任意角和弧度制练习题有答案.doc
任意角和弧度制、任意角的三角函数专题及答案

任意角和弧度制、任意角的三角函数专题一、基础小题1.已知角α的终边与单位圆交于点⎝ ⎛⎭⎪⎫-45,35,则tan α=( )A .-43B .-45C .-35D .-342.sin2cos3tan4的值( )A .小于0B .大于0C .等于0D .不存在 3.已知扇形的半径为12 cm ,弧长为18 cm ,则扇形圆心角的弧度数是( )A .23B .32C .23πD .32π4.如图所示,在直角坐标系xOy 中,射线OP 交单位圆O 于点P ,若∠AOP =θ,则点P 的坐标是( )A .(cos θ,sin θ)B .(-cos θ,sin θ)C .(sin θ,cos θ)D .(-sin θ,cos θ) 5.已知α是第二象限角,P (x ,5)为其终边上一点,且cos α=24x ,则x =( ) A . 3 B .±3 C .-2 D .- 36.已知角α=2k π-π5(k ∈Z),若角θ与角α的终边相同,则y =sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|的值为( )A .1B .-1C .3D .-3 7.已知扇形的面积为2,扇形圆心角的弧度数是4,则扇形的周长为( )A .2B .4C .6D .8 8.已知角α和角β的终边关于直线y =x 对称,且β=-π3,则sin α=( )A .-32 B .32 C .-12 D .129.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;④若sin α=sin β,则α与β的终边相同; ⑤若cos θ<0,则θ是第二或第三象限的角. 其中正确命题的个数是( )A .1B .2C .3D .410.点P 从(1,0)出发,沿单位圆x 2+y 2=1逆时针方向运动π3弧长到达Q 点,则Q 的坐标为________.11.已知角α的终边上有一点的坐标为⎝ ⎛⎭⎪⎫12,-32,若α∈(-2π,2π),则所有的α组成的集合为________.12.已知角α的终边上的点P 和点A (a ,b )关于x 轴对称(a ≠b ),角β的终边上的点Q 与A 关于直线y =x 对称,则sin αcos β+tan αtan β+1cos α·sin β=________. 二、高考小题13.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示成x 的函数f (x ),则y =f (x )在[0,π]的图象大致为( )14.若tan α>0,则( )A .sin α>0B .cos α>0C .sin2α>0D .cos2α>0 15.设a =sin33°,b =cos55°,c =tan35°,则( )A .a >b >cB .b >c >aC .c >b >aD .c >a >b 16.设函数f (x )(x ∈R)满足f (x +π)=f (x )+sin x .当0≤x <π时,f (x )=0,则f ⎝ ⎛⎭⎪⎫23π6=( )A .12B .32C .0D .-12三、模拟小题17.集合⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪ k π+π4≤α≤k π+π2,k ∈Z中的角所表示的范围(阴影部分)是( )18.已知角α的终边过点P (-8m ,-6sin30°),且cos α=-45,则m 的值为( )A .-12B .12C .-32D .3219.已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是( )A .(-2,3]B .(-2,3)C .[-2,3)D .[-2,3] 20.已知角x 的终边上一点的坐标为⎝ ⎛⎭⎪⎫sin 5π6,cos 5π6,则角x 的最小正值为( )A .5π6 B .5π3 C .11π6 D .2π321.已知A (x A ,y A )是单位圆上(圆心在坐标原点O )任意一点,且射线OA 绕O 点逆时针旋转30°到OB 交单位圆于B (x B ,y B ),则x A -y B 的最大值为( )A . 2B .32C .1D .1222.已知扇形的周长是4 cm ,则扇形面积最大时,扇形的圆心角的弧度数是( )A .2B .1C .12D .323.