固体氧化物燃料电池(SOFC)研究现状
固体氧化物燃料电池的研究前沿

固体氧化物燃料电池的研究前沿固体氧化物燃料电池(SOFC)是一种高效、清洁的能源转换技术,具有很高的能量转换效率和较低的环境影响。
近年来,固体氧化物燃料电池的研究逐渐走向前沿,不断取得新的突破和进展。
本文将就固体氧化物燃料电池的研究前沿进行探讨。
固体氧化物燃料电池是一种将化学能直接转换为电能的高温电化学器件,其工作原理是通过将燃料气体(如氢气、甲烷等)和氧气在阳极和阴极催化剂的作用下发生氧化还原反应,从而产生电能和热能。
固体氧化物燃料电池具有高能量转换效率、低污染排放、燃料灵活性强等优点,被广泛认为是未来清洁能源的重要选择之一。
在固体氧化物燃料电池的研究领域,有几个方面的前沿研究尤为引人关注。
首先是材料的研究。
固体氧化物燃料电池的性能受到材料的制约,如阳极、阴极、电解质等材料的选择和性能直接影响着电池的性能和稳定性。
近年来,研究人员通过合成新型材料、优化材料结构等手段不断提高固体氧化物燃料电池的性能,如提高电导率、降低极化、提高抗硫化性能等,从而推动固体氧化物燃料电池技术的发展。
其次是界面和反应动力学的研究。
固体氧化物燃料电池是一个复杂的多相多组分体系,其中阳极、阴极、电解质等界面的反应过程对电池性能有着重要影响。
研究人员通过表面工程、界面设计等手段来调控界面反应,提高电池的性能和稳定性。
同时,研究固体氧化物燃料电池中的反应动力学规律,揭示反应速率与温度、压力、成分等因素之间的关系,对于优化电池操作条件、提高电池效率具有重要意义。
此外,固体氧化物燃料电池的堆级系统集成也是当前的研究热点之一。
固体氧化物燃料电池堆是由多个电池单元组成的,堆级系统集成涉及到堆内温度、压力、气体流动等多个参数的控制和优化,旨在提高整个系统的能量转换效率和稳定性。
研究人员通过优化堆内流场、改进堆结构、设计高效热管理系统等手段来提高固体氧化物燃料电池堆的性能,推动固体氧化物燃料电池技术的商业化应用。
最后,固体氧化物燃料电池的智能化和自适应控制也是当前的研究热点之一。
2024年固体氧化物燃料电池市场分析现状

2024年固体氧化物燃料电池市场分析现状引言固体氧化物燃料电池(SOFC)作为一种高效、清洁的能源转换技术,具有诸多优点。
近年来,随着环境保护意识的增强和可再生能源政策的推动,SOFC市场迎来了快速发展。
本文将对固体氧化物燃料电池市场的现状进行分析,并探讨其未来发展趋势。
市场规模固体氧化物燃料电池市场在过去几年中呈现出稳步增长的态势。
根据市场研究机构的数据,2019年全球固体氧化物燃料电池市场规模达到了X亿美元,并预计未来几年将保持高速增长。
市场规模的增长主要受到以下几个因素的影响:1.政策支持:各国政府出台了一系列支持固体氧化物燃料电池技术发展的政策,包括补贴、税收优惠等,为市场的发展提供了良好的政策环境。
2.环境要求:固体氧化物燃料电池作为一种低碳、无污染的能源转换技术,受到了环保要求的推动,市场需求不断增加。
3.公共领域应用:固体氧化物燃料电池在公共交通、电网等领域的应用逐渐增多,为市场的发展提供了新的机遇。
市场应用领域固体氧化物燃料电池可广泛应用于多个领域。
目前主要的应用领域包括以下几个方面:1.住宅和商业建筑:固体氧化物燃料电池可以用于供暖和热水系统,提供高效、清洁的能源供应,满足建筑物的能源需求。
2.公共交通:固体氧化物燃料电池可以应用于公交车、出租车等交通工具,以替代传统的燃油发动机,减少污染物排放。
3.电网能源储备:固体氧化物燃料电池可以将多余的电能转化为氢气,并在需要的时候再将氢气转化为电能,用于电网的能量储备和调峰。
市场竞争格局固体氧化物燃料电池市场目前存在着激烈的竞争。
国内外的多家企业都进行了相关技术的研发和市场开拓。
目前市场上的主要竞争企业包括:1.公司A:公司A是固体氧化物燃料电池领域的领先企业,其技术优势和市场份额占有率居于行业前列。
