,AB AD AC AC BC DC =⎧⎪=⎨⎪=⎩∴△ABC ≌△ADC (SSS ), ∴∠BAC =∠DAC ,即AC 平分∠BAD .(2)由(1)∠BAE =∠DAE ,在△BAE 与△DAE 中,得BA DA BAE DAE AE AE =⎧⎪∠=∠⎨⎪=⎩,∴△BAE ≌△DAE (SAS ), ∴BE =DE .23.(2019•重庆)如图,在△ABC 中,AB =AC ,AD ⊥BC 于点D .(1)若∠C =42°,求∠BAD 的度数;(2)若点E 在边AB 上,EF ∥AC 交AD 的延长线于点F .求证:AE =FE .【解析】(1)∵AB =AC ,AD ⊥BC 于点D , ∴∠BAD =∠CAD ,∠ADC =90°,又∠C =42°,∴∠BAD =∠CAD =90°-42°=48°. (2)∵AB =AC ,AD ⊥BC 于点D , ∴∠BAD =∠CAD , ∵EF ∥AC , ∴∠F =∠CAD , ∴∠BAD =∠F , ∴AE =FE .24.(2019•金华)如图,在76⨯的方格中,ABC △的顶点均在格点上,试按要求画出线段EF (E ,F 均为格点),各画出一条即可.【解析】如图所示:25.(2019•无锡)如图,在△ABC 中,AB =AC ,点D 、E 分别在AB 、AC 上,BD =CE ,BE 、CD 相交于点O .求证:(1)DBC ECB △≌△; (2)OB OC =.【解析】(1)∵AB =AC , ∴∠ECB =∠DBC ,在DBC △与ECB △中,BD CEDBC ECB BC CB =⎧⎪∠=∠⎨⎪=⎩,∴DBC △≌ECB △.(2)由(1)DBC △≌ECB △, ∴∠DCB =∠EBC , ∴OB =OC .26.(2019•温州)如图,在△ABC 中,AD 是BC 边上的中线,E 是AB 边上一点,过点C 作CF ∥AB交ED 的延长线于点F . (1)求证:△BDE ≌△CDF ;(2)当AD ⊥BC ,AE =1,CF =2时,求AC 的长.【解析】(1)∵CF AB ∥, ∴B FCD BED F ∠=∠∠=∠,, ∵AD 是BC 边上的中线,∴BD CD =, ∴△BDE ≌△CDF . (2)∵△BDE ≌△CDF , ∴2BE CF ==,∴123AB AE BE =+=+=. ∵AD BC BD CD ⊥=,, ∴3AC AB ==.27.(2019•河北)已知:整式A =(n 2-1)2+(2n )2,整式B >0.尝试化简整式A . 发现A =B 2,求整式B .联想由上可知,B 2=(n 2-1)2+(2n )2,当n >1时,n 2-1,2n ,B 为直角三角形的三边长,如图.填写下表中B 的值:直角三角形三边 n 2-1 2n B 勾股数组Ⅰ / 8 __________ 勾股数组Ⅱ35/__________【解析】A =(n 2-1)2+(2n )2=n 4-2n 2+1+4n 2=n 4+2n 2+1=(n 2+1)2, ∵A =B 2,B >0, ∴B =n 2+1,当2n=8时,n=4,∴n2+1=42+1=15;当n2-1=35时,n2+1=37.故答案为:15;37.。
人教版八下数学06 反比例函数(第01期)-2019年中考真题数学试题分项汇编(解析版)

专题06反比例函数1.(2019•安徽)已知点A(1,–3)关于x轴的对称点A'在反比例函数y=kx的图象上,则实数k的值为A.3 B.1 3C.–3 D.–1 3【答案】A【解析】点A(1,–3)关于x轴的对称点A'的坐标为(1,3),把A'(1,3)代入y=kx得k=1×3=3.故选A.【名师点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=kx(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.2.(2019•广西)若点(–1,y1),(2,y2),(3,y3)在反比例函数y=kx(k<0)的图象上,则y1,y2,y3的大小关系是A.y1>y2>y3B.y3>y2>y1C.y1>y3>y2D.y2>y3>y1【答案】C【解析】∵k<0,∴在每个象限内,y随x值的增大而增大,∴当x=–1时,y1>0,∵2<3,∴y2<y3<y1,故选C.【名师点睛】本题考查反比函数图象及性质;熟练掌握反比函数的图象及x与y值之间的关系是解题的关键.3.(2019•江西)已知正比例函数y1的图象与反比例函数y2的图象相交于点A(2,4),下列说法正确的是A.反比例函数y2的解析式是y2=–8 xB.两个函数图象的另一交点坐标为(2,–4)C.当x<–2或0<x<2时,y1<y2D.正比例函数y1与反比例函数y2都随x的增大而增大【答案】C【解析】∵正比例函数y1的图象与反比例函数y2的图象相交于点A(2,4),∴正比例函数y1=2x,反比例函数y2=8x,∴两个函数图象的另一个交点为(–2,–4),∴A,B选项错误,∵正比例函数y1=2x中,y随x的增大而增大,反比例函数y2=8x中,在每个象限内y随x的增大而减小,∴D选项错误,∵当x<–2或0<x<2时,y1<y2,∴选项C正确,故选C.【名师点睛】本题考查了反比例函数与一次函数的交点问题,熟练运用反比例函数与一次函数的性质解决问题是本题的关键.4.(2019•河北)如图,函数y=1(0)1(0)xxxx⎧>⎪⎪⎨⎪-<⎪⎩的图象所在坐标系的原点是A.点M B.点N C.点P D.点Q 【答案】A【解析】由已知可知函数y=1(0)1(0)xxxx⎧>⎪⎪⎨⎪-<⎪⎩关于y轴对称,所以点M是原点;故选A.【名师点睛】本题考查反比例函数的图象及性质;熟练掌握反比例函数的图象及性质是解题的关键.5.(2019•黑龙江)如图,在平面直角坐标系中,点O 为坐标原点,平行四边形OABC 的顶点A 在反比例函数y =1x 上,顶点B 在反比例函数y =5x上,点C 在x 轴的正半轴上,则平行四边形OABC 的面积是A .32B .52C .4D .6【答案】C【解析】如图,过点B 作BD ⊥x 轴于D ,延长BA 交y 轴于E ,∵四边形OABC 是平行四边形,∴AB ∥OC ,OA =BC , ∴BE ⊥y 轴,∴OE =BD ,∴Rt △AOE ≌Rt △CBD (HL ), 根据系数k 的几何意义,S 矩形BDOE =5,S △AOE =12, ∴四边形OABC 的面积=5–12–12=4, 故选C .【名师点睛】本题考查了反比例函数的比例系数k 的几何意义、平行四边形的性质等,有一定的综合性. 6.(2019•北京)在平面直角坐标系xOy 中,点A (a ,b )(a >0,b >0)在双曲线y =1k x上,点A 关于x 轴的对称点B 在双曲线y =2k x,则k 1+k 2的值为__________. 【答案】0【解析】∵点A (a ,b )(a >0,b >0)在双曲线y =1k x上,∴k 1=ab ; 又∵点A 与点B 关于x 轴对称,∴B (a ,–b ), ∵点B 在双曲线y =2k x上,∴k 2=–ab ;∴k 1+k 2=ab +(–ab )=0; 故答案为:0.【名师点睛】考查反比例函数图象上的点坐标的特征,关于x 轴对称的点的坐标的特征以及互为相反数的和为0的性质.7.(2019•山西)如图,在平面直角坐标中,点O 为坐标原点,菱形ABCD 的顶点B 在x 轴的正半轴上,点A 坐标为(–4,0),点D 的坐标为(–1,4),反比例函数y =kx(x >0)的图象恰好经过点C ,则k 的值为__________.【答案】16【解析】过点C 、D 作CE ⊥x 轴,DF ⊥x 轴,垂足为E 、F ,∵四边形ABCD 是菱形,∴AB =BC =CD =DA , 易证△ADF ≌△BCE ,∵点A (–4,0),D (–1,4), ∴DF =CE =4,OF =1,AF =OA –OF =3,在Rt △ADF 中,AD 5,∴OE =EF –OF =5–1=4,∴C (4,4),∴k =4×4=16,故答案为:16.【名师点睛】本题主要考查反比例函数图象上点的坐标特征,综合利用菱形的性质、全等三角形、直角三角形勾股定理,以及反比例函数图象的性质;把点的坐标与线段的长度相互转化也是解决问题重要方法.8.(2019•福建)如图,菱形ABCD顶点A在函数y=3x(x>0)的图象上,函数y=kx(k>3,x>0)的图象关于直线AC对称,且经过点B、D两点,若AB=2,∠BAD=30°,则k=__________.【答案】【解析】连接OC,AC,过A作AE⊥x轴于点E,延长DA与x轴交于点F,过点D作DG⊥x轴于点G,∵函数y=kx(k>3,x>0)的图象关于直线AC对称,∴O、A、C三点在同直线上,且∠COE=45°,∴OE=AE,不妨设OE=AE=a,则A(a,a),∵点A在反比例函数y=3x(x>0)的图象上,∴a2=3,∴a AE=OE∵∠BAD=30°,∴∠OAF=∠CAD=12∠BAD=15°,∵∠OAE =∠AOE =45°,∴∠EAF =30°,∴AF =cos30AE=2,EF =AE tan30°=1,∵AB =AD =2,∴AF =AD =2,又∵AE ∥DG ,∴EF =EG =1,DG =2AE ,∴OG =OE +EG ,∴D ,),∴k ×+1).故答案为:【名师点睛】本题是一次函数图象与反比例函数图象的交点问题,主要考查了一次函数与反比例函数的性质,菱形的性质,解直角三角形,关键是确定A 点在第一象限的角平分线上. 9.(2019•吉林)已知y 是x 的反比例函数,并且当x =2时,y =6. (1)求y 关于x 的函数解析式; (2)当x =4时,求y 的值. 【答案】(1)y =12x.(2)y =3. 【解析】(1)因为y 是x 的反例函数, 所以设y =kx(k ≠0), 当x =2时,y =6. 所以k =xy =12, 所以y =12x. (2)当x =4时,y =3.【名师点睛】此题主要考查了待定系数法求反比例函数解析式,正确假设出解析式是解题关键. 10.(2019•广东)如图,一次函数y =k 1x +b 的图象与反比例函数y =2k x的图象相交于A 、B 两点,其中点A 的坐标为(–1,4),点B 的坐标为(4,n ). (1)根据图象,直接写出满足k 1x +b >2k x的x 的取值范围; (2)求这两个函数的表达式;(3)点P 在线段AB 上,且S △AOP :S △BOP =1:2,求点P 的坐标.【答案】(1)由图象可得:k 1x +b >2k x的x 的取值范围是x <–1或0<x <4; (2)直线解析式y =–x +3,反比例函数的解析式为y =–4x; (3)P (23,73). 【解析】(1)∵点A 的坐标为(–1,4),点B 的坐标为(4,n ).由图象可得:k 1x +b >2k x的x 的取值范围是x <–1或0<x <4; (2)∵反比例函数y =2k x的图象过点A (–1,4),B (4,n ), ∴k 2=–1×4=–4,k 2=4n ,∴n =–1,∴B (4,–1), ∵一次函数y =k 1x +b 的图象过点A ,点B , ∴11441k b k b -+=+=-⎧⎨⎩,解得k =–1,b =3,∴直线解析式y =–x +3,反比例函数的解析式为y =–4x; (3)设直线AB 与y 轴的交点为C ,∴C (0,3), ∵S △AOC =12×3×1=32, ∴S △AOB =S △AOC +S △BOC =12×3×1+12×3×4=152,∵S△AOP:S△BOP=1:2,∴S△AOP=152×13=52,∴S△COP=52–32=1,∴12×3x P=1,∴x P=23,∵点P在线段AB上,∴y=–23+3=73,∴P(23,73).【名师点睛】本题考查了反比例函数图象与一次函数图象的交点问题,熟练运用图象上的点的坐标满足图象的解析式是本题的关键.11.(2019•甘肃)如图,一次函数y=kx+b的图象与反比例函数y=mx的图象相交于A(–1,n)、B(2,–1)两点,与y轴相交于点C.(1)求一次函数与反比例函数的解析式;(2)若点D与点C关于x轴对称,求△ABD的面积;(3)若M(x1,y1)、N(x2,y2)是反比例函数y=mx上的两点,当x1<x2<0时,比较y2与y1的大小关系.【答案】(1)一次函数的解析式为y=–x+1,反比例函数的解析式为y=–2x.(2)S△ABD=3.(3)y1<y2.【解析】(1)∵反比例函数y=mx经过点B(2,–1),∴m=–2,∵点A(–1,n)在y=2x-上,∴n=2,∴A(–1,2),把A,B坐标代入y=kx+b,则有221k bk b-+=+=-⎧⎨⎩,解得11kb=-=⎧⎨⎩,∴一次函数的解析式为y =–x +1,反比例函数的解析式为y =–2x. (2)∵直线y =–x +1交y 轴于C ,∴C (0,1), ∵D ,C 关于x 轴对称,∴D (0,–1), ∵B (2,–1),∴BD ∥x 轴, ∴S △ABD =12×2×3=3. (3)∵M (x 1,y 1)、N (x 2,y 2)是反比例函数y =–2x上的两点,且x 1<x 2<0,s ∴y 1<y 2. 