中档题17任意角和弧度制与任意角的三角函数(含答案,直接打印)
高三数学任意角和弧度制和任意角的三角函数试题答案及解析

高三数学任意角和弧度制和任意角的三角函数试题答案及解析1.已知角为第二象限角,且,则的值为()A.B.C.D.【答案】B【解析】由,得:又因为:所以,解得:又因为角为第二象限角,所以,所以,故选B.【考点】同角三角函数基本关系及诱导公式.2.如图,A,B是单位圆上的两个质点,点B坐标为(1,0),∠BOA=60°.质点A以1 rad/s的角速度按逆时针方向在单位圆上运动,质点B以1 rad/s的角速度按顺时针方向在单位圆上运动.(1)求经过1 s 后,∠BOA的弧度;(2)求质点A,B在单位圆上第一次相遇所用的时间.【答案】(1)+2.(2)s【解析】解:(1)经过1 s 后,∠BOA的弧度为+2.(2)设经过t s 后质点A,B在单位圆上第一次相遇,则t(1+1)+=2π,所以t=,即经过s 后质点A,B在单位圆上第一次相遇.3.设角α是第三象限角,且=-sin,则角是第________象限角.【答案】四【解析】由α是第三象限角,知2kπ+π<α<2kπ+ (k∈Z),kπ+<<kπ+ (k∈Z),知是第二或第四象限角,再由=-sin知sin<0,所以只能是第四象限角.4.点P从(1,0)出发,沿单位圆x2+y2=1逆时针方向运动弧长到达Q点,则Q点的坐标为()A.(-,)B.(-,-)C.(-,-)D.(-,)【解析】设α=∠POQ,由三角函数定义可知,Q点的坐标(x,y)满足x=cosα,y=sinα,∴x=-,y=,∴Q点的坐标为(-,).5.已知角α终边经过点P(x,-)(x≠0),且cosα=x,求sinα、tanα的值.【答案】sinα=-,tanα=【解析】解:∵P(x,-)(x≠0),∴P到原点的距离r=.又cosα=x,∴cosα==x,∵x≠0,∴x=±,∴r=2.当x=时,P点坐标为(,-),由三角函数定义,有sinα=-,tanα=-.当x=-时,P点坐标为(-,-),∴sinα=-,tanα=.6. [2014·潍坊质检]已知角α的终边经过点P(m,-3),且cosα=-,则m等于()A.-B.C.-4D.4【答案】C【解析】cosα==- (m<0),解之得m=-4,选C项.7.角终边上有一点,则下列各点中在角的终边上的点是()A.B.C.D.【答案】B【解析】因为角终边上有一点,所以因此即角的终边上的点在第三象限,所以选C.【考点】三角函数定义8.把表示成θ+2kπ(k∈Z)的形式,使|θ|最小的θ值是()A.B.C.D.【解析】∵∴与是终边相同的角,且此时=是最小的,选A.9.若角α,β满足-<α<β<π,则α-β的取值范围是()A.(-,)B.(-,0)C.(0,)D.(-,0)【答案】B【解析】由-<α<β<π知,-<α<π,-<β<π,且α<β,所以-π<-β<,所以-<α-β<且α-β<0,所以-<α-β<0.10.计算2sin(-600°)+tan(-855°)的值为()A.B.1C.2D.0【答案】C【解析】∵sin(-600°)=-sin600°=-sin(360°+240°)=-sin240°=-sin(180°+60°)=sin60°=,同理tan(-855°)=-tan(2×360°+135°)=-tan135°=-tan(180°-45°)=tan45°=1,∴原式=2×+×1=2.11.已知角α的终边上一点的坐标为(sin,cos),则角α的最小正值为()A.B.C.D.【答案】C【解析】∵sin>0,cos>0,∴角α的终边在第一象限,∴tanα====,∴角α的最小正值为.12.若角θ的终边在射线y=-2x(x<0)上,则cosθ=.【答案】-【解析】由已知得角的终边落在第二象限,故可设角终边上一点P(-1,2),则r2=(-1)2+22=5,∴r=,此时cosθ==-.13.已知点P落在角θ的终边上,且θ∈[0,2π],则θ的值为________.【答案】【解析】由题意可知,点P在第四象限,且点P落在角θ的终边上,所以tan θ=-1,故θ=.14.已知则= .【答案】【解析】.【考点】三角函数求值.15.已知角x的终边上一点坐标为,则角x的最小正值为( ) A.B.C.D.【答案】C【解析】因为角终边上一点的坐标为,在第四象限,所以角是第四象限角,又,所以角的最小正值为.【考点】特殊角的三角函数值16.( )A.B.C.D.【答案】A【解析】.【考点】特殊角的三角函数值17.角的终边经过点,则的可能取值为( )A.B.C.D.【答案】D【解析】.【考点】1.任意角的三角函数;2.同角三角函数的基本关系18.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是()A.2B.C.D.【答案】B【解析】已知弧度数为2的圆心角所对的弦长也是2,所以,即,所以.【考点】弧度制.19.求值:________.【答案】【解析】.【考点】三角函数的计算及诱导公式.20.如图,在平面直角坐标系中,以x轴为始边作两个锐角、,它们的终边分别与单位圆交于A、B两点.已知点A的横坐标为;B点的纵坐标为.则 .【答案】【解析】单位圆的半径是1,根据勾股定理以及点A的横坐标为,B点的纵坐标为,可知点A的纵坐标为,点B的横坐标为,所以,,,,因为,是锐角,所以,所以.【考点】1.任意角的三角函数;2.三角函数的和角公式21.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是()A.2B.C.D.【答案】C【解析】.故选C.【考点】扇形弧长公式.22.在平面直角坐标系xOy中,若角α的始边与x轴的正半轴重合,终边在射线y=-x(x>0)上,则sin5α=.【答案】【解析】根据题意,由于平面直角坐标系xOy中,若角α的始边与x轴的正半轴重合,终边在射线y=-x(x>0)上,则可知,那么可知sin5α=sin,故答案为【考点】三角函数定义点评:解决的关键是利用三角函数的定义来求解三角函数值,属于基础题。
高三数学任意角和弧度制和任意角的三角函数试题答案及解析

高三数学任意角和弧度制和任意角的三角函数试题答案及解析1.若角的终边经过点P,则的值是.【答案】.【解析】由角的终边经过点P,知,由三角函数的定义可知:,故答案为:.【考点】三角函数的定义.2.点P从(1,0)出发,沿单位圆逆时针方向运动弧长到达Q点,则Q点的坐标为________.【答案】【解析】由三角函数定义可知Q点的坐标(x,y)满足x=cos=-,y=sin=.3.如图所示,在平面直角坐标系xOy中,角α的终边与单位圆交于点A,点A的纵坐标为,则cos α=________.【答案】-=,且A点在第二象限,又因为圆O为单位圆,所以A点横坐标【解析】因为A点纵坐标yAx=-,由三角函数的定义可得cos α=-.A4.设角α是第三象限角,且=-sin,则角是第________象限角.【答案】四【解析】由α是第三象限角,知2kπ+π<α<2kπ+ (k∈Z),kπ+<<kπ+ (k∈Z),知是第二或第四象限角,再由=-sin知sin<0,所以只能是第四象限角.5.满足cos α≤-的角α的集合为________.【答案】【解析】作直线x=-交单位圆于C、D两点,连接OC、OD,则OC与OD围成的区域(图中阴影部分)即为角α终边的范围,故满足条件的角α的集合为.6.