2.公司B:公司B也是固体氧化物燃料电池市场的重要参与者,其产品在市场上有着一定的份额。
3.公司C:公司C是新兴的固体氧化物燃料电池企业,通过技术创新和市场拓展力图与领军企业抗衡。
固体氧化物燃料电池的发展现状和前景

固体氧化物燃料电池的发展现状和前景1. 引言说到固体氧化物燃料电池(SOFC),有点像在讲一个刚出道的明星,虽然现在还不算大红大紫,但潜力可不小哦!想象一下,一个能安静地把化学能转化为电能的家伙,不用噪音、不用汽油,只要靠氢气或者天然气就能工作,真的是个环保小能手。
今天我们就来聊聊这个新星的发展现状以及未来前景,保证让你开开眼界,哈哈!2. 发展现状2.1 技术进步现在的SOFC技术可是越来越成熟,真是“金鸡报晓”的感觉!早期的燃料电池在效率和耐用性上都存在不少问题,但随着科技的进步,材料科学的飞速发展,这小家伙的性能也跟着水涨船高。
现在的固体氧化物燃料电池效率能达到60%甚至更高,简直可以和传统发电方式一较高下,毫不逊色。
研究人员用高温电解陶瓷材料替代了原来的金属材料,结果就像“柳暗花明又一村”,不仅降低了成本,还提高了电池的稳定性。
听起来是不是很让人期待?2.2 应用领域而且,SOFC的应用场景可真是不少,从小型设备到大型发电站,几乎无所不能,像个“万金油”。
比如在住宅区,SOFC可以直接为家庭供电、供暖,这样一来,不仅省电费,还能减少温室气体排放,真是一举两得!还有在一些偏远地区,尤其是没有电网的地方,SOFC也能大展拳脚,帮助人们解决用电难的问题,真是“雪中送炭”。
而且,它还可以与可再生能源结合,比如太阳能和风能,这样一来,SOFC就像“鱼和熊掌可以兼得”的美妙选择。
3. 前景展望3.1 市场潜力未来的SOFC市场可谓是“潜力无穷”,行业分析师预测,未来十年这个领域的市场规模将翻番,简直就像过年时的烟花,越放越亮。
随着各国对绿色能源的重视,很多地方都开始投入大量资金用于燃料电池技术的研发,相关部门支持、利好一波接一波,真是春风得意马蹄疾。
这个时候,如果你还是在犹豫是不是要投资相关行业,恐怕就要“吃亏在眼前”了。
3.2 挑战与机遇当然,事情也不是那么简单,SOFC虽然前景大好,但仍然面临一些挑战。
固体氧化物燃料电池(SOFC)制备方法的研究进展

Re e r h Pr g e s o e r n o i i e Fu lCe l s a c o r s f Pr pa i g S ld Ox d e l
Z HAO u a g HU h bn ZHENG u o g XI S yn 。 S u ig, Ko s n , AO in h n Ja z o g
( t t y La o ao y o eTe h d g H u z o g Un v r i fS in ea d Te h o o y, u a 3 0 4 S a eKe b r t r fDi c n o y, a h n i e st o ce c n c n lg W h n 4 0 7 ) y
a p csi fb ia in s e t s a rct .Thsatced s r e h b i t n a dd v lp n f OF ee to e tras ito u st e o i ril e ci st ef rc i n e eo me t b a a o o S C lcr d sma e il,nr d e h
Ke r s y wo d
s l xd ,fe el a rc t n o i o e u lcl,fb iai d i o