【名师点睛】本题考查反比例函数与一次函数的交点问题,解题的关键是熟练掌握待定系数法解决问题,学会利用函数的增减性,比较函数值的大小.12.(2019•河南)模具厂计划生产面积为4,周长为m 的矩形模具.对于m 的取值范围,小亮已经能用“代数”的方法解决,现在他又尝试从“图形”的角度进行探究,过程如下: (1)建立函数模型设矩形相邻两边的长分别为x ,y ,由矩形的面积为4,得xy =4,即y =4x;由周长为m ,得2(x +y )=m ,即y =–x +2m.满足要求的(x ,y )应是两个函数图象在第__________象限内交点的坐标. (2)画出函数图象 函数y =4x (x >0)的图象如图所示,而函数y =–x +2m的图象可由直线y =–x 平移得到.请在同一直角坐标系中直接画出直线y =–x . (3)平移直线y =–x ,观察函数图象 ①当直线平移到与函数y =4x(x >0)的图象有唯一交点(2,2)时,周长m 的值为__________; ②在直线平移过程中,交点个数还有哪些情况?请写出交点个数及对应的周长m 的取值范围. (4)得出结论若能生产出面积为4的矩形模具,则周长m 的取值范围为__________.【答案】(1)一;(2)见解析;(3)m ≥8.【解析】(1)x ,y 都是边长,因此,都是正数,故点(x ,y )在第一象限,答案为:一; (2)图象如下所示:(3)①把点(2,2)代入y =–x +2m得: 2=–2+2m,解得:m =8; ②在直线平移过程中,交点个数有:0个、1个、2个三种情况, 联立y =4x 和y =–x +2m并整理得:x 2–12mx +4=0, △=14m 2–4×4≥0时,两个函数有交点,解得m ≥8,即:0个交点时,m <8;1个交点时,m =8;2个交点时,m >8.(4)由(3)得:m ≥8.【名师点睛】本题为反比例函数综合运用题,涉及到一次函数、一元二次方程、函数平移等知识点,此类探究题,通常按照题设条件逐次求解,一般难度不大.13.(2019•兰州)如图,在平面直角坐标系xOy 中,反比例函数y =k x (k ≠0)的图象经过等边三角形BOC 的顶点B ,OC =2,点A 在反比例函数图象上,连接AC ,OA .(1)求反比例函数y =k x(k ≠0)的表达式;(2)若四边形ACBO 的面积是A 的坐标.【答案】(1)反比例函数的表达式为y =x;(2)点A 的坐标为(12, 【解析】(1)如图,过点B 作BD ⊥OC 于D ,∵△BOC 是等边三角形,∴OB =OC =2,OD =12OC =1,∴BD∴S △OBD =12OD ×BD =2,又∵S △OBD =12|k |,∴|k ∵反比例函数y =k x (k ≠0)的图象在第一、三象限,∴k ,∴反比例函数的表达式为y ;(2)∵S △OBC =12OC •BD =12×∴S △AOC ,∵S △AOC =12OC •y A ,∴y A把y y =x,求得x =12,∴点A 的坐标为(12, 【名师点睛】本题考查了待定系数法求反比例函数的解析式,反比例系数k 的几何意义,反比例函数图象上点的坐标特征,此题的突破点是先由三角形的面积求出反比例函数的解析式.。
山西省2019年中考数学试题含答案解析(Word版)

山西省2019年中考数学试题含答案解析(Word版)2019年山西省中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分。
在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑。
)1.(2019·山西)下列选项中,哪个是1的相反数?A。
6/11B。
-6C。
6D。
-662.(2019·山西)以下不等式组的解集是?2x < 6.x ≥ 5}A。
x。
5B。
x < 3C。
-5 < x < 3D。
x < 53.(2019·山西)以下问题不适合进行全面调查的是?A。
调查某班学生每周课前预的时间。
B。
调查某中学在职教师的身体健康状况。
C。
调查全国中小学生课外阅读情况。
D。
调查某篮球队员的身高。
4.(2019·山西)如图所示,由几个大小相同的小正方体搭成的几何体的俯视图如下,小正方体中的数字表示该位置小正方体的个数。
则该几何体的左视图是?因为无法插入图片,请参考原文)5.(2019·山西)我国计划在2020年左右发射火星探测卫星。
据科学研究,火星距离地球的最近距离约为5500万千米,这个数据用科学计数法可表示为?A。
5.5×10^6B。
5.5×10^7C。
55×10^6D。
0.55×10^86.(2019·山西)下列运算正确的是?A。
(-3/2)^2 = 9/4B。
91 ÷ 3(3a^2) = 9a^6C。
5 - 3 ÷ 5 - 5 = -2/5D。
8 - 50 = -427.(2019·山西)甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600kg,甲搬运5000kg所用的时间与乙搬运8000kg所用的时间相等。
求甲、乙两人每小时分别搬运多少kg货物。
设甲每小时搬运xkg货物,则可列方程为?5000 ÷ x = (8000 ÷ (x + 600))A。
山西省临汾市2019年中考数学试卷(一)含答案解析

山西省临汾市2019年中考数学试卷(一)(解析版)一、选择题,每小题3分,共30分1.要使二次根式有意义,x 必须满足( )A .x ≤2B .x ≥2C .x >2D .x <22.已知x=1是关于x 的一元二次方程2x 2﹣x +a=0的一个根,则a 的值是( ) A .2B .﹣2C .1D .﹣1 3.下列式子为最简二次根式的是( )A .B .C .D .4.我们解一元二次方程3x 2﹣6x=0时,可以运用因式分解法,将此方程化为3x (x ﹣2)=0,从而得到两个一元一次方程:3x=0或x ﹣2=0,进而得到原方程的解为x 1=0,x 2=2.这种解法体现的数学思想是( )A .转化思想B .函数思想C .数形结合思想D .公理化思想 5.下列各式计算正确的是( )A .+=B .4﹣3=1C .2×=6D .÷=26.三角形两边的长是3和4,第三边的长是方程x 2﹣12x +35=0的根,则该三角形的周长为( )A .14B .12C .12或14D .以上都不对7.若=2﹣a ,则a 的取值范围是( )A .a=2B .a >2C .a ≥2D .a ≤28.若关于x 的方程x 2+3x +a=0有一个根为﹣1,则另一个根为( )A .﹣2B .2C .4D .﹣39.若(m ﹣1)2+=0,则m +n 的值是( )A .﹣1B .0C .1D .210.如图,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2m,另一边减少了3m,剩余一块面积为20m2的矩形空地,则原正方形空地的边长是()A.7m B.8m C.9m D.10m二、填空题,每小题3分,共18分11.若实数a满足=2,则a的值为.12.写一个你喜欢的实数m的值,使关于x的一元二次方程x2﹣x+m=0有两个不相等的实数根.13.若二次根式是最简二次根式,则最小的正整数a=.14.如图,是一个简单的数值运算程序.则输入x的值为.15.三角形的三边长分别为3、m、5,化简﹣=.16.将一些半径相同的小圆按如图的规律摆放,请仔细观察,第个图形有94个小圆.三、解答题17.计算:(1)9+5﹣3;(2)2;(3)()2019(﹣)2019.18.选用合适的方法解下列方程(1)(x+4)2=5(x+4);(2)(x+3)2=(1﹣2x)2.19.如图,面积为48cm2的正方形四个角是面积为3cm2的小正方形,现将四个角剪掉,制作一个无盖的长方体盒子,求这个长方体的底面边长和高分别是多少?(精确到0.1)20.小明同学在解一元二次方程时,他是这样做的:解一元二次方程3x2﹣8x(x﹣2)=0…第一步3x﹣8x﹣2=0…第二步﹣5x﹣2=0…第三步﹣5x=2…第四步x=﹣…第五步(1)小明的解法从第步开始出现错误;此题的正确结果是.(2)用因式分解法解方程:x(2x﹣1)=3(2x﹣1).21.交警通常根据刹车后轮滑行的距离来测算车辆行驶的速度,所用的经验公式是u=16.其中u表示车速(单位:km/h),d表示刹车距离(单位:m),f表示摩擦系数.在一次交通事故中,测得d=20m,f=1.44,而发生交通事故的路段限速为80km/h,肇事汽车是否违规超速行驶?说明理由.(参考数据:≈1.4,≈2.2)22.满洲里市某楼盘准备以每平方米5000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售.(1)求平均每次下调的百分率;(2)某人准备以开盘均价购买一套100平方米的房子.开发商还给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元,请问哪种方案更优惠?23.观察下列各式及其验证过程:(1)按照上述两个等式及其验证过程的基本思路,猜想的变形结果并进行验证;(2)针对上述各式反应的规律,写出用n(n为任意自然数,且n≥2)表示的等式,并说明它成立.24.如图,某旅游景点要在长、宽分别为20米、12米的矩形水池的正中央建一个与矩形的边互相平行的正方形观赏亭,观赏亭的四边连接四条与矩形的边互相平行的且宽度相等的道路,已知道路的宽为正方形边长的.若道路与观赏亭的面积之和是矩形水池面积的,求道路的宽.2019年山西省临汾市中考数学试卷(一)参考答案与试题解析一、选择题,每小题3分,共30分1.要使二次根式有意义,x必须满足()A.x≤2 B.x≥2 C.x>2 D.x<2【考点】二次根式有意义的条件.【分析】根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.【解答】解:根据题意得:x﹣2≥0,解得:x≥2.故选B.【点评】本题考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.2.已知x=1是关于x的一元二次方程2x2﹣x+a=0的一个根,则a的值是()A.2 B.﹣2 C.1 D.﹣1【考点】一元二次方程的解.【分析】根据一元二次方程的解的定义,将x=1代入关于x的一元二次方程2x2﹣x+a=0,列出关于a的方程,通过解该方程求得a值即可.【解答】解:∵x=1是关于x的一元二次方程2x2﹣x+a=0的一个根,∴x=1满足关于x的一元二次方程2x2﹣x+a=0,∴2×12﹣1+a=0,即1+a=0,解得,a=﹣1;故选D.【点评】本题考查了一元二次方程的解.一元二次方程ax2+bx+c=0(a≠0)的解均满足该方程的解析式.3.下列式子为最简二次根式的是()A.B.C.D.【考点】最简二次根式.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A正确;B、被开方数含能开得尽方的因数或因式,故B错误;C、被开方数含能开得尽方的因数或因式,故C错误;D、被开方数含分母,故D错误;故选:A.【点评】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.4.我们解一元二次方程3x2﹣6x=0时,可以运用因式分解法,将此方程化为3x(x﹣2)=0,从而得到两个一元一次方程:3x=0或x﹣2=0,进而得到原方程的解为x1=0,x2=2.这种解法体现的数学思想是()A.转化思想B.函数思想C.数形结合思想D.公理化思想【考点】解一元二次方程-因式分解法.【分析】上述解题过程利用了转化的数学思想.【解答】解:我们解一元二次方程3x2﹣6x=0时,可以运用因式分解法,将此方程化为3x (x﹣2)=0,从而得到两个一元一次方程:3x=0或x﹣2=0,进而得到原方程的解为x1=0,x2=2.这种解法体现的数学思想是转化思想,故选A.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.5.下列各式计算正确的是()A. +=B.4﹣3=1 C.2×=6D.÷=2【考点】二次根式的混合运算.【分析】原式各项计算得到结果,即可作出判断.【解答】解:A、原式不能合并,错误;B、原式=,错误;C、原式=6×3=18,错误;D、原式===2,正确,故选D【点评】此题考查了二次根式的混合运算,熟练掌握运算法则是解本题的关键.6.