设α是第二象限角,P(x,4)为其终边上的一点,且cosα=x,则tanα=() A.B.C.-D.-【答案】D【解析】∵α是第二象限角,∴cosα=x<0,即x<0.又cosα=x=,解得x=-3,∴tanα==-.7.是第二象限角,则是第象限角.【答案】一或三【解析】是第二象限角,则有,于是,因此是第一、三象限角.【考点】象限角的概念.8.如果弧度的圆心角所对的弦长为,那么这个圆心角所对的弧长为()A.B.C.D.【答案】A【解析】连接圆心与弦的中点,则由弦心距,弦长的一半,半径构成一个直角三角形,半弦长为1,其所对的圆心角也为1故半径为,这个圆心角所对的弧长为,故选A.【考点】弧长公式.9.已知扇形的面积为2cm2,扇形圆心角θ的弧度数是4,则扇形的周长为()A.2cm B.4cm C.6cm D.8cm【答案】C【解析】设扇形的半径为R,则R2θ=2,∴R2=1R=1,∴扇形的周长为2R+θ·R=2+4=6(cm).10.一段圆弧的长度等于其圆内接正三角形的边长,则其圆心角的弧度数为() A.B.C.D.【答案】C【解析】由题意可知,圆内接正三角形边长a与圆的半径之间关系为a=r,∴α===.11.已知角α的终边上一点的坐标为(sin,cos),则角α的最小正值为()A.B.C.D.【答案】C【解析】∵sin>0,cos>0,∴角α的终边在第一象限,∴tanα====,∴角α的最小正值为.12.若角θ的终边在射线y=-2x(x<0)上,则cosθ=.【答案】-【解析】由已知得角的终边落在第二象限,故可设角终边上一点P(-1,2),则r2=(-1)2+22=5,∴r=,此时cosθ==-.13.已知,求下列各式的值:(Ⅰ);(Ⅱ).【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)先由已知式,解出的值,再把欲求式的分子分母都除以(需说明),变形为,代入的值,即可求得的值;(Ⅱ)先利用诱导公式将欲求式化为:,将这个式子变形为,分子分母都除以,变形为,代入的值,即可求得的值.试题解析:由已知得tanα=. 3分(1)原式===-. 8分(2)原式=sin2α+sinαcosα+2=sin2α+sinαcosα+2(cos2α+sin2α)====. 13分.【考点】三角函数給值求值.14.求值:= .【答案】【解析】由题意得:【考点】三角求值15.已知角x的终边上一点坐标为,则角x的最小正值为( )A.B.C.D.【答案】C【解析】因为角终边上一点的坐标为,在第四象限,所以角是第四象限角,又,所以角的最小正值为.【考点】特殊角的三角函数值16.已知角的终边经过点,且,则的值为()A.B.C.D.【答案】A【解析】因为,故为二三象限,故,且,解得.【考点】三角函数定义.17.( )A.B.C.D.【答案】A【解析】.【考点】特殊角的三角函数值18.运用物理中矢量运算及向量坐标表示与运算,我们知道:两点等分单位圆时,有相应正确关系为,三等分单位圆时,有相应正确关系为,由此推出:四等分单位圆时的相应正确关系为 .【答案】【解析】用两点等分单位圆时,关系为,两个角的正弦值之和为0,且第一个角为,第二个角与第一个角的差为:,用三点等分单位圆时,关系为,此时三个角的正弦值之和为0,且第一个角为,第二个角与第一个角的差与第三个角与第二个角的差相等,均为有,依此类推,可得当四点等分单位圆时,为四个角正弦值之和为0,且第一个角为,第二个角为,第三个角,第四个角为,即其关系为.【考点】三角函数的定义与三角恒等式.19.已知,则满足的角所在的象限为.【答案】二或四【解析】根据指数函数的单调性和,得,即和异号,所以角是第二象限或第四象限的角.【考点】指数函数的单调性、各象限三角函数的符号.20.已知角的顶点在坐标原点,始边与轴的正半轴重合,,角的终边与单位圆交点的横坐标是,角的终边与单位圆交点的纵坐标是,则的值为()A.B.C.D.【答案】C【解析】由题意可知,,因为所以,,所以.【考点】三角函数的定义,和差角公式.21.若角的终边上有一点P(a,-2),则实数a的值为()A.B.C.D.【答案】D【解析】因为,所以.【考点】三角函数的定义.22.如上页图,一条螺旋线是用以下方法画成:是边长为1的正三角形,曲线分别以为圆心,为半径画的弧,曲线称为螺旋线旋转一圈.然后又以为圆心为半径画弧…,这样画到第圈,则所得整条螺旋线的长度______.(用表示即可)【答案】n (3n+1)π【解析】设第n段弧的弧长为,由弧长公式,可得…数列是以为首项、为公差的等差数列.画到第n圈,有3n段弧,故所得整条螺旋线的长度【考点】本题主要考查倒靫收莲的概念,求和公式。
(word完整版)任意角与弧度制及任意角的三角函数习题(绝对物超所值)

任意角与弧度制1.已知角α终边上一点P 的坐标是)3cos 2,3sin 2(--,则=αsin A .cos3- B .cos3 C .sin 3- D .sin 3 2.点2015, 201()5A sin cos ︒︒位于( )A .第一象限B .第二象限C .第三象限D .第四象限 3.已知角α的终边过点(2,1)-,则cos α的值为( )A .. 4.已知点(tan ,sin )P αα在第三象限,则角α在A .第一象限B .第二象限C .第三象限D .第四象限5.1.29sin 6π=( )A .B .12-C .12 D6.若sin tan 0a a >,且cos 0tan aa<,则角α是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限7.若α为第一象限角,则k ·180°+α(k ∈Z )的终边所在的象限是 ( )A .第一象限B .第一、二象限C .第一、三象限D .第一、四象限 8.已知角α的终边与单位圆221x y +=交于点01,cos 22P y α⎛⎫⎪⎝⎭,则等于A .12-B .12C ..19.)613sin(π-的值是( ) A .23 B .23- C .21 D .21-10.cos 690=( ) A .21 B .21- C .23 D .23-11.=311sin πA .23 B .23- C . 21 D .21-12.半径为2,圆心角为3π的扇形的面积为( )A 。
34π B. π C 。
32π D 。
3π 13.下列说法中,正确的是( )A 。
钝角必是第二象限角,第二象限角必是钝角B 。
第三象限的角必大于第二象限的角C. 小于90°的角是锐角 D 。
—95°20′,984°40′,264°40′是终边相同的角 14.设角θ的终边经过点(3,4)P -,那么sin 2cos θθ+=( )A .15B .15-C .25- D .2515.若π02α-<<,则点(cos ,sin )Q αα位于( )A .第一象限B .第二象限C .第三象限D .第四象限 16.sin(690)-︒的值为( )A B .12- C .12D .17.已知点1()22P -在角θ的终边上,且[0,2)θπ∈,则θ的值为( ) A .56π B 。
高三数学任意角和弧度制和任意角的三角函数试题答案及解析