随着人类对大 自然 的不断开发 , 环境 污染 与资源 、 能源缺乏 等问题 愈来愈 突出地摆在人们面前 。而在近 5 年 以内, O 世界能 源还是以天然气 、 石油 、 等矿物燃 料为 主。当通过直 接燃气 、 煤 燃油 、 燃煤 等发 电时 , 不仅效率低 , 而且排放 严重污染环 境的有 害气体 。燃料 电池 的开发与利用就是在这样的背景下蓬勃发展 起来 的, 它是一种将燃料气体 ( 或液 、 固燃料气化后 的气体 ) 的化 学能直接转换 为电能 的大 规模 、 功率 、 型而 清洁 的发 电装 大 新 置。燃料 电池具有能量转换率高 、 比能量高 、 效率高 、 无污染 、 原 料可 以连续供给等特点 。燃料电池的一系列优点使 其成为新 一 代 的发 电技术并进入 了商业化实用阶段_ 。 1 ] 固体氧化物燃料 电池 (oi i eF e C l S C 是一种 S l Ox ul e ,OF ) d d l 很有发展潜力 的能源动力设备 , 以广泛应用于汽车 、 远地 区 可 偏 发电以及家庭小型发 电等等 。正是 因为 S C用 途 的要 求 , OF 它 们具有很好 的适应环境能力 、 经济 性 以及 减少有害 气体排放 的 性能 。本文将介绍 S F O C的 电极 合成方法 以及最 新进 展 , 对 并 各种方法进行 了比较 。
固体氧化物燃料电池SOF

固体氧化物燃料电池(SOFC)及其发展摘要:固体氧化物燃料电池是将燃料中的化学能直接转化为电能的电化学装置,具有高效率、零污点。
它可以为民用、贸易、军事和交通运输等提供高质量的电源。
这一技术的成功应用对于缓解能电力数目和质量的需求、保护生态环境和国家安全都具有重大的意义。
本文简略地介绍了固体氧化状和存在的题目,并提出了值得深进研究的课题。
关键词:固体氧化物燃料电池(SOFC),现状,发展1.固体氧化物燃料电池发展背景燃料电池的历史可以追溯到1839年,SOFC的开发始于20世纪40年代,但是在80年代以后其研展。
以美国西屋电气公司(Westinghouse Electric Company)为代表,研制了管状结构的SOFC,用备多孔氧化铝或复合氧化锆支撑管,然后采用电化学气相沉积方法制备厚度在几十到100μm的电薄膜。
1987年,该公司在日本安装的25kW级发电和余热供热SOFC系统,到1997年3月成功运行时;1997年12月,西门子西屋公司(Siemens Westinghouse Electric Company)在荷兰安装了第SOFC系统,截止到2000年底封闭,累计工作了16 ,612小时,能量效率为46 %;2002年5月,又与加州大学合作,在加州安装了第一套220kW SOFC与气体涡轮机联动发电系统,目前获得的能量猜测有看达到70 %。
接下来预备在德国安装320kW联动发电系统,建成1MW的发电系统,预计20构SOFC走向贸易化。
同时,日本三菱重工长崎造船所、九州电力公司和东陶公司、德国海德堡中行了千瓦级管状结构SOFC发电试验.另外,加拿大的环球热电公司( Global Thermoelectric Inc. ),美国GE、Z2tek等公司在开发得进展,目前正在对千瓦级模块进行试运行。
环球热电公司获得的功率密度,在700℃运行时,达日本产业技术院电子技术综合研究所从1974 年开始研究SOFC,1984年进行了500W发电试验,最2kW。
固体氧化物燃料电池(SOFC)

固体氧化物燃料电池(SOFC)及其发展摘要:固体氧化物燃料电池是将燃料中的化学能直接转化为电能的电化学装置,具有高效率、零污染、无噪声等特点。
它可以为民用、贸易、军事和交通运输等提供高质量的电源。
这一技术的成功应用对于缓解能源危机、满足对电力数目和质量的需求、保护生态环境和国家安全都具有重大的意义。
本文简略地介绍了固体氧化物燃料电池及现状和存在的题目,并提出了值得深进研究的课题。
关键词:固体氧化物燃料电池(SOFC),现状,发展1.固体氧化物燃料电池发展背景燃料电池的历史可以追溯到1839年,SOFC的开发始于20世纪40年代,但是在80年代以后其研究才得到蓬勃发展。
以美国西屋电气公司(Westinghouse Electric Company)为代表,研制了管状结构的SOFC,用挤出成型方法制备多孔氧化铝或复合氧化锆支撑管,然后采用电化学气相沉积方法制备厚度在几十到100μm的电解质薄膜和电极薄膜。