三角形两边的长是3和4,第三边的长是方程x2﹣12x+35=0的根,则该三角形的周长为()A.14 B.12 C.12或14 D.以上都不对【考点】解一元二次方程-因式分解法;三角形三边关系.【分析】易得方程的两根,那么根据三角形的三边关系,排除不合题意的边,进而求得三角形周长即可.【解答】解:解方程x2﹣12x+35=0得:x=5或x=7.当x=7时,3+4=7,不能组成三角形;当x=5时,3+4>5,三边能够组成三角形.∴该三角形的周长为3+4+5=12,故选B.【点评】本题主要考查三角形三边关系,注意在求周长时一定要先判断是否能构成三角形.7.若=2﹣a,则a的取值范围是()A.a=2 B.a>2 C.a≥2 D.a≤2【考点】平方根.【分析】根据二次根式的性质可得=|a|,再根据绝对值的性质进行计算即可.【解答】解:∵=|a﹣2|=2﹣a,∴a﹣2≤0,故选:D.【点评】此题主要考查了二次根式的性质,关键是掌握绝对值的性质.8.若关于x的方程x2+3x+a=0有一个根为﹣1,则另一个根为()A.﹣2 B.2 C.4 D.﹣3【考点】根与系数的关系.【分析】根据一元二次方程根与系数的关系,利用两根和,两根积,即可求出a的值和另一根.【解答】解:设一元二次方程的另一根为x1,则根据一元二次方程根与系数的关系,得﹣1+x1=﹣3,解得:x1=﹣2.故选A.【点评】本题考查了一元二次方程根与系数的关系,方程ax2+bx+c=0的两根为x1,x2,则x1+x2=﹣,x1x2=.9.若(m﹣1)2+=0,则m+n的值是()A.﹣1 B.0 C.1 D.2【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】根据非负数的性质列式求出m、n的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,m﹣1=0,n+2=0,解得m=1,n=﹣2,所以,m+n=1+(﹣2)=﹣1.故选A.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.10.如图,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2m,另一边减少了3m,剩余一块面积为20m2的矩形空地,则原正方形空地的边长是()A.7m B.8m C.9m D.10m【考点】一元二次方程的应用.【分析】本题可设原正方形的边长为xm,则剩余的空地长为(x﹣2)m,宽为(x﹣3)m.根据长方形的面积公式方程可列出,进而可求出原正方形的边长.【解答】解:设原正方形的边长为xm,依题意有(x﹣3)(x﹣2)=20,解得:x1=7,x2=﹣2(不合题意,舍去)即:原正方形的边长7m.故选:A.【点评】本题考查了一元二次方程的应用.学生应熟记长方形的面积公式.另外求得剩余的空地的长和宽是解决本题的关键.二、填空题,每小题3分,共18分11.若实数a满足=2,则a的值为.【考点】二次根式的定义.【分析】根据算术平方根平方运算等于被开方数,可得关于a的方程.【解答】解:平方,得a﹣1=4.解得a=5,故答案为:5.【点评】本题考查了二次根式的定义,利用算术平方根平方运算等于被开方数得出关于a 的方程是解题关键12.写一个你喜欢的实数m的值,使关于x的一元二次方程x2﹣x+m=0有两个不相等的实数根.【考点】根的判别式.【分析】由一元二次方程有两个不相等的实数根,得到根的判别式大于0,列出关于m的不等式,求出不等式的解集得到m的范围,即可求出m的值.【解答】解:根据题意得:△=1﹣4m>0,解得:m<,则m可以为0,答案不唯一.故答案为:0【点评】此题考查了根的判别式,熟练掌握一元二次方程根的判别式的意义是解本题的关键.13.若二次根式是最简二次根式,则最小的正整数a=.【考点】最简二次根式.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:二次根式是最简二次根式,则最小的正整数a=2,故答案为:2.【点评】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.14.如图,是一个简单的数值运算程序.则输入x的值为.【考点】一元二次方程的应用.【分析】首先根据题意列出方程:(x﹣1)2×(﹣3)=﹣9,解方程即可求得答案.【解答】解:根据题意得:简单的数值运算程序为:(x﹣1)2×(﹣3)=﹣9,化简得:(x﹣1)2=3,∴x﹣1=±,∴x=1±.故答案为:或.【点评】本题主要考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.15.三角形的三边长分别为3、m、5,化简﹣=.【考点】二次根式的性质与化简;三角形三边关系.【分析】先利用三角形的三边关系求出m的取值范围,再化简求解即可.【解答】解:∵三角形的三边长分别为3、m、5,∴2<m<8,∴﹣=m﹣2﹣(8﹣m)=2m﹣10.故答案为:2m﹣10.【点评】本题主要考查了二次根式的性质与化简及三角形三边关系,解题的关键是熟记三角形的三边关系.16.将一些半径相同的小圆按如图的规律摆放,请仔细观察,第个图形有94个小圆.【考点】一元二次方程的应用;规律型:图形的变化类.【分析】分析数据可得:第1个图形中小圆的个数为6;第2个图形中小圆的个数为10;第3个图形中小圆的个数为16;第4个图形中小圆的个数为24;则知第n个图形中小圆的个数为n(n+1)+4.依此列出方程即可求得答案.【解答】解:设第n个图形有94个小圆,依题意有n2+n+4=94即n2+n=90(n+10)(n﹣9)=0解得n1=9,n2=﹣10(不合题意舍去).故第9个图形有94个小圆.故答案为:9.【点评】考查了一元二次方程的应用和规律型:图形的变化类,本题是一道找规律的题目,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.三、解答题17.计算:(1)9+5﹣3;(2)2;(3)()2019(﹣)2019.【考点】二次根式的混合运算.【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)利用二次根式的乘除法则运算;(3)先利用积的乘方得到原式=[(+)(﹣)]2019(+),然后利用平方差公式计算.【解答】解:(1)原式=9+10﹣12=7;(2)原式=2×2×2×=;(3)原式=[(+)(﹣)]2019(+)=(5﹣6)2019(+)=﹣(+)=﹣﹣.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.选用合适的方法解下列方程(1)(x+4)2=5(x+4);(2)(x+3)2=(1﹣2x)2.【考点】解一元二次方程-因式分解法.【分析】(1)移项后分解因式得到(x+4)(x+4﹣5)=0,推出方程x+4=0,x+4﹣5=0,求出方程的解即可;(2)此题等式两边都是一个平方的形式,则这两个式子相等或互为相反数,据此即可转化为一元一次方程,即可求解.【解答】解:(1)移项得:(x+4)2﹣5(x+4)=0,分解因式得:(x+4)(x+4﹣5)=0,即x+4=0,x﹣1=0,解得x1=﹣4,x2=1;(2)∵(x+3)2=(1﹣2x)2∴原式可变为x+3=±(1﹣2x)解得x=﹣或4.【点评】本题主要考查了解一元二次方程的知识,根据方程的特点选择合适的方法解一元二次方程是解决此类问题的关键.一般解一元二次方程的方法有直接开平方法、因式分解法、公式法、配方法.19.如图,面积为48cm2的正方形四个角是面积为3cm2的小正方形,现将四个角剪掉,制作一个无盖的长方体盒子,求这个长方体的底面边长和高分别是多少?(精确到0.1)【考点】二次根式的应用.【分析】已知大正方形的面积和小正方形的面积,可用二次根式表示两个正方形的边长,从而可求这个长方体的底边长和高.【解答】解:设大正方形的边长为xcm,小正方形的边长为ycm,则:x2=48,y2=3∴,∴这个长方体的底面边长为:高为:≈1.7答:这个长方体的底面边长约为3.5cm,高约为1.7cm.【点评】已知正方形的面积,可用二次根式表示正方形的边长,再根据边长进行有关运算.20.小明同学在解一元二次方程时,他是这样做的:解一元二次方程3x2﹣8x(x﹣2)=0…第一步3x﹣8x﹣2=0…第二步﹣5x﹣2=0…第三步﹣5x=2…第四步x=﹣…第五步(1)小明的解法从第步开始出现错误;此题的正确结果是.(2)用因式分解法解方程:x(2x﹣1)=3(2x﹣1).【考点】解一元二次方程-因式分解法.【分析】(1)利用提取公因式法分解因式解方程得出即可;(2)利用提取公因式法分解因式解方程得出即可.【解答】解:(1)小明的解法从第2步开始出现错误;3x2﹣8x(x﹣2)=0x[3x﹣8(x﹣2)]=0,解得:x1=0,x2=,故此题的正确结果是:x1=0,x2=,故答案为:2;x1=0,x2=;(2)x(2x﹣1)=3(2x﹣1)(2x﹣1)(x﹣3)=0,解得:x1=,x2=3.【点评】此题主要考查了提取公因式法分解因式解方程,正确分解因式是解题关键.21.交警通常根据刹车后轮滑行的距离来测算车辆行驶的速度,所用的经验公式是u=16.其中u表示车速(单位:km/h),d表示刹车距离(单位:m),f表示摩擦系数.在一次交通事故中,测得d=20m,f=1.44,而发生交通事故的路段限速为80km/h,肇事汽车是否违规超速行驶?说明理由.(参考数据:≈1.4,≈2.2)【考点】二次根式的应用.【分析】先把d=20m,f=1.44,分别代入u=16,求出当时汽车的速度再和80km/h比较即可解答.【解答】解:肇事汽车超速行驶.理由如下:把d=20,f=1.44代入v=16,v=16=16×2.4×≈38.4×2.2=84.48km/h>80km/h,所以肇事汽车超速行驶.【点评】本题考查了二次根式的应用,读懂题意是解题的关键,另外要熟悉实数的相关运算.22.(9分)(2019山西模拟)满洲里市某楼盘准备以每平方米5000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售.(1)求平均每次下调的百分率;(2)某人准备以开盘均价购买一套100平方米的房子.开发商还给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元,请问哪种方案更优惠?【考点】一元二次方程的应用.【分析】(1)设出平均每次下调的百分率为x,利用预订每平方米销售价格×(1﹣每次下调的百分率)2=开盘每平方米销售价格列方程解答即可;(2)对于方案的确定,可以通过比较两种方案得出的费用:①方案:下调后的均价×100×0.98;②方案:下调后的均价×100﹣两年的物业管理费,比较确定出更优惠的方案.【解答】解:(1)设平均每次降价的百分率是x,根据题意列方程得,5000(1﹣x)2=4050,解得:x1=10%,x2=1.9(不合题意,舍去);答:平均每次降价的百分率为10%.(2)方案一的房款是:4050×100×0.98=396900(元);方案二的房款是:4050×100﹣1.5×100×12×2=401400(元)∵396900元<401400元.【点评】考查了一元二次方程的应用,同学们应注重培养应用题的分析理解能力,通过列出方程求出未知解.23.观察下列各式及其验证过程:(1)按照上述两个等式及其验证过程的基本思路,猜想的变形结果并进行验证;(2)针对上述各式反应的规律,写出用n(n为任意自然数,且n≥2)表示的等式,并说明它成立.【考点】二次根式的性质与化简.【分析】根据观察,可得规律,根据规律,可得答案.【解答】解:(1)5=验证:5====;(2)n=,证明:n====.【点评】本题考查了二次根式的性质与化简,运用n=的规律是解题关键.24.如图,某旅游景点要在长、宽分别为20米、12米的矩形水池的正中央建一个与矩形的边互相平行的正方形观赏亭,观赏亭的四边连接四条与矩形的边互相平行的且宽度相等的道路,已知道路的宽为正方形边长的.若道路与观赏亭的面积之和是矩形水池面积的,求道路的宽.【考点】一元二次方程的应用.【分析】首先假设道路的宽为x米,根据道路的宽为正方形边长的,得出正方形的边长以及道路与正方形的面积进而得出答案.【解答】解:设道路的宽为x米,则可列方程:x(12﹣4x)+x(20﹣4x)+16x2=×20×12,即:x2+4x﹣5=0,解得:x1=l,x2=﹣5(舍去).答:道路的宽为1米.【点评】此题主要考查了一元二次方程的应用,根据已知表示出阴影部分的面积是解题关键.。
2019年山西省中考适应性训练数学试卷及答案(word解析版)