如图,设点A 是单位圆上的一定点,动点P 从A 出发在圆上按逆时针方向转一周,点P 所旋转过的弧AP ︵的长为l ,弦AP 的长为d ,则函数d =f (l )的图象大致为( )24.已知角θ的终边经过点P (-4cos α,3cos α),α∈⎝ ⎛⎭⎪⎫π,3π2,则sin θ+cos θ=________.模拟大题1.已知角α终边经过点P (x ,-2)(x ≠0),且cos α=36x .求sin α+1tan α的值.2.如图所示,动点P ,Q 从点A (4,0)出发沿圆周运动,点P 按逆时针方向每秒钟转π3弧度,点Q 按顺时针方向每秒钟转π6弧度,求点P ,点Q 第一次相遇时所用的时间、相遇点的坐标及P ,Q 点各自走过的弧长.3.设函数f (x )=-x 2+2x +a (0≤x ≤3)的最大值为m ,最小值为n ,其中a ≠0,a ∈R.(1)求m ,n 的值(用a 表示);(2)已知角β的顶点与平面直角坐标系xOy 中的原点O 重合,始边与x 轴的正半轴重合,终边经过点A (m -1,n +3),求sin ⎝ ⎛⎭⎪⎫β+π6的值.4.在平面直角坐标系xOy 中,角α的顶点是坐标原点,始边为x 轴的正半轴,终边与单位圆O 交于点A (x 1,y 1),α∈⎝ ⎛⎭⎪⎫π4,π2.将角α终边绕原点按逆时针方向旋转π4,交单位圆于点B (x 2,y 2).(1)若x 1=35,求x 2;(2)过A ,B 作x 轴的垂线,垂足分别为C ,D ,记△AOC 及△BOD 的面积分别为S 1,S 2,且S 1=43S 2,求tan α的值.任意角和弧度制、任意角的三角函数专题及答案一、基础小题1.已知角α的终边与单位圆交于点⎝ ⎛⎭⎪⎫-45,35,则tan α=( )A .-43B .-45C .-35D .-34答案 D解析 根据三角函数的定义,tan α=y x =35-45=-34,故选D. 2.sin2cos3tan4的值( )A .小于0B .大于0C .等于0D .不存在 答案 A解析 ∵sin2>0,cos3<0,tan4>0,∴sin2cos3tan4<0.3.已知扇形的半径为12 cm ,弧长为18 cm ,则扇形圆心角的弧度数是( )A .23B .32C .23πD .32π答案 B解析 由题意知l =|α|r ,∴|α|=l r =1812=32.4.如图所示,在直角坐标系xOy 中,射线OP 交单位圆O 于点P ,若∠AOP =θ,则点P 的坐标是()A .(cos θ,sin θ)B .(-cos θ,sin θ)C .(sin θ,cos θ)D .(-sin θ,cos θ) 答案 A解析 由三角函数的定义知,选A.5.已知α是第二象限角,P (x ,5)为其终边上一点,且cos α=24x ,则x =( ) A . 3 B .±3 C .-2 D .- 3答案 D解析 依题意得cos α=x x 2+5=24x <0,由此解得x =-3,故选D. 6.已知角α=2k π-π5(k ∈Z),若角θ与角α的终边相同,则y =sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|的值为( )A .1B .-1C .3D .-3 答案 B解析 由α=2k π-π5(k ∈Z)及终边相同的概念知,角α的终边在第四象限,又角θ与角α的终边相同,所以角θ是第四象限角,所以sin θ<0,cos θ>0,tan θ<0,所以y =-1+1-1=-1.7.已知扇形的面积为2,扇形圆心角的弧度数是4,则扇形的周长为( )A .2B .4C .6D .8 答案 C解析 设扇形的半径为R ,则12R 2|α|=2,∴R 2=1,∴R =1,∴扇形的周长为2R +|α|·R =2+4=6,故选C.8.已知角α和角β的终边关于直线y =x 对称,且β=-π3,则sin α=( )A .-32 B .32 C .-12 D .12答案 D解析 因为角α和角β的终边关于直线y =x 对称,所以α+β=2k π+π2(k ∈Z),又β=-π3,所以α=2k π+5π6(k ∈Z),即得sin α=12.9.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关; ④若sin α=sin β,则α与β的终边相同; ⑤若cos θ<0,则θ是第二或第三象限的角. 其中正确命题的个数是( )A .1B .2C .3D .4 答案 A解析 由于第一象限角370°不小于第二象限角100°,故①错;当三角形的内角为90°时,其既不是第一象限角,也不是第二象限角,故②错;③正确;由于sin π6=sin 5π6,但π6与5π6的终边不相同,故④错;当cos θ=-1,θ=π时既不是第二象限角,又不是第三象限角,故⑤错.