1987年,该公司在日本安装的25kW级发电和余热供热SOFC系统,到1997年3月成功运行了约1. 3万小时;1997年12月,西门子西屋公司(Siemens Westinghouse Electric Company)在荷兰安装了第一组100kW管状SOFC系统,截止到2000年底封闭,累计工作了16 ,612小时,能量效率为46 %;2002年5月,西门子西屋公司又与加州大学合作,在加州安装了第一套220kW SOFC与气体涡轮机联动发电系统,目前获得的能量转化效率为58 %,猜测有看达到70 %。
接下来预备在德国安装320kW 联动发电系统,建成1MW的发电系统,预计2005年底,管状结构SOFC走向贸易化。
同时,日本三菱重工长崎造船所、九州电力公司和东陶公司、德国海德堡中心研究所等也进行了千瓦级管状结构SOFC发电试验.另外,加拿大的环球热电公司( Global Thermoelectric Inc. ),美国GE、Z2tek 等公司在开发平板型SOFC上取得进展,目前正在对千瓦级模块进行试运行。
固体氧化物燃料电池_发展现状与关键技术概要

固体氧化物燃料电池_发展现状与关键技术概要固体氧化物燃料电池(Solid Oxide Fuel Cell,简称SOFC)作为一种新型高效的能源转换装置,具有高能量转换效率、低污染排放、多种能源适应性的优点,被广泛认为是未来能源领域的重要技术之一、本文将从发展现状和关键技术两个方面对SOFC进行概括。
固体氧化物燃料电池的发展现状主要表现在两个方面:一是在产业化方面,SOFC已经在不同领域取得了一些实际应用,并逐渐形成了一定规模的产业链。
例如,SOFC在数十千瓦到数兆瓦范围内的分布式能源和备用电源方面有了广泛应用。
二是在科研领域,SOFC的关键技术得到了持续改进和创新,如提高燃料电池堆的性能和稳定性、延长材料的使用寿命、减小制造成本等。
SOFC的关键技术主要包括五个方面:1.材料技术:SOFC最核心的问题之一是优化电解质的导电性能和稳定性。
目前研究主要集中在高温电解质材料的开发,如氧化钇稳定的锆酸盐(YSZ)和氧化镧稳定的钙钛矿(LSM)等。
此外,还需要研究优化双极材料的性能,以提高反应效率和耐腐蚀性。
2.堆叠技术:SOFC单电池的电压较低,需要将多个单元堆叠起来组成电池堆,以提高电压和功率输出。
堆叠技术包括电极和电解质材料的组合与尺寸设计、堆叠工艺和电气连接等。
研究重点是提高电堆的稳定性和可靠性。
3.燃料供应技术:SOFC的工作燃料通常是氢气和一氧化碳等可再生气体,研究重点是提高燃料气体的纯化和混合比例控制技术。
此外,还需要解决燃料供应系统和电堆之间的匹配问题,以提高电堆的效率。
4.热管理技术:SOFC的工作温度一般在600℃以上,所以需要控制电池堆的温度分布和热量传导,以提高热能利用率和系统效率。
研究重点是设计高效的热管理系统和优化热量回收方案。
5.历史技术的应用:利用SOFC的副产物热能和废气产生热能进行热机联合发电技术,同时在SOFC与微型燃机与小型汽轮机间进行分析和控制。
由于SOFC的高效率和长期的稳定性,仍然在实验室阶段,并未形成实际装置的技术。
氢燃料电池系统的固体氧化物燃料电池研究

氢燃料电池系统的固体氧化物燃料电池研究固体氧化物燃料电池(SOFC)作为一种高效、清洁的能源转换技术,近年来备受关注。
它具有高能量转换效率、低排放、燃料灵活性强等特点,被视为未来替代传统燃烧技术的重要选择。
正在加速发展,不断探索新的材料、工艺和系统设计,以提高性能并降低成本。
1. 固体氧化物燃料电池原理固体氧化物燃料电池是一种以固体氧化物作为电解质,利用固体氧化物离子在高温下传导的原理,实现氢气等燃料与氧气在电极上的电化学反应,产生电能的装置。
其工作原理主要包括氧化还原反应和离子传导两个过程,其中氧化还原反应发生在电极上,离子传导则通过固体氧化物离子在电解质中传递,从而实现燃料和氧气之间的电子传递和电荷平衡。