高三数学任意角和弧度制和任意角的三角函数试题答案及解析1.已知角的终边经过点(-4,3),则cos=( )A.B.C.-D.-【答案】D【解析】由题意可知x=-4,y=3,r=5,所以.故选D.【考点】三角函数的概念.2.设α是第二象限角,P(x,4)为其终边上的一点,且cosα=x,则tanα=() A.B.C.-D.-【答案】D【解析】∵α是第二象限角,∴cosα=x<0,即x<0.又cosα=x=,解得x=-3,∴tanα==-.3.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论用角度制还是用弧度制度量一个角,它们与扇形所对半径的大小无关;④若sinα=sinβ,则α与β的终边相同;⑤若cosθ<0,则θ是第二或第三象限的角.其中正确命题的个数是()A.1B.2C.3D.4【答案】A【解析】由于第一象限角370°不小于第二象限角100°,故①错;当三角形的内角为90°时,其既不是第一象限角,也不是第二象限角,故②错;③正确;由于sin=sin,但与的终边不相同,故④错;当θ=π,cosθ=-1<0时既不是第二象限角,又不是第三象限角,故⑤错.综上可知只有③正确.4.把表示成θ+2kπ(k∈Z)的形式,使|θ|最小的θ值是()A.B.C.D.【答案】A【解析】∵∴与是终边相同的角,且此时=是最小的,选A.5.α是第二象限角,P(x,)为其终边上一点,且cosα=x,求sinα的值.【答案】【解析】∵OP=,∴cosα==x.又α是第二象限角,∴x<0,得x=-,∴sinα==.6.已知扇形的周长为8cm,则该扇形面积的最大值为________cm2.【答案】4【解析】设扇形半径为rcm,弧长为lcm,则2r+l=8,S=rl=r×(8-2r)=-r2+4r=-(r-2)2+4,所以S=4(cm2)max7.若角α,β满足-<α<β<π,则α-β的取值范围是()A.(-,)B.(-,0)C.(0,)D.(-,0)【答案】B【解析】由-<α<β<π知,-<α<π,-<β<π,且α<β,所以-π<-β<,所以-<α-β<且α-β<0,所以-<α-β<0.8.计算2sin(-600°)+tan(-855°)的值为()A.B.1C.2D.0【答案】C【解析】∵sin(-600°)=-sin600°=-sin(360°+240°)=-sin240°=-sin(180°+60°)=sin60°=,同理tan(-855°)=-tan(2×360°+135°)=-tan135°=-tan(180°-45°)=tan45°=1,∴原式=2×+×1=2.9.已知(1)求的值;(2)若是第三象限的角,化简三角式,并求值.【答案】(1);(2).【解析】(1)利用商数关系及题设变形整理即得的值;(2)注意既是一个无理式,又是一个分式,那么化简时既要考虑通分,又要考虑化为有理式.考虑通分,显然将两个式子的分母的积作为公分母,这样一来,被开方式又是完全平方式,即可以开方去掉根号,从将该三角式化简.试题解析:(1)∵∴ 2分解之得 4分(2)∵是第三象限的角∴= 6分=== 10分由第(1)问可知:原式== 12分【考点】三角函数同角关系式.10.已知角x的终边上一点坐标为,则角x的最小正值为( )A.B.C.D.【答案】C【解析】因为角终边上一点的坐标为,在第四象限,所以角是第四象限角,又,所以角的最小正值为.【考点】特殊角的三角函数值11.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是()A.2B.C.D.【答案】B【解析】已知弧度数为2的圆心角所对的弦长也是2,所以,即,所以.【考点】弧度制.12.已知角的终边经过点,且,则的值为()A.B.C.D.【答案】A【解析】,故点的坐标为,所以,所以,解得,故选A.【考点】三角函数的定义13.运用物理中矢量运算及向量坐标表示与运算,我们知道:两点等分单位圆时,有相应正确关系为,三等分单位圆时,有相应正确关系为,由此推出:四等分单位圆时的相应正确关系为 .【答案】【解析】用两点等分单位圆时,关系为,两个角的正弦值之和为0,且第一个角为,第二个角与第一个角的差为:,用三点等分单位圆时,关系为,此时三个角的正弦值之和为0,且第一个角为,第二个角与第一个角的差与第三个角与第二个角的差相等,均为有,依此类推,可得当四点等分单位圆时,为四个角正弦值之和为0,且第一个角为,第二个角为,第三个角,第四个角为,即其关系为.【考点】三角函数的定义与三角恒等式.14.已知扇形的周长是8cm,圆心角为2 rad,则扇形的弧长为 cm.【答案】4【解析】设扇形的弧长,半径,圆心角分别为,则,又由即,得.【考点】扇形的弧长公式.15.已知为钝角,且,则与角终边相同的角的集合为.【答案】【解析】由为钝角,且,得,所以与角终边相同的角的集合为,当然也可写成,但注意制度要统一,不要丢掉.【考点】特殊角的三角函数、终边相同角的集合.16.(1)设扇形的周长是定值为,中心角.求证:当时该扇形面积最大;(2)设.求证:.【答案】(1)详见解析;(2)详见解析.【解析】(1)由扇形周长为定值可得半径与弧长关系(定值),而扇形面积,一般地求二元函数最值可消元化为一元函数(见下面详解),也可考虑利用基本不等式,求出最值,并判断等号成立条件,从而得解;(2)这是一个双变元(和)的函数求最值问题,由于这两个变元没有制约关系,所以可先将其中一个看成主元,另一个看成参数求出最值(含有另一变元),再求解这一变元下的最值,用配方法或二次函数图象法. 试题解析:(1)证明:设弧长为,半径为,则, 2分所以,当时, 5分此时,而所以当时该扇形面积最大 7分(2)证明:9分∵,∴, 11分∴当时, 14分又,所以,当时取等号,即. 16分法二:9分∵,, 11分∴当时,, 14分又∵,∴当时取等号即. 16分【考点】扇形的周长和面积、三角函数、二次函数.17.已知角的终边与单位圆交于,则()A.B.C.D.【答案】A【解析】因为,角的终边与单位圆交于,所以,,=,故选.【考点】三角函数的定义,三角函数诱导公式、倍角公式.18.已知角的顶点在坐标原点,始边与轴的正半轴重合,,角的终边与单位圆交点的横坐标是,角的终边与单位圆交点的纵坐标是,则的值为()A.B.C.D.【答案】C【解析】由题意可知,,因为所以,,所以.【考点】三角函数的定义,和差角公式.19.若角与角终边相同,则在内终边与角终边相同的角是 .【答案】【解析】因为角与角终边相同,所以=2kπ+,z,=,令k=0,1,2,3分别得到,即为所求。
任意角和弧度制、任意角的三角函数专题及答案