山西省2019年中考适应性训练数学试卷一、选择题(共12小题,每小题2分,满分24分,在每小题给出的四个选项中,只有一项符合题目要求,请选择并在答题卡上将该项涂黑)243.(2分)(2019•山西模拟)在一个不透明的袋子中装有5个除颜色外完全相同的小球,其4.(2分)(2019•山西模拟)如图,将直角三角板ABC沿BC方向平移,得到△A′CC′.已知∠B=30°,∠ACB=90°,则∠BAA′度数为()5.(2分)(2019•山西模拟)如图,将正方体的平面展开图重新折成正方体后,“西”字对面的字是()7.(2分)(2019•山西模拟)2019年1月份,太原市某周的日最高气温统计如下表:则这七8.(2分)(2019•山西模拟)分式方程的解是()9.(2分)(2019•山西模拟)在一定温度下的饱和溶液中,溶质、溶剂质量和溶解度之间存在下列关系:.已知20℃时,硝酸钾的溶解度是31.6克,在此温度下,=,即10.(2分)(2019•山西模拟)如图,A、B两点在河的两岸,要测量这两点之间的距离,测量者在与A同侧的河岸边选定一点C,测出AC=a米,∠A=90°,∠C=40°,则AB等于()米.,11.(2分)(2019•山西模拟)某班学生毕业时,每个同学都要给其他同学写一份留言作为.12.(2分)(2019•山西模拟)如图,菱形ABCD中,E是AD的中点,将△CDE沿CE折叠后,点A和点D恰好重合.若AB=4,则菱形ABCD的面积为()2ADAD=DE=CD=2CE=2×.二、填空题(本大题共6小题,每小题3分,共18分,把答案写在题中横线上)13.(3分)(2019•山西模拟)计算﹣4sin45°的结果是.×故答案为:14.(3分)(2019•山西模拟)经过一年的广泛征集、反复提炼,“山西精神”的表述语“信义、坚韧、创新、图强”于2019底正式对外公布.据不完全统计,山西全省共约121万人参与了征集提炼活动.121万人用科学记数法表示为 1.21×106人.15.(3分)(2019•山西模拟)在一个不透明的盒子里装有4个分别标有数字1、2、3、4的小球,它们除数字外其他均相同.充分摇匀后,先摸回1个球不放回,再摸出一个球.那么这两个球上数字之和为奇数的概率为..故答案为:.16.(3分)(2019•山西模拟)如图所示,在直角梯形ABCD中,AB∥CD,点E为AB的中点,点F为BC的中点,AB=4,EF=2,∠B=60°,则AD的长为2.MB=×=2.17.(3分)(2019•山西模拟)如图,若将平面直角坐标系中“鱼”以原点O为位似中心,按照相似比缩小,则点A的对应点的坐标是(3,﹣2)或(﹣3,2).为位似中心,相似比为18.(3分)(2019•山西模拟)在一次猜数字游戏中,小红写出如下一组数:1,,,,…,小军猜想出的第六个数字是,也是正确的,根据此规律,第n个数是.先把原数据整理得到,,,个数是.,,,,,变形得到,,,,,即,,所以第六个数字是=个数是故答案为三、解答题(本大题共8小题,共78分,解答应写出文字说明、证明过程或演算步骤)19.(12分)(2019•山西模拟)(1)计算:m(m+2)﹣(m﹣1)(m+3)+(﹣2m)2(2)化简分式+﹣1,并选取一个你认为合适的整数a代入求值.•﹣,==220.(6分)(2019•山西模拟)如图1利用正方形各边中点和弧的中点设计的正方形瓷砖图案,用四块如图1所示的正方形瓷砖拼成一个新的正方形,使拼成的图案既是轴对称图形,又是中心对称图形.请你在图2和图3中各画一种拼法(要求两种拼法各不相同).21.(9分)(2019•山西模拟)某科学技术协会为倡导青少年主动进行研究性学习,积极研究身边的科学问题,组织了以“体验、创新、成长”为主题的青少年科技创大赛,在层层选拔的基础上,所有推荐参赛学生分别获得了一、二、三等奖和纪念奖,工作人员根据获奖情况绘制成如图所示的两幅不完整的统计图,根据图中所给出的信息解答下列问题:(1)这次大赛获得三等奖的学生有多少人?(2)请将条形统计图补充完整;(3)扇形统计图中,表示三等奖扇形的圆心角是多少度?(4)若给所有推荐参赛学生每人发一张相同的卡片,各自写上自己的名字,然后把卡片放入一个不透明的袋子里,摇匀后任意摸出一张,求摸出写有一等奖学生名字卡片的概率.200=.22.(8分)(2019•山西模拟)如图,在平面直角坐标系中,点O为坐标原点,一次函数y1=kx+b 与反比例函数y2=的图象相交于A(﹣2,m),B(n,4)两点,与y轴交于点C.(1)求一次函数的解析式(关系式);(2)根据函数图象,写出:①当﹣2≤y1≤4时,自变量x的取值范围是﹣2≤x≤1;②当y2≤4时,自变量x的取值范围是x<0或x≥1;(3)连接OA、OB,求△AOB的面积.的解析式,求=4=,解得.=××23.(9分)(2019•山西模拟)如图,AB是⊙O的直径,C为⊙O上一点,点D在CO的延长线上,连接BD.已知BC=BD,AB=4.(1)若BC=2,求证:BD是⊙O的切线;(2)BC=3,求CD的长.=,=,即=.24.(8分)(2019•山西模拟)2019年1月,由于雾霾天气持续笼罩我国中东部大部分地区,口罩市场出现热卖,某旗舰网店用8000元购进甲、乙两种口罩,销售完后共获利2800元,(2)该网店第二次以原价购进甲、乙、两种口罩,购进乙种口罩袋数不变,而购进甲种口罩袋数是第一次的2倍.甲种口罩按原售价出售,而乙种口罩让利销售.若两种口罩销售完毕,要使第二次销售活动获利不少于3680元,乙种口罩最低售价为每袋多少元?,,25.(12分)(2019•山西模拟)操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN.(1)连接AE,求证:△AEF是等腰三角形;猜想与发现:(2)再(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论.结论1:DM、MN的数量关系是相等;结论2:DM、MN的位置关系是垂直;拓展与探究:(3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.AE MN=DM=26.(14分)(2019•山西模拟)如图,在平面直角坐标系中,O为坐标原点,抛物线y=x2+2x与x轴相交于O、B,顶点为A,连接OA.(1)求点A的坐标和∠AOB的度数;(2)若将抛物线y=x2+2x向右平移4个单位,再向下平移2个单位,得到抛物线m,其顶点为点C.连接OC和AC,把△AOC沿OA翻折得到四边形ACOC′.试判断其形状,并说明理由;(3)在(2)的情况下,判断点C′是否在抛物线y=x2+2x上,请说明理由;(4)若点P为x轴上的一个动点,试探究在抛物线m上是否存在点Q,使以点O、P、C、Q为顶点的四边形是平行四边形,且OC为该四边形的一条边?若存在,请直接写出点Q的坐标;若不存在,请说明理由.y=(令,由此可得抛物线x(y=y=x,且过顶点y=x==2,AC=2xxy=(=0。
2019年中考数学试题汇编 二元一次方程组解答题部分(解析版)

1.(2019年山东省烟台市)亚洲文明对话大会召开期间,大批的大学生志愿者参与服务工作.某大学计划组织本校全体志愿者统一乘车去会场,若单独调配36座新能源客车若干辆,则有2人没有座位;若只调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.(1)计划调配36座新能源客车多少辆?该大学共有多少名志愿者?(2)若同时调配36座和22座两种车型,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?【分析】(1)设计划调配36座新能源客车x辆,该大学共有y名志愿者,则需调配22座新能源客车(x+4)辆,根据志愿者人数=36×调配36座客车的数量+2及志愿者人数=22×调配22座客车的数量﹣2,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设需调配36座客车m辆,22座客车n辆,根据志愿者人数=36×调配36座客车的数量+22×调配22座客车的数量,即可得出关于m,n的二元一次方程,结合m,n均为正整数即可求出结论.【解答】解:(1)设计划调配36座新能源客车x辆,该大学共有y名志愿者,则需调配22座新能源客车(x+4)辆,依题意,得:,解得:.答:计划调配36座新能源客车6辆,该大学共有218名志愿者.(2)设需调配36座客车m辆,22座客车n辆,依题意,得:36m+22n=218,∴n=.又∵m,n均为正整数,∴.答:需调配36座客车3辆,22座客车5辆.【点评】本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出二元一次方程.2.(2019年福建省)解方程组.【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②得:3x=9,即x=3,把x=3代入①得:y=﹣2,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.3.(2019年海南省)时下正是海南百香果丰收的季节,张阿姨到“海南爱心扶贫网”上选购百香果,若购买2千克“红土”百香果和1千克“黄金”百香果需付80元,若购买1千克“红土”百香果和3千克“黄金”百香果需付115元.请问这两种百香果每千克各是多少元?【分析】设“红土”百香果每千克x元,“黄金”百香果每千克y元,由题意列出方程组,解方程组即可.【解答】解:设“红土”百香果每千克x元,“黄金”百香果每千克y元,由题意得:,解得:;答:“红土”百香果每千克25元,“黄金”百香果每千克30元.【点评】本题考查了二元一次方程组的应用以及二元一次方程组的解法;根据题意列出方程组是解题的关键.4.(2019年吉林省)问题解决糖葫芦一般是用竹签串上山楂,再蘸以冰糖制作而成.现将一些山楂分别串在若干根竹签上.如果每根竹签串5个山楂,还剩余4个山楂;如果每根竹签串8个山楂,还剩余7根竹签.这些竹签有多少根?山楂有多少个?反思归纳现有a根竹签,b个山楂.若每根竹签串c个山楂,还剩余d个山楂,则下列等式成立的是(2)(填写序号).(1)bc+d=a;(2)ac+d=b;(3)ac﹣d=b.【分析】问题解决设竹签有x根,山楂有y个,由题意得出方程组:,解方程组即可;反思归纳由每根竹签串c个山楂,还剩余d个山楂,得出ac+d=b即可.【解答】问题解决解:设竹签有x根,山楂有y个,由题意得:,解得:,答:竹签有20根,山楂有104个;反思归纳解:∵每根竹签串c个山楂,还剩余d个山楂,则ac+d=b,故答案为:(2).【点评】本题考查了二元一次方程组的应用以及二元一次方程组的解法;根据题意列出方程组是解题的关键.5.【分析】设每节火车车皮装物资x吨,每辆汽车装物资y吨,根据题意,得,求解即可;【解答】解:设每节火车车皮装物资x吨,每辆汽车装物资y吨,根据题意,得,∴,∴每节火车车皮装物资50吨,每辆汽车装物资6吨;【点评】本题考查二元一次方程组的应用;能够根据题意列出准确的方程组,并用加减消元法解方程组是关键.6.(2019年山西省)解方程组:【分析】(1)先根据二次根式的性质,特殊角的三角函数,0次幂进行计算,再合并同类二次根式;(2)用加减法进行解答便可.【解答】解:(2)①+②得,4x=﹣8,∴x=﹣2,把x=﹣2代入①得,﹣6﹣2y=﹣8,∴y=1,∴.【点评】本题是解答题的基本计算题,主要考查了实数的计算,解二元一次方程组,是基础题,要求100%得分,不能有失误.7.(2019年广西河池市)在某体育用品商店,购买30根跳绳和60个毽子共用720元,购买10根跳绳和50个毽子共用360元.(1)跳绳、毽子的单价各是多少元?(2)该店在“五•四”青年节期间开展促销活动,所有商品按同样的折数打折销售.节日期间购买100根跳绳和100个毽子只需1800元,该店的商品按原价的几折销售?【分析】(1)设跳绳的单价为x元/条,毽子的单件为y元/个,根据:购买30根跳绳和60个毽子共用720元,购买10根跳绳和50个毽子共用360元,列方程组求解即可;(2)设该店的商品按原价的x折销售,根据:购买100根跳绳和100个毽子只需1800元,列出方程求解可得.【解答】解:(1)设跳绳的单价为x元/条,毽子的单件为y元/个,可得:,解得:,答:跳绳的单价为16元/条,毽子的单件为5元/个;(2)设该店的商品按原价的x折销售,可得:(100×16+100×4)×=1800,解得:x=9,答:该店的商品按原价的9折销售.【点评】本题主要考查二元一次方程组及一元一次方程的应用,理解题意找到相等关系是解题关键.8.(2019年广东省广州市)解方程组:.【分析】运用加减消元解答即可.【解答】解:,②﹣①得,4y=2,解得y=2,把y=2代入①得,x﹣2=1,解得x=3,故原方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.9.