综上可知只有③正确.10.点P 从(1,0)出发,沿单位圆x 2+y 2=1逆时针方向运动π3弧长到达Q 点,则Q 的坐标为________.答案 ⎝ ⎛⎭⎪⎫12,32解析 根据题意得Q (cos π3,sin π3),即Q ⎝ ⎛⎭⎪⎫12,32.11.已知角α的终边上有一点的坐标为⎝ ⎛⎭⎪⎫12,-32,若α∈(-2π,2π),则所有的α组成的集合为________.答案 ⎩⎨⎧⎭⎬⎫-π3,5π3解析 因为角α的终边上有一点的坐标为⎝ ⎛⎭⎪⎫12,-32,所以角α为第四象限角,且tan α=-3,即α=-π3+2k π,k ∈Z ,因此落在(-2π,2π)内的角α的集合为⎩⎨⎧⎭⎬⎫-π3,5π3.12.已知角α的终边上的点P 和点A (a ,b )关于x 轴对称(a ≠b ),角β的终边上的点Q 与A 关于直线y =x 对称,则sin αcos β+tan αtan β+1cos α·sin β=________. 答案 0解析 由题意得P (a ,-b ),Q (b ,a ),∴tan α=-b a ,tan β=a b (a ,b ≠0),∴sin αcos β+tan αtan β+1cos α·sin β=-b a 2+b 2b a 2+b 2+-ba ab +1a a 2+b 2·a a 2+b 2=-1-b 2a 2+a 2+b2a 2=0.二、高考小题13.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示成x 的函数f (x ),则y =f (x )在[0,π]的图象大致为( )答案 C解析 由题意|OM |=|cos x |,f (x )=|OM ||sin x |=|sin x cos x |= 12|sin2x |,由此可知C 正确. 14.若tan α>0,则( )A .sin α>0B .cos α>0C .sin2α>0D .cos2α>0 答案 C解析 由tan α>0,可得α的终边在第一象限或第三象限,此时sin α与cos α同号, 故sin2α=2sin αcos α>0,故选C.15.设a =sin33°,b =cos55°,c =tan35°,则( )A .a >b >cB .b >c >aC .c >b >aD .c >a >b 答案 C解析 ∵a =sin33°,b =cos55°=sin35°,c =tan35°=sin35°cos35°,∴sin35°cos35°>sin35°>sin33°.∴c >b >a ,选C.16.设函数f (x )(x ∈R)满足f (x +π)=f (x )+sin x .当0≤x <π时,f (x )=0,则f ⎝ ⎛⎭⎪⎫23π6=( )A .12B .32C .0D .-12答案 A解析 由题意得f ⎝ ⎛⎭⎪⎫23π6=f ⎝ ⎛⎭⎪⎫17π6+sin 17π6=f ⎝ ⎛⎭⎪⎫11π6+sin 11π6+sin 17π6=f ⎝ ⎛⎭⎪⎫5π6+sin 5π6+sin11π6+sin 17π6=0+12-12+12=12.三、模拟小题17.集合⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪ k π+π4≤α≤k π+π2,k ∈Z中的角所表示的范围(阴影部分)是( )答案 C解析 当k =2n 时,2n π+π4≤α≤2n π+π2,此时α的终边和π4≤α≤π2的终边一样.当k =2n +1时,2n π+π+π4≤α≤2n π+π+π2,此时α的终边和π+π4≤α≤π+π2的终边一样.18.已知角α的终边过点P (-8m ,-6sin30°),且cos α=-45,则m 的值为( )A .-12B .12C .-32D .32答案 B解析 r =64m 2+9,∴cos α=-8m 64m 2+9=-45,∴m >0,∴4m 264m 2+9=125,∴m =±12,∴m =12.19.已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是( )A .(-2,3]B .(-2,3)C .[-2,3)D .[-2,3] 答案 A解析 由cos α≤0,sin α>0可知,角α的终边落在第二象限内或y 轴的正半轴上,所以有⎩⎨⎧3a -9≤0,a +2>0,即-2<a ≤3. 20.