任意角和弧度制、任意角的三角函数专题一、基础小题1.已知角α的终边与单位圆交于点⎝ ⎛⎭⎪⎫-45,35,则tan α=( )A .-43B .-45C .-35D .-342.sin2cos3tan4的值( )A .小于0B .大于0C .等于0D .不存在 3.已知扇形的半径为12 cm ,弧长为18 cm ,则扇形圆心角的弧度数是( )A .23B .32C .23πD .32π4.如图所示,在直角坐标系xOy 中,射线OP 交单位圆O 于点P ,若∠AOP =θ,则点P 的坐标是( )A .(cos θ,sin θ)B .(-cos θ,sin θ)C .(sin θ,cos θ)D .(-sin θ,cos θ) 5.已知α是第二象限角,P (x ,5)为其终边上一点,且cos α=24x ,则x =( ) A . 3 B .±3 C .-2 D .- 36.已知角α=2k π-π5(k ∈Z),若角θ与角α的终边相同,则y =sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|的值为( )A .1B .-1C .3D .-3 7.已知扇形的面积为2,扇形圆心角的弧度数是4,则扇形的周长为( )A .2B .4C .6D .8 8.已知角α和角β的终边关于直线y =x 对称,且β=-π3,则sin α=( )A .-32 B .32 C .-12 D .129.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;④若sin α=sin β,则α与β的终边相同; ⑤若cos θ<0,则θ是第二或第三象限的角. 其中正确命题的个数是( )A .1B .2C .3D .410.点P 从(1,0)出发,沿单位圆x 2+y 2=1逆时针方向运动π3弧长到达Q 点,则Q 的坐标为________.11.已知角α的终边上有一点的坐标为⎝ ⎛⎭⎪⎫12,-32,若α∈(-2π,2π),则所有的α组成的集合为________.12.已知角α的终边上的点P 和点A (a ,b )关于x 轴对称(a ≠b ),角β的终边上的点Q 与A 关于直线y =x 对称,则sin αcos β+tan αtan β+1cos α·sin β=________. 二、高考小题13.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示成x 的函数f (x ),则y =f (x )在[0,π]的图象大致为( )14.若tan α>0,则( )A .sin α>0B .cos α>0C .sin2α>0D .cos2α>0 15.设a =sin33°,b =cos55°,c =tan35°,则( )A .a >b >cB .b >c >aC .c >b >aD .c >a >b 16.设函数f (x )(x ∈R)满足f (x +π)=f (x )+sin x .当0≤x <π时,f (x )=0,则f ⎝ ⎛⎭⎪⎫23π6=( )A .12B .32C .0D .-12三、模拟小题17.集合⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪ k π+π4≤α≤k π+π2,k ∈Z中的角所表示的范围(阴影部分)是( )18.已知角α的终边过点P (-8m ,-6sin30°),且cos α=-45,则m 的值为( )A .-12B .12C .-32D .3219.已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是( )A .(-2,3]B .(-2,3)C .[-2,3)D .[-2,3] 20.已知角x 的终边上一点的坐标为⎝ ⎛⎭⎪⎫sin 5π6,cos 5π6,则角x 的最小正值为( )A .5π6 B .5π3 C .11π6 D .2π321.已知A (x A ,y A )是单位圆上(圆心在坐标原点O )任意一点,且射线OA 绕O 点逆时针旋转30°到OB 交单位圆于B (x B ,y B ),则x A -y B 的最大值为( )A . 2B .32C .1D .1222.已知扇形的周长是4 cm ,则扇形面积最大时,扇形的圆心角的弧度数是( )A .2B .1C .12D .323.如图,设点A 是单位圆上的一定点,动点P 从A 出发在圆上按逆时针方向转一周,点P 所旋转过的弧AP ︵的长为l ,弦AP 的长为d ,则函数d =f (l )的图象大致为( )24.已知角θ的终边经过点P (-4cos α,3cos α),α∈⎝ ⎛⎭⎪⎫π,3π2,则sin θ+cos θ=________.模拟大题1.已知角α终边经过点P (x ,-2)(x ≠0),且cos α=36x .求sin α+1tan α的值.2.如图所示,动点P ,Q 从点A (4,0)出发沿圆周运动,点P 按逆时针方向每秒钟转π3弧度,点Q 按顺时针方向每秒钟转π6弧度,求点P ,点Q 第一次相遇时所用的时间、相遇点的坐标及P ,Q 点各自走过的弧长.3.设函数f (x )=-x 2+2x +a (0≤x ≤3)的最大值为m ,最小值为n ,其中a ≠0,a ∈R.(1)求m ,n 的值(用a 表示);(2)已知角β的顶点与平面直角坐标系xOy 中的原点O 重合,始边与x 轴的正半轴重合,终边经过点A (m -1,n +3),求sin ⎝ ⎛⎭⎪⎫β+π6的值.4.在平面直角坐标系xOy 中,角α的顶点是坐标原点,始边为x 轴的正半轴,终边与单位圆O 交于点A (x 1,y 1),α∈⎝ ⎛⎭⎪⎫π4,π2.将角α终边绕原点按逆时针方向旋转π4,交单位圆于点B (x 2,y 2).(1)若x 1=35,求x 2;(2)过A ,B 作x 轴的垂线,垂足分别为C ,D ,记△AOC 及△BOD 的面积分别为S 1,S 2,且S 1=43S 2,求tan α的值.任意角和弧度制、任意角的三角函数专题及答案一、基础小题1.已知角α的终边与单位圆交于点⎝ ⎛⎭⎪⎫-45,35,则tan α=( )A .-43B .-45C .-35D .-34答案 D解析 根据三角函数的定义,tan α=y x =35-45=-34,故选D. 2.sin2cos3tan4的值( )A .小于0B .大于0C .等于0D .不存在 答案 A解析 ∵sin2>0,cos3<0,tan4>0,∴sin2cos3tan4<0.3.已知扇形的半径为12 cm ,弧长为18 cm ,则扇形圆心角的弧度数是( )A .23B .32C .23πD .32π答案 B解析 由题意知l =|α|r ,∴|α|=l r =1812=32.4.如图所示,在直角坐标系xOy 中,射线OP 交单位圆O 于点P ,若∠AOP =θ,则点P 的坐标是()A .(cos θ,sin θ)B .(-cos θ,sin θ)C .(sin θ,cos θ)D .(-sin θ,cos θ) 答案 A解析 由三角函数的定义知,选A.5.已知α是第二象限角,P (x ,5)为其终边上一点,且cos α=24x ,则x =( ) A . 3 B .±3 C .-2 D .- 3答案 D解析 依题意得cos α=x x 2+5=24x <0,由此解得x =-3,故选D. 6.已知角α=2k π-π5(k ∈Z),若角θ与角α的终边相同,则y =sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|的值为( )A .1B .-1C .3D .-3 答案 B解析 由α=2k π-π5(k ∈Z)及终边相同的概念知,角α的终边在第四象限,又角θ与角α的终边相同,所以角θ是第四象限角,所以sin θ<0,cos θ>0,tan θ<0,所以y =-1+1-1=-1.7.已知扇形的面积为2,扇形圆心角的弧度数是4,则扇形的周长为( )A .2B .4C .6D .8 答案 C解析 设扇形的半径为R ,则12R 2|α|=2,∴R 2=1,∴R =1,∴扇形的周长为2R +|α|·R =2+4=6,故选C.8.已知角α和角β的终边关于直线y =x 对称,且β=-π3,则sin α=( )A .-32 B .32 C .-12 D .12答案 D解析 因为角α和角β的终边关于直线y =x 对称,所以α+β=2k π+π2(k ∈Z),又β=-π3,所以α=2k π+5π6(k ∈Z),即得sin α=12.9.