2. 固体氧化物燃料电池的优势固体氧化物燃料电池相较于其他类型的燃料电池具有诸多优势。
首先,它具有高能量转换效率,可以达到60%以上,远高于传统燃烧发电技术。
其次,SOFC的排放量极低,几乎无二氧化碳和其他污染物排放,对环境友好。
此外,固体氧化物燃料电池还具有燃料灵活性强的特点,可以利用氢气、甲烷、乙醇等多种燃料进行反应,应用范围广泛。
3. 固体氧化物燃料电池的关键技术与挑战尽管固体氧化物燃料电池具有诸多优势,但其发展仍受到多个方面的技术挑战。
其中,材料的选择与设计是固体氧化物燃料电池关键技术之一。
电解质、阳极、阴极等材料的性能直接影响着固体氧化物燃料电池的性能和稳定性。
此外,固体氧化物燃料电池在高温下工作,对材料的稳定性、热膨胀系数等要求较高,如何解决热膨胀导致的应力和断裂问题是一个亟待解决的难题。
另外,固体氧化物燃料电池的堆结构、系统设计、以及操作控制等方面也需要不断优化,以提高整体性能。
4. 固体氧化物燃料电池的研究进展近年来,固体氧化物燃料电池的研究取得了一系列进展。
在材料方面,多种新型材料如双极材料、离子掺杂材料等被引入燃料电池系统,提高了电池的性能和稳定性。
在堆结构设计方面,采用新型流道设计、优化电极结构等技术也显著提升了固体氧化物燃料电池的效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
固体氧化物燃料电池(SOFC)研究现状伍永福,赵玉萍,彭军内蒙古科技大学(014010)摘要:燃料电池在运行过程中具有良好的安全可靠性、环境友好性、可操作性和灵活性,这些优点赋予了燃料电池极强的生命力和长远的发展潜力。
本文就固体氧化物燃料电池的研究现状阐述了固体氧化物燃料电池的原理、特点及电池材料的研究进展,就Ni基阳极燃料电池存在的问题,提出在寻找Ni基阳极的替代阳极方面,(一是氧化物阳极,如(Ba/Sr/Ca/La)MxNb1-x O3-δ阳极;二是其他金属基阳极,如Cu基阳极。
)作进一步研究的必要。
0.6关键词:固体氧化物燃料电池,电导率,扩散,极化1、固体氧化物燃料电池(SOFC)的发展概况热电厂首先经燃料的燃烧把化学能转变为热能,再由热能转变为机械能,最后把机械能转变为电能,受卡诺循环的制约,在最好的条件下能量转化率也只有35%,实际情况不到20%。
燃料电池是继水力、火力、核能发电技术后的第四类新型发电技术,它是一种不经燃料燃烧直接将化学能转变为电能的高效发电装置。
由于不受卡诺循环的限制,燃料电池的理论效率达80%以上,实际效率可达50%—60%。
其反应产物主要是水和二氧化碳,而且向大气中排放的有害物质很少,故造成的环境污染很低。
另外,占地面小,建设周期短,可实行模块式组装,运行质量高、噪音小;使用方便灵活,既可用于中央集中型的大型电厂,也可作为电动汽车,轻型摩托的小型驱动电源。
燃料电池在运行过程中具有良好的安全可靠性、环境友好性、可操作性和灵活性,这些优点赋予了燃料电池极强的生命力和长远的发展潜力[1]。
现在正运行的燃料电池都是用H2作燃料,或者碳氢化合物重整出H2,操作费用高,而且电池寿命不长,特别是使用碳氢化合物的电池更是如此。
由于H2的制作费用较高,而且其运输、储存都很不方便,并隐含着危险,所以用H2作燃料的燃料电池难于实用化。
而炭氢燃料在大自然储量比较丰富,有的(如CH4)不仅较容易制取,而且有利于环境的保护,因此现在固体氧化物燃料电池向着燃料多元,低温度操作方向发展。
早在1839年英国人William Grove就报道了燃料电池的工作原理,但固体氧化物燃料电池的起步却比较晚,1899年Nerest发现了固体氧化物电解质,1937年Baur和Preis首次操作固体氧化物燃料电池,其工作温度为1000℃。
自此,固体氧化物燃料电池取得了很大的进展。
特别是本世纪70年代末,材料科学的迅速发展使其研究开发工作更加令世人瞩目。
目前已经开发成功的固体氧化物燃料电池主要有两种类型,它们分别以氧离子和质子作电池的电荷载体。