已知角x 的终边上一点的坐标为⎝ ⎛⎭⎪⎫sin 5π6,cos 5π6,则角x 的最小正值为( )A .5π6 B .5π3 C .11π6 D .2π3答案 B解析 ∵sin 5π6=12,cos 5π6=-32,∴角x 的终边经过点⎝ ⎛⎭⎪⎫12,-32,tan x =-3,∴x =2k π+53π,k ∈Z ,∴角x 的最小正值为5π3.(也可用同角基本关系式tan x =sin xcos x得出.) 21.已知A (x A ,y A )是单位圆上(圆心在坐标原点O )任意一点,且射线OA 绕O 点逆时针旋转30°到OB 交单位圆于B (x B ,y B ),则x A -y B 的最大值为( )A . 2B .32C .1D .12答案 C解析 如图,由三角函数的定义,设x A =cos α,则y B =sin(α+30°),∴x A -y B =cos α-sin(α+30°)=12cos α-32sin α=cos(α+60°)≤1.22.已知扇形的周长是4 cm ,则扇形面积最大时,扇形的圆心角的弧度数是( )A .2B .1C .12 D .3答案 A解析 设此扇形的半径为r ,弧长为l ,则2r +l =4,面积S =12rl =12r (4-2r )=-r 2+2r =-(r -1)2+1,故当r =1时S 最大,这时l =4-2r =2.从而α=l r =21=2.23.如图,设点A 是单位圆上的一定点,动点P 从A 出发在圆上按逆时针方向转一周,点P 所旋转过的弧AP ︵的长为l ,弦AP 的长为d ,则函数d =f (l )的图象大致为( )答案 C解析 如图,取AP 的中点为D ,设∠DOA =θ,则d =2r sin θ=2sin θ,l =2θr =2θ, ∴d =2sin l2,故选C.24.已知角θ的终边经过点P (-4cos α,3cos α),α∈⎝ ⎛⎭⎪⎫π,3π2,则sin θ+cos θ=________.答案 15解析 因为π<α<3π2时,cos α<0,所以r =-5cos α,故sin θ=-35,cos θ=45,则sin θ+cos θ=15.模拟大题1.已知角α终边经过点P (x ,-2)(x ≠0),且cos α=36x .求sin α+1tan α的值. 解 ∵P (x ,-2)(x ≠0), ∴点P 到原点的距离r =x 2+2. 又cos α=36x ,∴cos α=x x 2+2=36x . ∵x ≠0,∴x =±10,∴r =2 3.当x =10时,P 点坐标为(10,-2),由三角函数的定义,有sin α=-66,1tan α=-5,∴sin α+1tan α=-66-5=-65+66; 当x =-10时,同样可求得sin α+1tan α=65-66.2.如图所示,动点P ,Q 从点A (4,0)出发沿圆周运动,点P 按逆时针方向每秒钟转π3弧度,点Q 按顺时针方向每秒钟转π6弧度,求点P ,点Q 第一次相遇时所用的时间、相遇点的坐标及P ,Q 点各自走过的弧长.解 设P ,Q 第一次相遇时所用的时间是t , 则t ·π3+t ·⎪⎪⎪⎪⎪⎪-π6=2π. 所以t =4(秒),即第一次相遇的时间为4秒.设第一次相遇点为C ,第一次相遇时P 点已运动到终边在π3·4=4π3的位置,则x C =-cos π3·4=-2,y C =-sin π3·4=-2 3.所以C 点的坐标为(-2,-23). P 点走过的弧长为43π·4=163π,Q 点走过的弧长为23π·4=83π.3.设函数f (x )=-x 2+2x +a (0≤x ≤3)的最大值为m ,最小值为n ,其中a ≠0,a ∈R.(1)求m ,n 的值(用a 表示);(2)已知角β的顶点与平面直角坐标系xOy 中的原点O 重合,始边与x 轴的正半轴重合,终边经过点A (m -1,n +3),求sin ⎝ ⎛⎭⎪⎫β+π6的值.解 (1)由题意可得f (x )=-(x -1)2+1+a ,而0≤x ≤3,所以m =f (1)=1+a ,n =f (3)=a -3.(2)由题意知,角β终边经过点A (a ,a ), 当a >0时,r =a 2+a 2=2a , 则sin β=a 2a =22,cos β=a 2a =22. 所以sin ⎝ ⎛⎭⎪⎫β+π6=sin β·cos π6+cos β·sin π6=2+64.当a <0时,r =a 2+a 2=-2a , 则sin β=a -2a=-22,cos β=a -2a=-22. 所以sin ⎝ ⎛⎭⎪⎫β+π6=sin β·cos π6+cos β·sin π6=-2+64.