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关; ④若sin α=sin β,则α与β的终边相同; ⑤若cos θ<0,则θ是第二或第三象限的角. 其中正确命题的个数是( )A .1B .2C .3D .4 答案 A解析 由于第一象限角370°不小于第二象限角100°,故①错;当三角形的内角为90°时,其既不是第一象限角,也不是第二象限角,故②错;③正确;由于sin π6=sin 5π6,但π6与5π6的终边不相同,故④错;当cos θ=-1,θ=π时既不是第二象限角,又不是第三象限角,故⑤错.综上可知只有③正确.10.点P 从(1,0)出发,沿单位圆x 2+y 2=1逆时针方向运动π3弧长到达Q 点,则Q 的坐标为________.答案 ⎝ ⎛⎭⎪⎫12,32解析 根据题意得Q (cos π3,sin π3),即Q ⎝ ⎛⎭⎪⎫12,32.11.已知角α的终边上有一点的坐标为⎝ ⎛⎭⎪⎫12,-32,若α∈(-2π,2π),则所有的α组成的集合为________.答案 ⎩⎨⎧⎭⎬⎫-π3,5π3解析 因为角α的终边上有一点的坐标为⎝ ⎛⎭⎪⎫12,-32,所以角α为第四象限角,且tan α=-3,即α=-π3+2k π,k ∈Z ,因此落在(-2π,2π)内的角α的集合为⎩⎨⎧⎭⎬⎫-π3,5π3.12.已知角α的终边上的点P 和点A (a ,b )关于x 轴对称(a ≠b ),角β的终边上的点Q 与A 关于直线y =x 对称,则sin αcos β+tan αtan β+1cos α·sin β=________. 答案 0解析 由题意得P (a ,-b ),Q (b ,a ),∴tan α=-b a ,tan β=a b (a ,b ≠0),∴sin αcos β+tan αtan β+1cos α·sin β=-b a 2+b 2b a 2+b 2+-ba ab +1a a 2+b 2·a a 2+b 2=-1-b 2a 2+a 2+b2a 2=0.二、高考小题13.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示成x 的函数f (x ),则y =f (x )在[0,π]的图象大致为( )答案 C解析 由题意|OM |=|cos x |,f (x )=|OM ||sin x |=|sin x cos x |= 12|sin2x |,由此可知C 正确. 14.若tan α>0,则( )A .sin α>0B .cos α>0C .sin2α>0D .cos2α>0 答案 C解析 由tan α>0,可得α的终边在第一象限或第三象限,此时sin α与cos α同号, 故sin2α=2sin αcos α>0,故选C.15.设a =sin33°,b =cos55°,c =tan35°,则( )A .a >b >cB .b >c >aC .c >b >aD .c >a >b 答案 C解析 ∵a =sin33°,b =cos55°=sin35°,c =tan35°=sin35°cos35°,∴sin35°cos35°>sin35°>sin33°.∴c >b >a ,选C.16.设函数f (x )(x ∈R)满足f (x +π)=f (x )+sin x .当0≤x <π时,f (x )=0,则f ⎝ ⎛⎭⎪⎫23π6=( )A .12B .32C .0D .-12答案 A解析 由题意得f ⎝ ⎛⎭⎪⎫23π6=f ⎝ ⎛⎭⎪⎫17π6+sin 17π6=f ⎝ ⎛⎭⎪⎫11π6+sin 11π6+sin 17π6=f ⎝ ⎛⎭⎪⎫5π6+sin 5π6+sin11π6+sin 17π6=0+12-12+12=12.三、模拟小题17.集合⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪ k π+π4≤α≤k π+π2,k ∈Z中的角所表示的范围(阴影部分)是( )答案 C解析 当k =2n 时,2n π+π4≤α≤2n π+π2,此时α的终边和π4≤α≤π2的终边一样.当k =2n +1时,2n π+π+π4≤α≤2n π+π+π2,此时α的终边和π+π4≤α≤π+π2的终边一样.18.已知角α的终边过点P (-8m ,-6sin30°),且cos α=-45,则m 的值为( )A .-12B .12C .-32D .32答案 B解析 r =64m 2+9,∴cos α=-8m 64m 2+9=-45,∴m >0,∴4m 264m 2+9=125,∴m =±12,∴m =12.19.已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是( )A .(-2,3]B .(-2,3)C .[-2,3)D .[-2,3] 答案 A解析 由cos α≤0,sin α>0可知,角α的终边落在第二象限内或y 轴的正半轴上,所以有⎩⎨⎧3a -9≤0,a +2>0,即-2<a ≤3. 20.已知角x 的终边上一点的坐标为⎝ ⎛⎭⎪⎫sin 5π6,cos 5π6,则角x 的最小正值为( )A .5π6 B .5π3 C .11π6 D .2π3答案 B解析 ∵sin 5π6=12,cos 5π6=-32,∴角x 的终边经过点⎝ ⎛⎭⎪⎫12,-32,tan x =-3,∴x =2k π+53π,k ∈Z ,∴角x 的最小正值为5π3.(也可用同角基本关系式tan x =sin xcos x得出.) 21.已知A (x A ,y A )是单位圆上(圆心在坐标原点O )任意一点,且射线OA 绕O 点逆时针旋转30°到OB 交单位圆于B (x B ,y B ),则x A -y B 的最大值为( )A . 2B .32C .1D .12答案 C解析 如图,由三角函数的定义,设x A =cos α,则y B =sin(α+30°),∴x A -y B =cos α-sin(α+30°)=12cos α-32sin α=cos(α+60°)≤1.22.已知扇形的周长是4 cm ,则扇形面积最大时,扇形的圆心角的弧度数是( )A .2B .1C .12 D .3答案 A解析 设此扇形的半径为r ,弧长为l ,则2r +l =4,面积S =12rl =12r (4-2r )=-r 2+2r =-(r -1)2+1,故当r =1时S 最大,这时l =4-2r =2.从而α=l r =21=2.23.如图,设点A 是单位圆上的一定点,动点P 从A 出发在圆上按逆时针方向转一周,点P 所旋转过的弧AP ︵的长为l ,弦AP 的长为d ,则函数d =f (l )的图象大致为( )答案 C解析 如图,取AP 的中点为D ,设∠DOA =θ,则d =2r sin θ=2sin θ,l =2θr =2θ, ∴d =2sin l2,故选C.24.已知角θ的终边经过点P (-4cos α,3cos α),α∈⎝ ⎛⎭⎪⎫π,3π2,则sin θ+cos θ=________.答案 15解析 因为π<α<3π2时,cos α<0,所以r =-5cos α,故sin θ=-35,cos θ=45,则sin θ+cos θ=15.模拟大题1.已知角α终边经过点P (x ,-2)(x ≠0),且cos α=36x .求sin α+1tan α的值. 