(2019年湖南省益阳市)为了提高农田利用效益,某地由每年种植双季稻改为先养殖小龙虾再种植一季水稻的“虾•稻”轮作模式.某农户有农田20亩,去年开始实施“虾•稻”轮作,去年出售小龙虾每千克获得的利润为32元(利润=售价﹣成本).由于开发成本下降和市场供求关系变化,今年每千克小龙虾的养殖成本下降25%,售价下降10%,出售小龙虾每千克获得利润为30元.求去年每千克小龙虾的养殖成本与售价;【分析】设今年稻谷的亩产量为z千克,由题意列出不等式,就不等式即可.【解答】解:(1)设去年每千克小龙虾的养殖成本与售价分别为x元、y元,由题意得:,解得:;答:去年每千克小龙虾的养殖成本与售价分别为8元、40元;【点评】本题考查了二元一次方程组的应用;根据题意列出方程组或不等式是解题的关键.10(2019年山东省淄博市)“一带一路”促进了中欧贸易的发展,我市某机电公司生产的A,B两种产品在欧洲市场热销.今年第一季度这两种产品的销售总额为2060万元,总利润为1020万元(利润【分析】设A,B两种产品的销售件数分别为x件、y件;由题意列出方程组,解方程组即可.【解答】解:设A,B两种产品的销售件数分别为x件、y件;由题意得:,解得:;答:A,B两种产品的销售件数分别为160件、180件.【点评】本题考查了二元一次方程组的应用以及二元一次方程组的解法;根据题意列出方程组是解题的关键.11(2019年浙江省丽水市)解方程组【分析】根据二元一次方程组的解法,先将式子①化简,再用加减消元法(或代入消元法)求解;【解答】解:,将①化简得:﹣x+8y=5 ③,②+③,得y=1,将y=1代入②,得x=3,∴;【点评】本题考查二元一次方程组的解法;熟练掌握加减消元法或代入消元法解方程组是解题的关键.12(2019年江苏省盐城市)体育器材室有A、B两种型号的实心球,1只A型球与1只B型球的质量共7千克,3只A型球与1只B型球的质量共13千克.(1)每只A型球、B型球的质量分别是多少千克?(2)现有A型球、B型球的质量共17千克,则A型球、B型球各有多少只?【分析】(1)直接利用1只A型球与1只B型球的质量共7千克,3只A型球与1只B型球的质量共13千克得出方程求出答案;(2)利用分类讨论得出方程的解即可.【解答】解:(1)设每只A型球、B型球的质量分别是x千克、y千克,根据题意可得:,解得:,答:每只A型球的质量是3千克、B型球的质量是4千克;(2)∵现有A型球、B型球的质量共17千克,∴设A型球1个,设B型球a个,则3+4a=17,解得:a=(不合题意舍去),设A型球2个,设B型球b个,则6+4b=17,解得:b=(不合题意舍去),设A型球3个,设B型球c个,则9+4c=17,解得:c=2,设A型球4个,设B型球d个,则12+4d=17,解得:d=(不合题意舍去),设A型球5个,设B型球e个,则15+4e=17,解得:a=(不合题意舍去),综上所述:A型球、B型球各有3只、2只.【点评】此题主要考查了二元一次方程组的应用,正确分类讨论是解题关键.13(2019年湖南省怀化市)解二元一次方组:【分析】直接利用加减消元法进而解方程组即可.【解答】解:,①+②得:2x=8,解得:x=4,则4﹣3y=1,解得:y=1,故方程组的解为:.【点评】此题主要考查了解二元一次方程组,正确掌握解题方法是解题关键.14(2019年山东省潍坊市)己知关于x,y的二元一次方程组的解满足x>y,求k的取值范围.【分析】先用加减法求得x﹣y的值(用含k的式子表示),然后再列不等式求解即可.【解答】解:①﹣②得:x﹣y=5﹣k,∵x>y,∴x﹣y>0.∴5﹣k>0.解得:k<5.【点评】本题主要考查的是二元一次方程组的解,求得x﹣y的值(用含k的式子表示)是解题的关键.15(2019年浙江省温州市)某旅行团32人在景区A游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人.(1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B游玩.景区B的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童.①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.【分析】(1)根据题意可以列出相应的方程组,本题得以解决;(2)①根据题意可以求得由成人8人和少年5人带队,所需门票的总费用;②利用分类讨论的方法可以求得相应的方案以及花费,再比较花费多少即可解答本题.【解答】解:(1)设成人有x人,少年y人,,解得,,答:该旅行团中成人与少年分别是17人、5人;(2)①由题意可得,由成人8人和少年5人带队,则所需门票的总费用是:100×8+5×100×0.8+(10﹣8)×100×0.6=1320(元),答:由成人8人和少年5人带队,则所需门票的总费用是1320元;②设可以安排成人a人,少年b人带队,则1≤a≤17,1≤b≤5,当10≤a≤17时,若a=10,则费用为100×10+100×b×0.8≤1200,得b≤2.5,∴b的最大值是2,此时a+b=12,费用为1160元;若a=11,则费用为100×11+100×b×0.8≤1200,得b≤,∴b的最大值是1,此时a+b=12,费用为1180元;若a≥12,100a≥1200,即成人门票至少是1200元,不合题意,舍去;当1≤a<10时,若a=9,则费用为100×9+100b×0.8+100×1×0.6≤1200,得b≤3,∴b的最大值是3,a+b=12,费用为1200元;若a=8,则费用为100×8+100b×0.8+100×2×0.6≤1200,得b≤3.5,∴b的最大值是3,a+b=11<12,不合题意,舍去;同理,当a<8时,a+b<12,不合题意,舍去;综上所述,最多安排成人和少年12人带队,有三个方案:成人10人,少年2人;成人11人,少年1人;成人9人,少年3人;其中成人10人,少年2人时购票费用最少.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和分类讨论的数学思想解答.16(2019年甘肃省武威市、陇南市)小甘到文具超市去买文具.请你根据如图中的对话信息,求中性笔和笔记本的单价分别是多少元?【分析】根据对话分别利用总钱数得出等式求出答案.【解答】解:设中性笔和笔记本的单价分别是x元、y元,根据题意可得:,解得:,答:中性笔和笔记本的单价分别是2元、6元.【点评】此题主要考查了二元一次方程组的应用,正确得出等量关系是解题关键.17(2019年山东省枣庄市)对于实数a、b,定义关于“⊗”的一种运算:a⊗b=2a+b,例如3⊗4=2×3+4=10.(1)求4⊗(﹣3)的值;(2)若x⊗(﹣y)=2,(2y)⊗x=﹣1,求x+y的值.【分析】(1)原式利用题中的新定义计算即可求出值;(2)已知等式利用题中的新定义化简,计算即可求出所求.【解答】解:(1)根据题中的新定义得:原式=8﹣3=5;(2)根据题中的新定义化简得:,①+②得:3x+3y=﹣3,则x+y=﹣1.【点评】此题考查了解二元一次方程组,以及实数的运算,熟练掌握运算法则是解本题的关键.。
中考数学专题16 统计与概率(第01期)-2019年中考真题数学试题分项汇编 (解析版)

专题16 统计与概率1.(2019•河北)某同学要统计本校图书馆最受学生欢迎的图书种类,以下是排乱的统计步骤:①从扇形图中分析出最受学生欢迎的种类②去图书馆收集学生借阅图书的记录③绘制扇形图来表示各个种类所占的百分比④整理借阅图书记录并绘制频数分布表正确统计步骤的顺序是A.②→③→①→④B.③→④→①→②C.①→②一④→③D.②→④→③→①【答案】D【解析】由题意可得,正确统计步骤的顺序是:②去图书馆收集学生借阅图书的记录,④整理借阅图书记录并绘制频数分布表,③绘制扇形图来表示各个种类所占的百分比,①从扇形图中分析出最受学生欢迎的种类,故选D.2.(2019•江西)根据《居民家庭亲子阅读消费调查报告》中的相关数据制成扇形统计图,由图可知,下列说法错误的是A.扇形统计图能反映各部分在总体中所占的百分比B.每天阅读30分钟以上的居民家庭孩子超过50%C.每天阅读1小时以上的居民家庭孩子占20%D.每天阅读30分钟至1小时的居民家庭孩子对应扇形的圆心角是108°【答案】C【解析】A.扇形统计图能反映各部分在总体中所占的百分比,此选项说法正确;B.每天阅读30分钟以上的居民家庭孩子的百分比为1–40%=60%,超过50%,此选项说法正确;C.每天阅读1小时以上的居民家庭孩子占30%,此选项说法错误;D.每天阅读30分钟至1小时的居民家庭孩子对应扇形的圆心角是360°×(1–40%–10%–20%)=108°,此选项说法正确;故选C.【名师点睛】本题主要考查扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.3.(2019•安徽)在某时段由50辆车通过一个雷达测速点,工作人员将测得的车速绘制成如图所示的条形统计图,则这50辆车的车速的众数(单位:km/h)为A.60 B.50 C.40 D.15【答案】C【解析】由条形图知,50个数据的中位数为第25、26个数据的平均数,即中位数为==40,故选C.【名师点睛】本题主要考查众数,熟练掌握众数的定义是解题的关键.4.(2019•新疆)甲、乙两人连续5次射击成绩如图所示,下列说法中正确的是A.甲的成绩更稳定B.乙的成绩更稳定C.甲、乙的成绩一样稳定D.无法判断谁的成绩更稳定【答案】B【解析】由折线图可知,乙与其平均值的离散程度较小,所以稳定性更好.故选B.5.(2019•福建)如图是某班甲、乙、丙三位同学最近5次数学成绩及其所在班级相应平均分的折线统计图,则下列判断错误的是A.甲的数学成绩高于班级平均分,且成绩比较稳定B.乙的数学成绩在班级平均分附近波动,且比丙好C.丙的数学成绩低于班级平均分,但成绩逐次提高D.就甲、乙、丙三个人而言,乙的数学成绩最不稳【答案】D【解析】A.甲的数学成绩高于班级平均分,且成绩比较稳定,正确;B.乙的数学成绩在班级平均分附近波动,且比丙好,正确;C.丙的数学成绩低于班级平均分,但成绩逐次提高,正确D.就甲、乙、丙三个人而言,丙的数学成绩最不稳,故D错误.故选D.【名师点睛】本题是折线统计图,要通过坐标轴以及图例等读懂本图,根据图中所示的数量解决问题.6.(2019•宁夏)为了解学生课外阅读时间情况,随机收集了30名学生一天课外阅读时间,整理如下表:阅读时间/小时0.5及以下0.7 0.9 1.1 1.3 1.5及以上人数 2 9 6 5 4 4 则本次调查中阅读时间的中位数和众数分别是A.0.7和0.7 B.0.9和0.7 C.1和0.7 D.0.9和1.1【答案】B【解析】由表格可得,30名学生平均每天阅读时间的中位数是:0.90.92=0.9,30名学生平均每天阅读时间的众数是0.7,故选B.【名师点睛】本题考查众数、中位数,解答本题的关键是明确题意,会求一组数据的众数和中位数.7.(2019•河南)某超市销售A,B,C,D四种矿泉水,它们的单价依次是5元、3元、2元、1元.某天的销售情况如图所示,则这天销售的矿泉水的平均单价是A.1.95元B.2.15元C.2.25元D.2.75元【答案】C【解析】这天销售的矿泉水的平均单价是5×10%+3×15%+2×55%+1×20%=2.25(元),故选C.【名师点睛】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.8.(2019•广东)数据3,3,5,8,11的中位数是A.3 B.4 C.5 D.6【答案】C【解析】把这组数据按照从小到大的顺序排列为:3,3,5,8,11,故这组数据的中位数是5.故选C.【名师点睛】本题考查了中位数的概念:把一组数据按从小到大的顺序排列,最中间那个数或中间两个数的平均数就是这组数据的中位数.9.(2019•甘肃)甲,乙两个班参加了学校组织的2019年“国学小名士”国学知识竞赛选拔赛,他们成绩的平均数、中位数、方差如下表所示,规定成绩大于等于95分为优异,则下列说法正确的是参加人数平均数中位数方差甲45 94 93 5.3乙45 94 95 4.8A.甲、乙两班的平均水平相同B.甲、乙两班竞赛成绩的众数相同C.甲班的成绩比乙班的成绩稳定D.甲班成绩优异的人数比乙班多【答案】A【解析】A、由表格信息可得甲、乙两班的平均水平相同;A选项正确;B、由表格信息无法得出甲、乙两班竞赛成绩的众数相同;B选项不正确;C、由表格信息可以得出乙班的成绩比甲班的成绩稳定;C选项不正确;D、由表格信息可以得出甲班中位数小于乙班的中位数,所以乙班成绩优异的人数比甲班多,D选项不正确;故选A.【名师点睛】本题考查了平均数,众数,中位数,方差;正确的读懂题目中所给出的信息,理解各个统计量的意义是解题的关键.10.