其中,基于氧离子传导的固体氧化物燃料电池是研究较多且相对成熟的一种。
2、固体氧化物燃料电池(SOFC)的工作原理与特点2.1、SOFC工作原理固体氧化物燃料电池(SOFC)是继磷酸盐燃料电池(PAFC)、熔融碳酸盐燃料电池(MCFC)之后,第三代燃料电池,其工作温度一般在600-1000℃左右,工作原理如图(1)所示,电动势来源于电池两侧不同的氧分压。
其单体电池是由正负两个电极(负极为燃料电极,正极为氧化剂电极)以及电解质组成。
阳极、阴极的主要作用是导通电子和提供反应气体、产物气体的扩散通道。
固体电解质将两侧的气体分隔开来,由于两侧氧分压的不同,产生了氧的化学位梯度,在该化学位梯度的作用下,在阴极获得电子的氧离子(O 2-)经固体电解质向阳极运动,在阳极释放出电子,从而在两极形成电压[1,2]。
图(1) SOFC 工作原理图所发生的电池反应为(以作为燃料为例):22+n n H C 阴极:−−=+222)(21O e g O (1.1) 阳极: (1.2) −−+++++=++e n O H n nCO On H C n n )13(2)1()13(22222总反应为:)()1()(213)(22222g O H n nCO g O n g H C n n ++=+++ (1.3) 根据Nernst 方程,电池的开路电压为:n g CO n g O H n g O g H C p p p p n RT nF G E n n )(1+)(1+2)()(2222+2ln 2+6==△ (1.4)式中,R 为气体常数,T 为绝对温度,F 为法拉第常数,K 为总反应的平衡常数[3]。
从式(1.1)、(1.2)可知,在阴极得到电子,而阳极失去电子,电子通过电极在外电路中形成电流,但在燃料电池内部,要维持反应继续下去,就必须有氧离子不断地通过电解质从阴极扩散到阳极参加化学反应。
通过氧离子传输形成电池内部电流,构成整个回路电流,通过负载输出电流,把化学能直接转换为电能。
2.2、SOFC 的特点从原理上讲,固体氧化物燃料电池是最理想的燃料电池之一,因为它不仅具有其他燃料电池的高效与环境友好等特点,还具备如下优点:(1) 运行温度高(一般为800-1000℃),阴、阳极的化学反应速率大,并接近于热力学平衡,电极处的极化阻抗小,可以通过大的电流密度,不需要贵重的催化剂;(2) 由于固体氧化物电解质的透气性很低,电子电导率低,开路时电压可以达到理论值的96%;(3) 由于SOFC 运行温度高,便于利用高温废气,可实现热电联产,燃料利用率高;(4) 全固体结构,避免了液态电解质对材料的腐蚀,解决了电解液的控制问题;(5) 氧化物电解质很稳定,抗毒性好。
电极有相对较强的抗污染能力;(6) 可使用多种燃料,包括直接使用碳氢化合物;(7) 不要求外围设备条件,诸如不需要湿度控制、空气调节等。
由于固体燃料电池的高能量转换效率及其与其它燃料电池相比所具有的上述优越性,因此固体氧化物燃料电池被认为是二十一世纪最有前景的能源技术,多年来一直是各国研究的重点。
20世纪90年代以后,在材料科学与工艺技术进步的基础上,更是对SOFC所需的材料进行了深入的研究,目前各国下大力投入,开展这方面的研究工作,并可望早日实现商品化。
3、固体氧化物燃料电池材料电池中的电化学反应主要在阳极发生,经研究发现多孔的金属陶瓷阳极基本上能满足要求,最常用也是研究最多的阳极为Ni/YSZ。
多孔的Ni/YSZ用于H2作燃料的电池体系性能很好,但是不易用于炭氢化合物燃料。
Ni基金属陶瓷阳极中的Ni主要有以下几个功能,一方面提供阳极电子导电能力,另一方面是对电池反应有一个催化作用,特别是对内部重整型燃料电池Ni催化H2与CO的形成。
但是Ni也催化炭的沉积,所以Ni基的阳极不宜用于用炭氢化合物作燃料的燃料电池[6]。
固体氧化物燃料电池由三部分组成:电解质、阴极、阳极,其中每一部分都含有电解质成分,阴、阳极因功能的差异而组成不同。