解 ∵P (x ,-2)(x ≠0), ∴点P 到原点的距离r =x 2+2. 又cos α=36x ,∴cos α=x x 2+2=36x . ∵x ≠0,∴x =±10,∴r =2 3.当x =10时,P 点坐标为(10,-2),由三角函数的定义,有sin α=-66,1tan α=-5,∴sin α+1tan α=-66-5=-65+66; 当x =-10时,同样可求得sin α+1tan α=65-66.2.如图所示,动点P ,Q 从点A (4,0)出发沿圆周运动,点P 按逆时针方向每秒钟转π3弧度,点Q 按顺时针方向每秒钟转π6弧度,求点P ,点Q 第一次相遇时所用的时间、相遇点的坐标及P ,Q 点各自走过的弧长.解 设P ,Q 第一次相遇时所用的时间是t , 则t ·π3+t ·⎪⎪⎪⎪⎪⎪-π6=2π. 所以t =4(秒),即第一次相遇的时间为4秒.设第一次相遇点为C ,第一次相遇时P 点已运动到终边在π3·4=4π3的位置,则x C =-cos π3·4=-2,y C =-sin π3·4=-2 3.所以C 点的坐标为(-2,-23). P 点走过的弧长为43π·4=163π,Q 点走过的弧长为23π·4=83π.3.设函数f (x )=-x 2+2x +a (0≤x ≤3)的最大值为m ,最小值为n ,其中a ≠0,a ∈R.(1)求m ,n 的值(用a 表示);(2)已知角β的顶点与平面直角坐标系xOy 中的原点O 重合,始边与x 轴的正半轴重合,终边经过点A (m -1,n +3),求sin ⎝ ⎛⎭⎪⎫β+π6的值.解 (1)由题意可得f (x )=-(x -1)2+1+a ,而0≤x ≤3,所以m =f (1)=1+a ,n =f (3)=a -3.(2)由题意知,角β终边经过点A (a ,a ), 当a >0时,r =a 2+a 2=2a , 则sin β=a 2a =22,cos β=a 2a =22. 所以sin ⎝ ⎛⎭⎪⎫β+π6=sin β·cos π6+cos β·sin π6=2+64.当a <0时,r =a 2+a 2=-2a , 则sin β=a -2a=-22,cos β=a -2a=-22. 所以sin ⎝ ⎛⎭⎪⎫β+π6=sin β·cos π6+cos β·sin π6=-2+64.综上所述,sin ⎝ ⎛⎭⎪⎫β+π6=-2+64或2+64.4.在平面直角坐标系xOy 中,角α的顶点是坐标原点,始边为x 轴的正半轴,终边与单位圆O 交于点A (x 1,y 1),α∈⎝ ⎛⎭⎪⎫π4,π2.将角α终边绕原点按逆时针方向旋转π4,交单位圆于点B (x 2,y 2).(1)若x 1=35,求x 2;(2)过A ,B 作x 轴的垂线,垂足分别为C ,D ,记△AOC 及△BOD 的面积分别为S 1,S 2,且S 1=43S 2,求tan α的值.解 (1)因为x 1=35,y 1>0,所以y 1=1-x 21=45,所以sin α=45,cos α=35,所以x 2=cos ⎝ ⎛⎭⎪⎫α+π4=cos αcos π4-sin αsin π4=-210.(2)S 1=12sin αcos α=14sin2α.因为α∈⎝ ⎛⎭⎪⎫π4,π2,所以α+π4∈⎝ ⎛⎭⎪⎫π2,3π4,所以S 2=-12sin ⎝ ⎛⎭⎪⎫α+π4cos ⎝ ⎛⎭⎪⎫α+π4=-14sin ⎝ ⎛⎭⎪⎫2α+π2=-14cos2α.因为S 1=43S 2,所以sin2α=-43cos2α,即tan2α=-43,所以2tan α1-tan 2α=-43,解得tan α=2或tan α=-12.因为α∈⎝ ⎛⎭⎪⎫π4,π2,所以tan α=2.。
高一数学任意角和弧度制和任意角的三角函数试题答案及解析

高一数学任意角和弧度制和任意角的三角函数试题答案及解析1.已知点()在第三象限,则角在A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】由于点是第三象限角,,在第二象限.【考点】三角函数在各个象限的符号.2.若点P位于第三象限,则角是第象限的角.【答案】二【解析】点P位于第三象限,则即,所以角是第二象限的角,答案为二.【考点】三角函数的符号3.若角的终边经过点,则的值为.【答案】【解析】由三角函数定义知,==.考点:三角函数定义4.已知,则的集合为()A.B.C.D.【答案】D【解析】由知,在第一或第三象限,因为,所以.【考点】简单三角方程5.已知是第二象限的角,,则.【答案】【解析】设的终边有上一点P(x,y)(x<0,y>0),则,不妨令,由三角函数的定义得:.【考点】三角函数的定义.6.已知角的终边上有一点(1,2),则的值为( ).A.B.C.D.–2【解析】角的终边过,,.【考点】任意角三角函数的定义.7.若角的终边为第二象限的角平分线,则的集合为______________.【答案】【解析】在上第一个出现终边在第二象限角平分线的角为,之后每隔个单位出现一个终边落在第二象限角平分线上角,因此所求集合为.【考点】终边相同的角的集合.8.有下列说法:①函数y=-cos 2x的最小正周期是π;②终边在y轴上的角的集合是;③把函数的图像向右平移个单位长度得到函数y=3sin 2x的图像;④函数在[0,π]上是减函数.其中,正确的说法是________.【答案】①③【解析】①:的最小正周期为,正确;②:在上第一个出现终边在y轴的角为,之后每隔个单位出现一个终边落在y轴上的角,因此所求集合为,∴②错误;③:函数的图像向右平移个单位长度以后的函数解析式为:,∴③正确;④:当时,,∴函数在[0,π]上是增函数,∴④错误.【考点】1、三角函数的性质;2、终边相同的角的集合.9.=()A.B.C.D.【答案】A【解析】.考点:诱导公式,特殊角的三角函数值.10.与60°角终边相同的角的集合可以表示为( )A.{|=k·360°+,k Z}B.{|=2k+60°,k Z}C.{|=k·180°+60°,k Z}D.{|=2k+,k Z}【解析】A,B把弧度制与角度制混在了一起,不规范,而C,应为=k·360°+60°,D正确.【考点】终边相同的角的集合.11.已知扇形的周长为30,当它的半径R和圆心角各取何值时,扇形的面积S最大?并求出扇形面积的最大值.【答案】当扇形半径为,圆心角为2时,扇形有最大面积.【解析】根据条件扇形的周长为30可以得到l+2R=30,从而扇形的面积S=lR=(30-2R)R=,即把S表示为R的二次函数,根据二次函数求最值的方法,可以进一步变形为S=-(R-)2+,从而得到当扇形半径为,圆心角为2时,扇形有最大面积.∵扇形的周长为30,∴l+2R=30,l=30-2R,∴S=lR=(30-2R)R==-(R-)2+.....5分∴当R=时,扇形有最大面积,此时l=30-2R=15,==2........8分答:当扇形半径为,圆心角为2时,扇形有最大面积.....10分.【考点】1、弧度制下扇形相关公式;2、二次函数求最值.12.已知,,,则的大小关系是()A.B.C.D.【答案】D【解析】,,,故【考点】特殊角的三角函数13.圆的半径为r,该圆上长为r的弧所对的圆心角是()A.rad B.rad C.πD.π【答案】B【解析】由弧长公式可得:,解得.【考点】弧度制.14.若,且,则角的终边所在的象限是().A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】因为,又因为,所以,所以角的终边所在象限是第四象限,故选D.【考点】1、三角函数值的符号;2、二倍角的正弦.15.已知:P(-2,y)是角θ终边上一点,且sinθ= -,求cosθ的值.【答案】【解析】因为,横坐标为负数,所以余弦值是负数,根据同角基本关系式:,所以.试题解析:∵sinθ= -,∴角θ终边与单位圆的交点(cosθ,sinθ)=(,-)又∵P(-2, y)是角θ终边上一点, ∴cosθ<0,∴cosθ= -.【考点】1.三角函数的定义;2.同角基本关系式.16.与角终边相同的最小正角是.(用弧度制表示)【答案】【解析】因为与角终边相同的角为,所以与角终边相同的角是,其中最小正角是,化为弧度为.【考点】弧度制,终边相同的角.17.的值等于A.B.C.D.【答案】A【解析】【考点】三角函数中正弦两角差公式及特殊角的三角函数值。