(2019•广西)“学雷锋”活动月中,“飞翼”班将组织学生开展志愿者服务活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,两人恰好选择同一场馆的概率是A.13B.23C.19D.29【答案】A【解析】图书馆,博物馆,科技馆分别记为A、B、C,画树状图如下:共有9种等可能的结果数,其中两人恰好选择同一场馆的结果数为3,所以两人恰好选择同一场馆的概率=39=13.故选A.【名师点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.11.(2019•广西)下列事件为必然事件的是A.打开电视机,正在播放新闻B.任意画一个三角形,其内角和是180°C.买一张电影票,座位号是奇数号D.掷一枚质地均匀的硬币,正面朝上【答案】B【解析】∵A,C,D选项中的事件均为不确定事件,即随机事件,故不符合题意.∴一定发生的事件只有B,任意画一个三角形,其内角和是180°,是必然事件,符合题意.故选B.【名师点睛】本题考查的是对必然事件的概念的理解.解决此类问题,要学会关注身边的事物,并用数学的思想和方法去分析、看待、解决问题,提高自身的数学素养.用到的知识点为:必然事件指在一定条件下一定发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.12.(2019•海南)某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率是A.12B.34C.112D.512【答案】D【解析】∵每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,∴当小明到达该路口时,遇到绿灯的概率P=2560=512,故选D.【名师点睛】本题考查了概率,熟练掌握概率公式是解题的关键.13.(2019•宁夏)为了解某班学生体育锻炼的用时情况,收集了该班学生一天用于体育锻炼的时间(单位:小时),整理成如图的统计图.则该班学生这天用于体育锻炼的平均时间为__________小时.【答案】1.15【解析】由图可知,该班一共有学生:8+16+12+4=40(人),该班学生这天用于体育锻炼的平均时间为:(0.5×8+1×16+1.5×12+2×4)÷40=1.15(小时).故答案为:1.15.【名师点睛】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.也考查了加权平均数.14.(2019•山西)要表示一个家庭一年用于“教育”,“服装”,“食品”,“其他”这四项的支出各占家庭本年总支出的百分比,从“扇形统计图”,“条形统计图”,“折线统计图”中选择一种统计图,最适合的统计图是__________.【答案】扇形统计图【解析】要表示一个家庭一年用于“教育”,“服装”,“食品”,“其他”这四项的支出各占家庭本年总支出的百分比,最适合的统计图是扇形统计图.故答案为:扇形统计图.【名师点睛】此题应根据条形统计图、折线统计图、扇形统计图各自的特点进行解答.15.(2019•广西)甲,乙两人进行飞镖比赛,每人各投6次,甲的成绩(单位:环)为:9,8,9,6,10,6.甲,乙两人平均成绩相等,乙成绩的方差为4,那么成绩较为稳定的是__________.(填“甲”或“乙”)【答案】甲【解析】甲的平均数x=16(9+8+9+6+10+6)=8,所以甲的方差=16[(9﹣8)2+(8﹣8)2+(9﹣8)2+(6﹣8)2+(10﹣8)2+(6﹣8)2]=73,因为甲的方差比乙的方差小,所以甲的成绩比较稳定.故答案为:甲.【名师点睛】本题考查方差的定义:一般地设n个数据,x1,x2,…x n的平均数为x,则方差S2=1n [(x1﹣x)2+(x2﹣x)2+…+(x n﹣x)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.16.(2019•新疆)同时掷两枚质地均匀的骰子,两枚骰子点数之和小于5的概率是__________.【答案】1 6【解析】画树状图为:共有36种等可能的结果数,其中两枚骰子点数的和是小于5的结果数为6,∴两枚骰子点数之和小于5的概率是16,故答案为:16.【名师点睛】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.17.(2019•河南)某校为了解七、八年级学生对“防溺水”安全知识的掌握情况,从七、八年级各随机抽取50名学生进行测试,并对成绩(百分制)进行整理、描述和分析.部分信息如下:a.七年级成绩频数分布直方图:b.七年级成绩在70≤x<80这一组的是:70;72;74;75;76;76;77;77;77;78;79c.七、八年级成绩的平均数、中位数如下:年级平均数中位数七76.9 m八79.2 79.5根据以上信息,回答下列问题:(1)在这次测试中,七年级在80分以上(含80分)的有__________人;(2)表中m的值为__________;(3)在这次测试中,七年级学生甲与八年级学生乙的成绩都是78分,请判断两位学生在各自年级的排名谁更靠前,并说明理由;(4)该校七年级学生有400人,假设全部参加此次测试,请估计七年级成绩超过平均数76.9分的人数.【答案】(1)23;(2)77.5;【解析】(1)在这次测试中,七年级在80分以上(含80分)的有15+8=23人,故答案为:23;(2)七年级50人成绩的中位数是第25、26个数据的平均数,而第25、26个数据分别为78、79,∴m=77782=77.5,故答案为:77.5;(3)甲学生在该年级的排名更靠前,∵七年级学生甲的成绩大于中位数77.5分,其名次在该年级抽查的学生数的25名之前,八年级学生乙的成绩小于中位数79.5分,其名次在该年级抽查的学生数的25名之后,∴甲学生在该年级的排名更靠前.(4)估计七年级成绩超过平均数76.9分的人数为400×515850++=224(人).【名师点睛】本题主要考查频数分布直方图、中位数及样本估计总体,解题的关键是根据直方图得出解题所需数据及中位数的定义和意义、样本估计总体思想的运用.18.(2019•福建)某种机器使用期为三年,买方在购进机器时,可以给各台机器分别一次性额外购买若干次维修服务,每次维修服务费为2000元.每台机器在使用期间,如果维修次数未超过购机时购买的维修服务次数,每次实际维修时还需向维修人员支付工时费500元;如果维修次数超过购机时购买的维修服务次数,超出部分每次维修时需支付维修服务费5000元,但无需支付工时费.某公司计划购买1台该种机器,为决策在购买机器时应同时一次性额外购买几次维修服务,搜集并整理了100台这种机器在三年使用期内的维修次数,整理得下表;维修次数8 9 10 11 12频率(台数)10 20 30 30 10(1)以这100台机器为样本,估计“1台机器在三年使用期内维修次数不大于10”的概率;(2)试以这100机器维修费用的平均数作为决策依据,说明购买1台该机器的同时应一次性额外购10次还是11次维修服务?【答案】(1)“1台机器在三年使用期内维修次数不大于10”的概率为0.6.(2)购买1台该机器的同时应一次性额外购10次维修服务更合适.【解析】(1)“1台机器在三年使用期内维修次数不大于10”的概率=60100=0.6.(2)购买10次时,某台机器使用期内维修次数8 9 10 11 12 该台机器维修费用24000 24500 25000 30000 35000此时这100台机器维修费用的平均数y1=1100(24000×10+24500×20+25000×30+30000×30+35000×10)=27300;购买11次时,某台机器使用期内维修次数8 9 10 11 12 该台机器维修费用26000 26500 27000 27500 32500 此时这100台机器维修费用的平均数y2=1100(26000×10+26500×20+27000×30+27500×30+32500×10)=27500,∵27300<27500,所以,选择购买10次维修服务.19.(2019•江西)为纪念建国70周年,某校举行班级歌咏比赛,歌曲有:《我爱你,中国》,《歌唱祖国》,《我和我的祖国》(分别用字母A,B,C依次表示这三首歌曲).比赛时,将A,B,C这三个字母分别写在3张无差别不透明的卡片正面上,洗匀后正面向下放在桌面上,八(1)班班长先从中随机抽取一张卡片,放回后洗匀,再由八(2)班班长从中随机抽取一张卡片,进行歌咏比赛.(1)八(1)班抽中歌曲《我和我的祖国》的概率是__________;(2)试用画树状图或列表的方法表示所有可能的结果,并求出八(1)班和八(2)班抽中不同歌曲的概率.【答案】(1)13.(2)树状图见解析,八(1)班和八(2)班抽中不同歌曲的概率为23.【解析】(1)因为有A,B,C共3种等可能结果,所以八(1)班抽中歌曲《我和我的祖国》的概率是13;故答案为:13.(2)树状图如图所示:共有9种可能,八(1)班和八(2)班抽中不同歌曲的概率为69=23.【名师点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.20.(2019•河北)某球室有三种品牌的4个乒乓球,价格是7,8,9(单位:元)三种.从中随机拿出一个球,已知P(一次拿到8元球)=12.(1)求这4个球价格的众数;(2)若甲组已拿走一个7元球训练,乙组准备从剩余3个球中随机拿一个训练.①所剩的3个球价格的中位数与原来4个球价格的中位数是否相同?并简要说明理由;②乙组先随机拿出一个球后放回,之后又随机拿一个,用列表法(如图)求乙组两次都拿到8元球的概率.又拿先拿【答案】(1)这4个球价格的众数为8元;(2)①所剩的3个球价格的中位数与原来4个球价格的中位数相同;②乙组两次都拿到8元球的概率为12.【解析】(1)∵P(一次拿到8元球)=12,∴8元球的个数为4×12=2(个),按照从小到大的顺序排列为7,8,8,9,∴这4个球价格的众数为8元;(2)①所剩的3个球价格的中位数与原来4个球价格的中位数相同;理由如下:原来4个球的价格按照从小到大的顺序排列为7,8,8,9,∴原来4个球价格的中位数为882=8(元),所剩的3个球价格为8,8,9,∴所剩的3个球价格的中位数为8元,∴所剩的3个球价格的中位数与原来4个球价格的中位数相同;②列表如图所示:共有9个等可能的结果,乙组两次都拿到8元球的结果有4个,∴乙组两次都拿到8元球的概率为12.【名师点睛】本题考查了众数、中位数以及列表法求概率;熟练掌握众数、中位数的定义,列表得出所有结果是解题的关键.祝你考试成功!祝你考试成功!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
{来源}2019年山西省中考数学试卷 {适用范围:3.九年级}{标题}2019年山西省中考数学试卷考试时间:120分钟 满分:120分{题型:1-选择题}一、选择题:本大题共10小题,每小题3分,合计30分. {题目}1.(2019·山西省,1)﹣3的绝对值是( )A.﹣3B.3C.﹣31D.31{答案}B{解析}本题考查了绝对值的代数意义,正数的绝对是是它本身,0的绝对值是0,负数的绝对值是它的相反数,所以3 =3,因此本题选B . {分值}3{章节:[1-1-2-4]绝对值} {考点:绝对值的意义} {类别:常考题} {难度:1-最简单}{题目}2.(2019·山西省,2)下列运算正确的是( )A. 2a +3a =5a 2B.(a +2b )2=a 2+4b 2C a 2·a 3=a 6D(﹣ab 2)3=﹣a 3b 6{答案}D{解析}本题考查了整式的加法、乘法公式,幂的有关运算,整式加法的实质合并同类项即字母及字母的指数不变,将系数相加,故A 选项的正确结果为5a ;完全平方公式的展开式可根据口诀进行即“首平方,尾平方,积的2倍夹中间”,故B 选项的正确结果为a 2+4ab +4b 2;同底数幂相乘,底数不变,指数相加,故C 选项正确结果为a 5;积的乘方,等于积的每一个因式分别乘方,再把所得的幂相乘,故D 选项正确.因此本题选D . {分值}3{章节:[1-15-2-3]整数指数幂} {考点:积的乘方} {考点:幂的乘方} {类别:常考题} {类别:易错题} {难度:2-简单}{题目}3.(2019·山西省,3)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“点”字所在面相对的面上的汉字是( )A.青B.春C.梦D.想{答案}B{解析}本题考查了正方体的侧面展开图,在展开图中,寻找相对面的方法:“不在同一行时,找Z 两头;在同一行(列)时,找隔一个”,因此本题选B . {分值}3{章节:[1-4-1-1]立体图形与平面图形} {考点:几何体的展开图} {类别:常考题} {难度:2-简单}{题目}4.