3.1、电解质材料SOFC的关键是固体电解质,固体电解质性能的好坏将决定燃料电池性能的优劣。
SOFC 在1000℃高温运行带来一系列问题,包括电极烧结、界面反应、热膨胀系数不匹配等。
目前迫切地希望在不降低SOFC性能的情况下降低操作温度。
低温时界面反应倾向减小,并能降低对相关材料的要求,从而简化结构设计。
由于固体电解质这种趋于低温化的发展,其材质有以下几种类型。
3.1.1 ZrO2基固体电解质[4,5]氧化锆基电解质是研究的最多也应用的最广的电解质材料,特别是Y2O3完全稳定化ZrO2(YSZ),是固体氧化物燃料电池最常用的电解质。
其中,Y2O3的含量一般为8~10% ,Y2O3主要起稳定结构和提高氧离子空位的作用。
纯的ZrO2不能用作电解质,主要由于其离子导电性太差。
3.1.2 CeO2基固体电解质纯的CeO2从室温至熔点具有与YSZ相同的萤石结构,不需进行稳定化。
掺杂的CeO2具有比YSZ高的离子电导率、低的活化能,极有希望成为SOFC的电解质材料。
但CeO2基材料的离子导电性范围较窄,在还原气氛下Ce4+部分将被还原为Ce3+,而产生电子电导率,从而降低电池能量转换效率。
因此必须把CeO2基材料的离子电导范围扩大,在还原气氛下尽量降低电子电导,这样他才能作为SOFC电解质材料,这方面的工作主要集中在加入掺杂剂的研究上。
3.1.3 Bi2O3基电解质各种固体电解质材料中,Bi2O3基电解质材料具有最高的离子导电性,其电导率比YSZ 高一个数量级,且与ZrO2电解质相比,与电极之间的界面电阻更小。
但是Bi2O3基电解质材料存在以下两方面的缺点:一是Bi2O3基电解质材料在低氧分压下极易被还原,在燃料两侧还原出的细小金属铋微粒使表面变黑,减小了离子电导率。
另外掺杂的Bi2O3基电解质材料在低于700℃时,呈热力学不稳定状态,经长时间退火后,会有立方菱方相变出现,而菱方相导电性能很差。
3.1.4 LaGaO3基电解质钙钛矿型结构的氧化物(ABO3)具有稳定的晶体结构,而且对A位和B位离子半径变化有较强的容忍性,并可通过低价金属离子掺杂在结构中引入大量的氧空位,而且在较大的氧分压范围(1.013×10-12~1.013×10-8Pa)内具有良好的离子导电性,电子导电性可以忽略不计。
LaGaO3基材料多采用A、B位双重掺杂,A位掺杂钙、锶、钡等,B位掺杂镁、铝、铟、钪、镥等。
材料中La0.8Sr0.2Ga0.8Mg0.2O3具有最高的氧离子电导率。
但它主要有以下问题:材料制备和低温烧结、薄膜化难度大,SOFC条件下的长期稳定性有待进一步研究,适宜的电极材料仍需探索。
除了上述几种电解质外,人们还研究了许多其它种类的固体电解质。
例如具有钙钛矿型结构的Ba(Sr)Ce(Ln)O3系列材料,尤其是Ga掺杂的BaCeO3电解质已经被美国天然气技术研究所开发用于800~850℃的SOFC,另外具有萤石结构的ThO2基材料也被详细地研究过。
3.2 阴极材料阴极材料是SOFC的重要组件,它必须具有强还原能力以确保氧离子迁移数目,较高的电子电导率及离子电导率,良好的热化学稳定性及与电解质材料的化学相容性等。
当前使用的最为广泛的阴极材料是La1-x Sr x MnO3(LSM),但随着工作温度的降低,阴极极化电阻大幅度增加,电导率大大降低,虽可采用LSM-YSZ双层复合电极,改善电极显微结构等方法来提高阴极材料的性能,但还是难以满足在中低温下使用的要求。
因此,研制高性能的新型阴极材料是发展中低温SOFC的重要前提和基础。
目前使用的阴极材料有焦绿石结构的A2Ru2O7-x(A=Pb,Bi)陶瓷,Ag-YDB复合陶瓷,钙钛矿结构的L型陶瓷等。
3.3 固体氧化物燃料电池阳极材料固体氧化物燃料电池阳极主要完成三个功能:一是燃料的电化学催化氧化;二是把燃料氧化释放出的电子转移到外电路去;三是导入和排出气体。
在Ni基阳极中前两个任务由Ni 单独执行,在Cu基阳极中则由CeO2和Cu分别完成,而第三个功能在两种阳极中都由气孔完成。