高一数学任意角和弧度制和任意角的三角函数试题

高一数学任意角和弧度制和任意角的三角函数试题1.化为弧度是( )A.B.C.D.【答案】B【解析】本题角度化为弧度,变换规则是度数乘以,,故选B.【考点】弧度与角度的互化.2.是第( )象限角.A.一B.二C.三D.四【答案】C【解析】本题主要考查三角函数终边相同的角.由得出终边在第三象限,故选C.【考点】终边相同的角的表示.3.已知角的终边过点(-5,12),则=________.【答案】【解析】.【考点】任意角的三角函数的定义.4.与终边相同的最小正角是.【答案】【解析】因为与终边相同的角是所以当时,与终边相同的最小正角是【考点】与终边相同的角5.与60°角终边相同的角的集合可以表示为( )A.{|=k·360°+,k Z}B.{|=2k+60°,k Z}C.{|=k·180°+60°,k Z}D.{|=2k+,k Z}【答案】D【解析】A,B把弧度制与角度制混在了一起,不规范,而C,应为=k·360°+60°,D正确.【考点】终边相同的角的集合.6.已知是第一象限的角,那么是()A.第一象限角B.第二象限角C.第一或第二象限角D.第一或第三象限角【答案】D【解析】∵α的取值范围(k∈Z)∴的取值范围是(k∈Z),分类讨论①当k="2n+1" (其中n∈Z)时的取值范围是即属于第三象限角.②当k=2n(其中n∈Z)时的取值范围是即属于第一象限角.故答案为:D.【考点】象限角、轴线角.7.设,,,则( )A.B.C.D.【答案】D【解析】因为,所以<;因为,所以>,<,,所以b<a<c.故答案为:D.【考点】三角函数值.8.计算:= ;【答案】1【解析】原式=【考点】三角函数值的计算9.一个扇形的周长是6,该扇形的中心角是1弧度,该扇形的面积是_______.【答案】【解析】设该扇形的半径、弧长分别为,则依题意有,从中解得,从而.【考点】1.扇形的弧长公式;2.扇形的面积公式.10.已知角的顶点在坐标原点,始边在轴的正半轴,终边经过点,则【答案】-.【解析】由题意可得 x=-1,y=,r2=x2+y2=4,r=2,故cosa==-.【考点】任意角的三角函数的定义.11.已知圆中一段弧长正好等于该圆的外切正三角形的边长,那么这段弧所对的圆心角的弧度数为 ( )A.B.C.D.2【答案】D【解析】根据题意,由于设圆的半径为r,则可知,圆中一段弧长正好等于该圆的外切正三角形的边长,可知圆心到三角形不边长的距离为r,利用30得三角函数知可知,正三角形得边长得的长度为2r,那么利用弧长公式可知,弧度数等于弧长除以半径即为2,故选D.【考点】弧度数的问题点评:解决的关键是根据弧长公式,利用圆的半径来得到弧度数,属于基础题。
高一数学任意角和弧度制和任意角的三角函数试题答案及解析

高一数学任意角和弧度制和任意角的三角函数试题答案及解析1.若为第三象限,则的值为()A.B.C.D.【答案】B【解析】因为为第三象限,所以.因此,故选择B.【考点】同角三角函数基本关系及三角函数符号.2.下列各式中,值为的是A.B.C.D.【答案】D【解析】;;;.【考点】二倍角的正弦、余弦、正切公式.3.已知扇形半径为8, 弧长为12, 则中心角为弧度, 扇形面积是【答案】.【解析】圆心角;由扇形的面积公式得.【考点】扇形的面积公式及圆心角的计算.4.是第( )象限角.A.一B.二C.三D.四【答案】C【解析】本题主要考查三角函数终边相同的角.由得出终边在第三象限,故选C.【考点】终边相同的角的表示.5.已知角的终边上有一点(1,2),则的值为( ).A.B.C.D.–2【答案】A【解析】角的终边过,,.【考点】任意角三角函数的定义.6.已知点P()在第三象限,则角在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】由已知得,即,则角在第二象限。
【考点】(1)三角函数值符号的判断;(2)象限角的判断。
7. 2400化成弧度制是()A.B.C.D.【答案】C【解析】本题考查度与弧度的互化,利用公式弧度,可得.【考点】度与弧度的互化.8.的值是()A.B.C.D.【答案】C【解析】.任意角的三角函数值可利用诱导公将角化为锐角的三角函数值求得.【考点】诱导公式,特殊角的三角函数值.9.若,且,则角的终边所在的象限是().A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】因为,又因为,所以,所以角的终边所在象限是第四象限,故选D.【考点】1、三角函数值的符号;2、二倍角的正弦.10.设为第四象限角,其终边上的一个点是,且,求和.【答案】;.【解析】利用余弦函数的定义求得,再利用正弦函数的定义即可求得的值与的值.∵为第四象限角,∴,∴,∴,∴,∴=,∴,.【考点】任意角的三角函数的定义.11.将120o化为弧度为()A.B.C.D.【答案】B【解析】,故.【考点】弧度制与角度的相互转化.12.下列角中终边与330°相同的角是()A.30°B.-30°C.630°D.-630°【答案】B【解析】与330°终边相同的角可写为,当时,可得-30°.【考点】终边相同的角之间的关系.13.的值()A.小于B.大于C.等于D.不存在【答案】A【解析】因为,所以,从而,选A.【考点】任意角的三角函数.14.圆心角为弧度,半径为6的扇形的面积为 .【答案】【解析】扇形面积公式,即(必须为弧度制).【考点】扇形面积公式.15.比较大小:(用“”,“”或“”连接).【答案】>.【解析】在单位圆中,做出锐角1的正切线、正弦线、余弦线,观察他们的长度,发现正切线最长,余弦线最短,故有 tan1>sin1>cos1>0.【考点】三角函数线.16.已知【答案】【解析】由已知得,又因为,所以,而,故答案为.【考点】1.诱导函数;2.特殊角的三角函数值.17.一钟表的分针长5 cm,经过40分钟后,分针外端点转过的弧长是________cm【答案】【解析】分针每60分钟转一周,故每分钟转过的弧度数是,分针经40分钟,分针的端点所转过的角的弧度数为2π×=,代入弧长公式l=αr,得出分针的端点所转过的长为×5=(cm).故答案为:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
864
.12
t
2
24 .
t
当大轮的转速为 18 ݎ䀀
⺁
时,12
t
18
432ݎ䀀 ⺁.小轮转速为 432ݎ䀀 ⺁,
小轮周上一点每 1s 转过的弧度数为:432 2
6
72 t
.