(2019·山西省,4)下列二次根式是最简二次根式的是( )A.21B.712 C.8D.3{答案}D{解析}本题考查了最简二次根式的定义,判断最简二次根式,必须具备两个条件:①被开方数中不含分母;②被开方数中所有因数(或因式)的幂指数都小于2,两个条件缺一不可.A 、B 两选项中,被开方数都含有分母,故A 、B 不正确;C 选项中,被开方数8=23,幂指数>2,故C 不正确,因此本题选D .{分值}3{章节:[1-16-1]二次根式} {考点:最简二次根式} {类别:常考题} {类别:易错题} {难度:2-简单}{题目}5.(2019·山西省,5)如图,在△ABC 中,AB =AC ,∠A =30°,直线a ∥b ,顶点C 在直线b 上,直线a 交AB 于点D ,交AC 于点E ,若∠1=145°,则∠2的度数是( )A.30°B.35°C.40°D.45°{答案}C{解析}本题考查了三角形的内角和定理,等腰三角形的性质,三角形的外角性质,平行线的性质.由等腰三角形的性质和内角和定理可得∠ACB=75°,再由三角形的外角性质可得∠AED=115°,结合平行线性质可得∠2=115°-75°=40°,因此本题选C . {分值}3{章节:[1-11-2]与三角形有关的角} {考点:三角形内角和定理} {考点:等边对等角}{考点:两直线平行同位角相等} {考点:三角形的外角} {类别:常考题} {难度:3-中等难度}{题目}6.(2019·山西省,6)不等式组⎩⎨⎧--42231<>x x ,的解集是( )A.x >4B.x >﹣1C.﹣1<x <4D.x <﹣1{答案}A{解析}本题考查了一元一次不等式组的解法,先分别解每一个不等式,再取每个不等式解集的公共部分.不等式组解集的确定方法:①借助数轴;②利用口诀“同大取大,同小取小,大小小大中间取,大大小小无解集”.解不等式x -1>3得x >4,解不等式2-2x <4得x >﹣1,所以不等式组的解集为x >4.因此本题选A .{分值}3{章节:[1-9-3]一元一次不等式组} {考点:解一元一次不等式组} {类别:常考题} {难度:2-简单}{题目}7.(2019·山西省,7)五自山景区空气清爽,景色宜人.“五一”小长假期间购票进山游客12万人次,再创历史新高.五台山景区门票价格旺季168元/人,以此计算,“五一”小长假期间五台山景区进山门票总收入用科学记数法表示为( )A.2.016×108元B.0.2016x107元C.2.016x107元D.2016×104元{答案}C{解析}本题考查了用科学记数法表示一个绝对值较大的数,用科学记数法表示数,就是把一个数写成a ×10n 的形式(其中1≤a <10,n 为整数),其具体步骤是:(1)确定a 的值,a 为整数位数只有一位的数;(2)确定n ;当原数的绝对值≥10时,n 为正整数,n 等于原数的整数位数减1;当原数的绝对值<1时,n 为负整数,n 的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).168×120000=20 160 000=2.016x107,因此本题选C . {分值}3{章节: [1-1-5-2]科学计数法}{考点:将一个绝对值较大的数科学计数法} {类别:常考题} {难度:2-简单}{题目}8.(2019·山西省,8)一元二次方程x 2﹣4x ﹣1=0配方后可化为( )A.(x +2)2=3B.(x +2)2=5C.(x ﹣2)2=3D.(x ﹣2)2=5{答案}D{解析}本题考查了一元二次方程的配方,其具体步骤是:①先将未知数的系数化为1;②再将含有未知数的项移到等号的左边,不含未知数的项移到等号的右边;③在等式的两边同时加上一次项系数一半的平方;④将等号的左边写成完全平方的形式.因此本题选D . {分值}3{章节:[1-21-2-1] 配方法} {考点:配方法的应用} {类别:常考题} {类别:易错题} {难度:2-简单}{题目}9.(2019·山西省,9)北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊杆,拉索与主梁相连.最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象——抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A ,B 两点.拱高为78米(即最高点O 到AB 的距离为78米),跨径为90米(即AB=90米),以最高点O 为坐标原点,以平行于AB 的直线为x 轴建立平面直角坐标系.则此抛物线型钢拱的函数表达式为( )A.y=267526x B.y=﹣267526x C.y=2135013x D.y=﹣2135013x{答案}B{解析}本题考查了利用二次函数模型解决实际问题,由二次函数的图象和性质可知:A (﹣45,﹣78),将其代入y =ax 2(a <0)可得a =﹣67526,因此本题选B .{分值}3{章节:[1-22-3]实际问题与二次函数} {考点:二次函数y=ax2的图象} {考点:二次函数y=ax2的性质} {考点:桥洞问题} {类别:思想方法} {类别:高度原创} {类别:常考题} {难度:3-中等难度}{题目}10.(2019·山西省,10)如图,在Rt △ABC 中,∠ABC=90°,AB=23,BC=2,以AB 的中点O 为圆心,OA 的长为半径作半圆交AC 于点D ,则图中阴影部分的面积为( )A.2435π- B.2435π+ C.23-πD.43-2π{答案}A{解析}本题考查了锐角三角函数,圆周角定理,扇形的面积公式,阴影部分面积的计算方法.计算阴影部分的面积方法:①间接法;②割补法. 连结OD ,过点D 作DE ⊥AB 于点E ,在Rt △ABC 中,∠ABC=90°,AB=23,BC=2,所以tan ∠BAC=33,即∠BAC=30°,由圆周角定理可得∠BOD=2∠BAC=60°,在Rt △DOE 中,∠DEO=90°,OD=AO=21AB=3,∠DOE=60°,所以DE=ODsin ∠DOE=3×23=23,S △ABC =21AB ×BC=23,S 扇形BOD =()3603602π=2π,S △AOD =21AO ×DE=433,所以S 阴影=S △ABC -S 扇形BOD -S △AOD =23-2π-433=2435π-.因此本题选A .{分值}3{章节:[1-24-4]弧长和扇形面积} {考点:三角函数的关系} {考点:圆周角定理} {考点:解直角三角形} {考点:扇形的面积}{类别:思想方法} {类别:常考题} {难度:3-中等难度}{题型:2-填空题}二、填空题:本大题共5小题,每小题3分,合计15分. {题目}11.(2019·山西省,11)化简12-x x -xx-1的结果是 {答案}13-x x{解析}本题考查了两个异分母分式的加减法.两个异分母分式相加减,先通分变为同分母分式,然后分母不变,分子相加减.12-x x -x x -1=12-x x +1-x x =13-x x. {分值}3{章节:[1-15-2-2]分式的加减} {考点:两个分式的加减} {类别:常考题} {类别:易错题} {难度:2-简单}{题目}12.(2019·山西省,12)要表示一个家庭一年用于“教育”,“服装”,“食品”,“其他”这四项的支出各占家庭本年总支出的百分比,从“扇形统计图”,“条形统计图”,“折线统计图”中选择一种统计图,最适合的统计图是 .{答案}扇形统计图{解析}本题考查了统计图的选择,扇形统计图能反映出扇形各部分所占的百分比;条形统计图能直观地反映出各部分的数据多少;折线统计图能反映出各部分的变化趋势.因此本题答案为“扇形统计图”.{分值}3{章节:[1-10-1]统计调查} {考点:扇形统计图} {类别:常考题} {难度:2-简单}{题目}13.(2019·山西省,13)如图,在一块长12m ,宽8m 的矩形空地上,修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条边平行),剩余部分栽种花草,且栽种花草的面积为77m 2.设道路的宽为xm ,则根据题意,可列方程为 .{答案}(12-x )(8-x )=77或x 2-20x +19=0{解析}本题考查了一元二次方程的实际应用,解决这类问题的关键是分析题意,找到题中的等量关系,列出方程,把实际问题转化为数学问题来解决. {分值}3{章节:[1-21-4]实际问题与一元二次方程} {考点:一元二次方程的应用—面积问题} {类别:常考题} {难度:3-中等难度}{题目}14.(2019·山西省,14)如图,在平面直角坐标系中,点O 为坐标原点,菱形ABCD 的顶点B 在x 轴的正半轴上,点A 的坐标为(﹣4,0),点D 的坐标为(﹣1,4),反比例函数y=xk(x>0)的图象恰好经过点C ,则k 的值为 .{答案}16{解析}本题考查了点的坐标的应用,菱形的性质,待敌系数法求反比例函数的解析式. 过点D 作DE ⊥x 轴于点E ,由点D 的坐标为(﹣1,4)可得DE=4,OE=1,结合点A 的坐标为(﹣4,0)可得AE=3,在Rt △ADE 中,由勾股定理得AD=5,再由菱形的性质可知:DC=AD=5,所以点C 的坐标为(4,4),将其代入反比例函数解析可得k=16.{分值}3{章节:[1-26-1]反比例函数的图像和性质} {考点:点的坐标的应用} {考点:反比例函数的解析式} {考点:菱形的性质} {类别:思想方法} {类别:常考题} {难度:3-中等难度}{题目}15.(2019·山西省,15)如图,在△ABC 中,∠BAC=90°,AB=AC=10cm ,点D 为△ABC 内一点,∠BAD=15°,AD=6cm ,连接BD ,将△ABD 绕点A 按逆时针方向旋转,使AB 与AC 重合,点D 的对应点为点E ,连接DE ,DE 交AC 于点F ,则CF 的长为 cm .{答案}10-26{解析}本题考查了旋转的性质、等腰直角三角形、三角函数的关系、勾股定理. 过点A 作AG ⊥DE 于点G ,由旋转的性质可知:AE=AD=6,∠DAE=∠BAC=90°,∠CAE=∠BAD=15°,所以△DAE 是等腰直角三角形即∠ADE=45°,因为AG ⊥DE ,所以AG=DG=GE ,再由勾股定理可得AG=32.由三角形的外角性质可知∠AFG=60°,在Rt △AFG 中,AF=AFGAG∠sin =26,所以CF=AC -AF=10-26.{分值}3{章节:[1-28-1-2]解直角三角形}{考点:旋转的性质} {考点:等腰直角三角形} {考点:三角函数的关系} {考点:勾股定理}{类别:思想方法} {类别:常考题} {类别:易错题} {难度:4-较高难度}{题型:3-解答题}三、解答题:本大题共8小题,合计75分. {题目}16.(2019·山西省,16(1))计算:27+(﹣21)﹣2﹣3tan60°+(π﹣2)0 {解析}本题考查了二次根式的化简、负整指数幂、特殊角的三角函数值、零指数幂. {答案}解: 原式=33+4-33+1=5 {分值}5{章节:[1-28-3]锐角三角函数} {难度:1-最简单}{类别:常考题}{考点:逆用二次根式乘法法则} {考点:负指数参与的运算} {考点:特殊角的三角函数值} {考点:零次幂}{题目}16.(2019·山西省,16(2))解方程组:⎩⎨⎧=+-=-②,①.02823y x y x{解析}本题考查了二元一次方程的解法. {答案}解: ①+②得:4x=﹣8,∴x=﹣2, 将x=﹣2代入②得:2y=2,解得y=1, ∴方程组的解为:⎩⎨⎧=-=12y x{分值}5{章节:[1-8-2]消元——解二元一次方程组} {难度:2-简单} {类别:常考题}{考点:加减消元法}{题目}17.(2019·山西省,17)已知:如图,点B 、D 在线段AE 上,AD=BE ,AC ∥EF ,∠C=∠F.求证:BC=DF.{解析}本题考查了角角边判定三角形全等.{答案}证明:∵ AD=BE ,∴AD -BD=BE -BD ,即AB=DE ,∵AC ∥EF ,∴∠A=∠E ,在△ABC 和△DEF 中,∠C=∠F ,∠A=∠E ,AB=DE , ∴△ABC ≌△DEF , ∴BC=DF.{分值}7{章节:[1-12-2]三角形全等的判定} {难度:3-中等难度}{类别:常考题}{考点:全等三角形的判定ASA,AAS}{题目}18.(2019·山西省,18)中华人民共和国第二届青年运动会(简称二青会)将于2019年8月在山西举行.太原市作为主赛区,将承担多项赛事.现正从某高校的甲,乙两班分别招募10人作为颁奖礼仪志愿者,同学们勇跃报名,甲,乙两班各报了20人,现已对他们进行了基本素质测评,满分10分,各班按测评成绩从高分到低分的顺序各录用10人.