小轮的半径为 1 .t
, 小轮周上一点每 1s 转过的弧长为:72
t
21 2
1t1.2
.
2.【答案】
解:由已知
密位,所以 1 密位
中档题 17 任意角和弧度制与任意角的三角函数
1. 已知相互啮合的两个齿轮,大轮有 48 齿,小轮有 20 齿,当大轮转动一周时,小轮转动的角是______,即______rad,
2. 密位广泛用于航海和军事,我国采取的“密位制”是 6000 密位制,即将一个圆周分成 6000 等份,每一等份是
一个密位,那么 60 密位等于________rad.
______.
6. 已知扇形的周长为 20,当扇形的圆心角为______ 弧度时,它有最大的面积.
7.
,且 t t 1,复数
1
在复平面上对应的点 平面上 ,复平面上的动点 P 的集合所对应区
域的面积为______.
8. 如图所示,弧田是由圆弧 AB 和其所对弦 AB 围成的图形,若弧田的弧 AB 长为 4 ,
,那么 60 密位
,
3.【答案】 3
解:如图所示,
是半径为 r 的 的内接正三角形,则
设圆弧所对圆心角的弧度数为 ,则 ݎ
4.【答案】9
解: 公路外沿半径 1
4t3 23ຫໍສະໝຸດ 3ݎ,解得3.
6
,公路内沿半径 2
2
2 ⺁ ݎ3
3,
3ݎ,
圆心角
4 6
2,
3
大扇形
小扇形
1 62 2
2
3
1 32 2
2
______ .
14. 若点 ܿ 面 ⺁ 在直线 上 2平 上,则 cos 2 2 的值等于______.
1t. 已知角
2 的终边过点
sin
2 3
面cos
2 3
,则
__________.
16. 在平面直角坐标系 xOy 中,角 与角 均是以原点为顶点,以 x 轴非负半轴为始边的角,并且它们的终边关于直 线 上 平 对称.若 的终边经过点 4面2 ,则 sin sin ______.
弧所在的圆的半径为 6,则弧田的面积是__________.
9. 已知圆锥的底面半径为 1,高为 1t.要想从底面圆周上一点 A 出发拉一条细绳绕圆锥的
侧面一周再回到 A,则该条细绳的最短长度是_________.
1
.
一个圆锥的表面积为
,它的侧面展开图是圆心角为2 的扇形,则该圆锥的体积为
3
________.
ܽ ݎ,则tan 的值为________.
第 1页,共 4页
中档题 17 任意角和弧度制与任意角的三角函数答案和解析
1.【答案】864
24 t
1t1.2
解: 相互啮合的两个齿轮,大轮有 48 齿,小轮有 20 齿, 当大轮转动一周时,大轮转动了 48 个齿,
小轮转动48
2
12周,即12
t
t
36
17. 在平面直角坐标系 xOy 中,角 的顶点为坐标原点,始边与 x 轴的非负半轴重合,终边交单位圆 O 于点 平面上 ,
且平
上
7,则
t
cos
2
3 的值是__________.
2
18. 如图,圆 O 与 x 轴正半轴交点为 A,点 、 在圆 O 上,点 C 在第一象限,
且
4 t
面
3,
t
,
1,则 cos
3. 已知一圆弧的弧长等于它所在圆的内接正三角形的边长,则这段圆弧所对圆心角的弧度数为______ .
4. 设计一段宽 3 的公路弯道 如图 ,其中心线到圆心的距离为 4t ,且公路外沿 弧长为 4 ,则这段公路的占地面积为________ 2.
t. 已知扇形 AOB 的周长为 8,且圆心角弧度数为 2,则弦长
t 6
__ _.
19. 如图所示,已知 A,B 是单位圆上两点且
3,设 AB 与 x 轴正半轴交于点 C,
,
,则 ⺁ ⺁ ܿ ܿ ________.
2 . 如图,在平面直角坐标系 xOy 中,角 的始边与 x 轴的非负半轴重合且与单位圆相交于 A 点,它的终边与单位
圆相交于 x 轴上方一点 B,始边不动,终边在运动.若
6 4 ,解得
2.
3
12
.
4
故扇形
AOB
的面积为1
2
ݎ
12
,三角形
AOB
的面积为1
2
sin
2 3
9.【答案】4 2 解:如图所示:当沿 SA 剪开,再展开后得到扇形
62 9 3,故弧田的面积为 12 1,
因为圆锥的底面半径为 1,高为 1t,所以底面周长 1 2 ݎ2 ,母线
4,
9 3.
在扇形 1中,
1
1 ,所以
2
1
2
4 2,
10.【答案】 2 12
解:设圆锥底面半径是 r,母线长为 l,所以 ݎ2 ݎ,即ݎ2 ݎ1,
根据圆心角公式2
3
2 ݎ面则
3ݎ,所以解得 ݎ
1 2
面
3,那么高
当半径 ݎt 时,扇形的面积最大为 25,此时,
ݎ
2 2t t
2ܽ ݎ,
7.【答案】4 解:复数
1
在复平面上对应的点 平面上 , 平 1 ,上
,
平2 上2 1, 平 面上
.复平面上的动点 P 的集合所对应区域的面积 1
4
8.【答案】12 9 3
解:设圆弧 AB 所对圆心角的弧度为 ,由题可知
2
3
12
3
9
2.
5.【答案】
2ݎ
解:设扇形半径为 r,弧长为 l,由
ݎ
2
8 ,得到 ݎ2,
作出弦心距,圆心角的一半为 1 弧度,即可得出弦长为
,
6.【答案】2 解: 扇形的周长为 20, 2 ݎ2 ,即 2 2ݎ,
扇形的面积
1 2
ݎ
1 2
2
2ݎ ݎ
ݎ2 1 ݎ
ݎt 2 2t
面
2 3
,则弓形 AB 的面积 S 的最大值为______.
21. 如图,在半径为 2,中心角为2的扇形的内接矩形
只有 B 在弧上 的面积的最大值 ______ .
22. 如图左所示,某次帆船比赛 LOGO 的设计方案如下:在 t
中挖去以点 O 为圆心,OB 为半径的扇形
如图右所示 ,使得扇形 BOC 的面积与剩下来的图形面积相等.设
11. 正方体的棱长为 1,在正方体的表面上与点 A 距离为2 3的点形成一条曲线,这条曲线的长度为________.
3
12. 已知角 的终边经过点 3面 4 ,则 sin cos 的值为________.
13. 已知 是第二象限的角,设点 平面4 是 终边上一点,且 cos
3,则 4cos
t
− 3tan