对这次基本素质测评中甲,乙两班学生的成绩绘制了如图所示的统计图. 请解答下列问题(1)甲班的小华和乙班的小丽基本素质测评成绩都为7分,请你分别判断小华,小丽能否被录用(只写判断结果,不必写理由).(2)请你对甲,乙两班各被录用的10名志愿者的成绩作出评价(从“众数”“中位数”或“平均数”中的一个方面评价即可).(3)甲,乙两班被录用的每一位志愿者都将通过抽取卡片的方式决定去以下四个场馆中的两 个场馆进行颁奖礼仪服务.四个场馆分别为:太原学院足球场,太原市沙滩排球场,山西省射击射箭训练基地,太原水上运动中心,这四个场馆分别用字母A ,B ,C ,D 表示.现把分别印有A ,B ,C ,D 的四张卡片(除字母外,其余都相同)背面朝上,洗匀放好.志愿者小玲从中随机抽取一张(不放回),再从中随机抽取一张.请你用列表或画树状图的方法求小玲抽到的两张卡片恰好是“A ”和“B ”的概率.{解析}本题考查了用“中位数、众数、平均数”分析问题,借助树状图或列表法计算两步概率问题. {答案}解:(1)小华不能,小丽能被录用;(2)从众数来看:甲,乙两班各被录用的10名志愿者成绩的众数分别为8分,10分,说明甲班被录用的10名志愿者中8分最多,乙班被录用的10名志愿者中10分最多.从中位数来看:甲,乙两班各被录用的10名志愿者成绩的中位数分别为9分,8.5分,说明甲班被录用的10名志愿者成绩的中位数大于乙班被录用的10名志愿者成绩的中位数.从平均数来看:甲,乙两班各被录用的10名志愿者成绩的平均数分别为8.9分,8.7分,说明甲班被录用的10名志愿者成绩的平均数大于乙班被录用的10名志愿者成绩的平均数. ( 第二张 第一张AB C D A(A ,B )(A ,C ) (A ,D ) B (B ,A ) (B ,C )(B ,D ) C (C ,A ) (C ,B ) (C ,D )D(D ,A )(D ,B )(D ,C )有表格可知:一共有12种可能出现的结果,且每种结果出现的可能性相同,其中抽到“A ”和“B ”的结果有2种.所以P (抽到“A ”和“B ”)=122=61. {分值}9{章节:[1-25-1-2]概率} {难度:3-中等难度} {类别:常考题}{考点:条形统计图}{考点:统计的应用问题}{考点:算术平均数}{考点:中位数}{考点:众数}{考点:两步事件不放回}{题目}19.(2019·山西省,19)某游泳馆推出了两种收费方式.方式一:顾客先购买会员卡,每张会员卡200元,仅限本人一年内使用,凭卡游泳,每次游泳再付费30元.方式二:顾客不购买会员卡,每次游泳付费40元.设小亮在一年内来此游泳馆游泳的次数为x次,选择方式一的总费用为y1(元),选择方式二的总费用为y2(元)(1)请分别写出y1,y2与x之间的函数表达式.(2)小亮一年内在此游泳馆游泳的次数x在什么范围时,选择方式一比方式二省钱.{解析}本题考查了从实际问题中抽象出一次函数模型,利用一元一次不等式解决实际问题.{答案}解:(1)y1=30x+200,y2=40x(2)由y1<y2得30x+200<40x,解得x>20,当x>20时,选择方式一比方式二省钱.{分值}8{章节:[1-19-4]课题学习选择方案}{难度:3-中等难度}{类别:思想方法}{类别:常考题}{考点:函数关系式}{考点:一元一次不等式的应用}{题目}20.(2019·山西省,20)某“综合与实践”小组开展了测量本校旗杆高度的实践活动.他们制订了测量方案,并利用课余时间完成了实地测量.他们在该旗杆底部所在的平地上,选取两个不同测点,分别测量了该旗杆顶端的仰角以及这两个测点之间的距离.为了减小测量误差,小组在测量仰角的度数以及两个测点之间的距离时,都分别测量了两次并取它们的平均值作为测量结果,测量数据如下表(不完整).课题测量旗杆的高度成员组长:xxx 组员:xxx,xxx,xxx测量工具测量角度的仪器,皮尺等测量示意图说明:线段GH表示学校旗杆,测量角度的仪器的高度AC=BD= 1.5m,测点A,B与H在同一条水平直线上,A,B之间的距离可以直接测得,且点G,H,A,B,C,D都在同一竖直平面内.点C,D,E在同一条直线上,点E在GH上任务一:两次测量A ,B 之问的距离的平均值是 m .任务二:根据以上测量结果,请你帮助该“综合与实践”小组求出学校旗杆GH 的高度.(参考数据:si n25.7°≈0.43,cos25.7°≈0.90,tan25.7°≈0.48,sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)任务三:该“综合与实践”小组在制订方案时,讨论过“利用物体在阳光下的影子测量旗杆的高度”的方案,但未被采纳,你认为其原因可能是什么?{解析}本题考查了解直角三角形的应用——仰角. {答案}解:任务一:5.5任务二:由题意可得:四边形ACDB ,四边形ACEH 都是矩形, ∴EH=AC=1.5,CD=AB=5.5, 设EG=xm ,在Rt △DEG 中,∠DEG=90°,∠GDE=31°, ∵tan31°=DE EG ,∴DE=︒31tan x, 在Rt △CEG 中,∠CEG=90°,∠GCE=25.7°,∵tan25.7°=CE EG ,∴CE=︒7.25tan x, ∵CD=CE -DE ,∴︒7.25tan x -︒31tan x=5.5,∴x=13.2,∴GH=GE +EH=13.2+1.5=14.7. 答:旗杆GH 的高度为14.7m.任务三:没有太阳;或旗杆底部不可到达;或测量旗杆影子的长度遇到困难(答案不唯一) {分值}9{章节:[1-28-1-2]解直角三角形} {难度:3-中等难度} {类别:思想方法} {类别:发现探究}{类别:常考题}{考点:解直角三角形的应用-仰角}{题目}21.(2019·山西省,21)阅读以下材料,并按要求完成相应的任务:莱昂哈德•欧拉是瑞士数学家,在数学上经常见到以他的名字命名的重要常数,公式和定理.下面就是欧拉发现的一个定理:在△ABC 中,R 和r 分别为外接圆和内切圆的半径,O 和I 分别为其外心和内心,则OI 2=R 2﹣2Rr.如图1,⊙O 和⊙I 分别是△ABC 的外接圆和内切圆,⊙I 与AB 相切于点F ,设⊙O 的半径为R ,⊙O 的半径为r ,外心O(三角形三边垂直平分线的交点)与内心I (三角形三条角平分线的交点)之间的距离OI=d ,则有d 2=R 2﹣2Rr.下面是该定理的证明过程(部分):延长AI 交⊙O 于点D ,过点I 作⊙O 的直径MN ,连接DM ,AN. ∵∠D=∠N ,∠DMI=∠NAI (同弧所对的圆周角相等), ∴△MDN ∽△ANI. ∴INIDIA IM =.∴IA ▪ID=IM ▪IN.① 如图2,在图1(隐去MD ,AN)的基础上作⊙O 的直径DE ,连接BE ,BD ,BI ,IF. ∵DE 是⊙O 的直径,∴∠DBE=90°.∵⊙I 与AB 相切于点F ,∴∠AFI=90°.∴∠DBE=∠IFA. ∵∠BAD=∠E(同弧所对的圆周角相等),∴△AIF ∽△EDB. ∴BDIFDE IA =.∴IA▪BD=DE▪IF.② …(第21题图1) (第21题图2) 任务:(1)观察发现:IM=R +d ,IN= (用含R ,d 的代数式表示);(2)请判断BD 和ID 的数量关系,并说明理由;(3)请观察式子①和式子②,并利用任务(1),(2)的结论,按照上面的证明思路,完成该定理证明的剩余部分;(4)应用:若△ABC 的外接圆的半径为5cm ,内切圆的半径为2cm ,则△ABC 的外心与内心之间的距离为 cm.{解析}本题考查了三角形的内心与外心,圆周角定理,相似三角形的判定与性质. {答案}解:(1)R -d (2)BD=ID理由如下:∵点I 是△ABC 的内心, ∴∠BAD=∠CAD ,∠CBI=∠ABI ,∵∠DBC=∠CAD ,∠BID=∠BAD+∠ABI ,∠DBI=∠DBC+∠CBI , ∴∠BID=∠DBI. ∴BD=DI.(3)证明:由(2)知:BD=ID ,∴IA▪ID=DE ▪IF ,又∵IA▪ID=IM▪IN ,∴D E▪IF=IM▪IN , ∴2R▪r=(R +d)(R -d).∴R 2-d 2=2Rr. ∴d 2=R 2-2Rr..(4)5{分值}8{章节:[1-27-1-2]相似三角形的性质}{难度:4-较高难度} {类别:思想方法} {类别:常考题}{类别:新定义}{考点:圆周角定理}{考点:三角形的外接圆与外心} {考点:三角形的内切圆与内心}{考点:相似三角形的判定(两角相等)} {考点:相似三角形的性质}{题目}22.(2019·山西省,22)综合与实践 动手操作:第一步:如图1,正方形纸片ABCD 沿对角线AC 所在的直线折叠,展开铺平.再沿过点C 的直线折叠,使点B ,点D 都落在对角线AC 上.此时,点B 与点D 重合,记为点N ,且点E ,点N ,点F 三点在同一条直线上,折痕分别为CE ,CF.如图2.第二步:再沿AC 所在的直线折叠,△ACE 与△ACF 重合,得到图3.第三步:在图3的基础上继续折叠,使点C 与点F 重合,如图4,展开铺平,连接EF ,FG ,GM ,ME ,如图5.图中的虚线为折痕. 问题解决:(1)在图5中,∠BEC 的度数是 ,BEAE的值是 ; (2)在图5中,请判断四边形EMCF 的形状,并说明理由;(第22题图1) (第22题图2)(第22题图3)(第22题图4) (第22题图5)(3)在不增加字母的条件下,请你以图5中的字母表示的点为顶点,动手画出一个菱形(正方形除外),并写出这个菱形: .{解析}本题考查了正方形的性质,锐角三角函数,矩形的判定,菱形的性质与判定. {答案}解:(1)67.5°,2(2)理由如下:∵四边形ABCD 是正方形,∠B=∠BCD=∠D=90°, 由折叠可知:∠1=∠2=∠3=∠4,CM=CG ,∠BEC=∠NEC=∠NFC=∠DFC ,∴∠1=∠2=∠3=∠4=490=22.5°, ∴∠BEC=∠NEC=∠NFC=∠DFC=67.5°.由折叠可知:MH ,GH 分别垂直平分EC ,FC ,∴MC=ME ,GC=GF. ∴∠5=∠1=22.5°,∠6=∠4=22.5°, ∴∠MEF=∠GFE=90°.∵∠MCG=90°,CM=CG ,∠CMG=45°,又∵∠BME=∠1+∠5=45°,∴∠EMG=180°﹣∠CMG ﹣∠BME=90°,∴四边形EMGF 是矩形 (3)菱形FGCH(或菱形EMCH){分值}11{章节:[1-18-2-2]菱形} {难度:5-高难度} {类别:思想方法} {类别:发现探究}{类别:易错题}{考点:正方形的性质} {考点:三角函数的关系} {考点:轴对称的性质} {考点:矩形的性质}{考点:与矩形菱形有关的综合题}{题目}23.(2019·山西省,23)综合与探究如图,抛物线y=ax 2+bx +6经过点A (﹣2,0),B (4,0)两点,与y 轴交于点C.点D 是抛物线上一个动点,设点D 的横坐标为m (1<m<4).连接AC ,BC ,DB ,DC. (1)求抛物线的函数表达式;(2)当△BCD 的面积等于△AOC 的面积的43时,求m 的值; (3)在(2)的条件下,若点M 是x 轴上一动点,点N 是抛物线上一动点,试判断是否存在这样的点M ,使得以点B ,D ,M ,N 为顶点的四边形是平行四边形.若存在,请直接写出点M 的坐标;若不存在,请说明理由.{解析}本题考查了待定系数法确定函数关系式,二次函数与一元二次方程的关系,二次函数与平行四边形的综合与探究.{答案}解:作直线DE ⊥x 轴于点E ,交BC 于点G.作CF ⊥DE ,垂足为点F. ∵点A 的坐标为(﹣2,0),∴OA=2.由x=0,得y=6,∴点C 的坐标为(0,6),∴OC=6.∴S △AOC =21OA ▪OC=21×2×6=6. ∵S △BCD =43S △AOC .∴S △BCD =43×6=29.设直线BC 的函数表达式为y=kx +n.由B ,C 两点的坐标得⎩⎨⎧==+604n n k ,解得⎪⎩⎪⎨⎧=-=623n k .∴直线BC 的函数表达式为y=﹣23x +6.∴点G 的坐标为(m ,﹣23m+6).∴DG=﹣43m 2+23m+6-(﹣23m+6)=﹣43m 2+3m.∵点B 的坐标为(4,0),∴OB=4.∴S △BCD =S △CDG +S △BDG =21DG▪CF+21DG▪BE=21DG(CF +BE)=21DG▪BO =21(﹣43m 2+3m)×4=-﹣23m 2+6m. ∴﹣23m 2+6m=29.解得m 1=1(舍去),m 2=3.∴m 的值为3(3)答:存在M 1(8,0),M 2(0,0),M 3(14,0),M 4(﹣14,0) {分值}13{章节:[1-22-3]实际问题与二次函数} {难度:5-高难度} {类别:思想方法} {类别:高度原创}{类别:发现探究}{考点:二次函数与平行四边形综合}。