综上所述,sin ⎝ ⎛⎭⎪⎫β+π6=-2+64或2+64.4.在平面直角坐标系xOy 中,角α的顶点是坐标原点,始边为x 轴的正半轴,终边与单位圆O 交于点A (x 1,y 1),α∈⎝ ⎛⎭⎪⎫π4,π2.将角α终边绕原点按逆时针方向旋转π4,交单位圆于点B (x 2,y 2).(1)若x 1=35,求x 2;(2)过A ,B 作x 轴的垂线,垂足分别为C ,D ,记△AOC 及△BOD 的面积分别为S 1,S 2,且S 1=43S 2,求tan α的值.解 (1)因为x 1=35,y 1>0,所以y 1=1-x 21=45,所以sin α=45,cos α=35,所以x 2=cos ⎝ ⎛⎭⎪⎫α+π4=cos αcos π4-sin αsin π4=-210.(2)S 1=12sin αcos α=14sin2α.因为α∈⎝ ⎛⎭⎪⎫π4,π2,所以α+π4∈⎝ ⎛⎭⎪⎫π2,3π4,所以S 2=-12sin ⎝ ⎛⎭⎪⎫α+π4cos ⎝ ⎛⎭⎪⎫α+π4=-14sin ⎝ ⎛⎭⎪⎫2α+π2=-14cos2α.因为S 1=43S 2,所以sin2α=-43cos2α,即tan2α=-43,所以2tan α1-tan 2α=-43,解得tan α=2或tan α=-12.因为α∈⎝ ⎛⎭⎪⎫π4,π2,所以tan α=2.。
高中数学任意角与弧度制(原卷版)

5.1 任意角和弧度制考点一:任意角1.角的概念:角可以看成平面内一条射线绕着它的端点旋转所成的图形.2.角的表示:如图,OA是角α的始边,OB是角α的终边,O是角α的顶点.角α可记为“角α”或“∠α”或简记为“α”.3.角的分类:(根据旋转方向)名称定义图示正角按逆时针方向旋转形成的角负角按顺时针方向旋转形成的角零角一条射线没有作任何旋转形成的角考点二角的加法与减法设α,β是任意两个角,-α为角α的相反角.(1)α+β:把角α的终边旋转角β.(2)α-β:α-β=α+(-β).考点三象限角与轴线角(根据终边所在位置)把角放在平面直角坐标系中,使角的顶点与原点重合,角的始边与x轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就说这个角是轴线角.考点四终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z},即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.注意:(1)角的集合表示形式不唯一.(2)终边相同的角不一定相等,相等的角终边一定相同.考点五:度量角的两种单位制1.角度制:(1)定义:用度作为单位来度量角的单位制.(2)1度的角:周角的1360.2.弧度制:(1)定义:以弧度作为单位来度量角的单位制.(2)1弧度的角:长度等于半径长的圆弧所对的圆心角.考点六:弧度数的计算考点七:角度与弧度的互化利用弧度与角度换算公式 考点八:弧度制下的弧长与扇形面积公式设扇形的半径为R ,弧长为l ,α(0<α<2π)为其圆心角,则(1)弧长公式:l =αR .(2)扇形面积公式:S =12lR =12αR 2.(3)扇形的周长公式:r lC 2+=. (4)弓形的面积公式:∆-=s s s 扇弓考点九:象限角与轴线角10.017451801801801(57.30rad rad radrad ππππ⎧=≈⎪⎪=⎨⎪=≈⎪⎩)考点十.成特殊关系的两角:1.若角与角的终边关于x 轴对称,则角与角的关系:,Z k ∈2.若角与角的终边关于y 轴对称,则角与角的关系:,Z k ∈3.若角与角的终边互相垂直,则角与角的关系:,Z k ∈4.若角与角的终边在一条直线上,则角与角的关系:,Z k ∈5.与终边反向的角:6.终边在y=x 轴上的角的集合:7. 终边在轴上的角的集合:αβαββα-=k 360αβαββα-+= 180360k αβαβ 90360±+=βαk αβαββα+=k 180α{(21)180,}k k Z ββα︒=++⨯∈{}Z k k ∈+⨯=,45180|ββx y -={}Z k k ∈-⨯=,45180| ββ题型一:任意角的概念1.平面直角坐标系中,取角的顶点为坐标原点,角的始边为x 轴的非负半轴,下列说法正确的是( )A .第一象限角一定不是负角B .三角形的内角是第一象限角或第二象限角C .第二象限角必大于第一象限角D .钝角的终边在第二象限 2.下列说法中,正确的是( ) A .锐角是第一象限的角 B .终边相同的角必相等C .小于90︒的角一定为锐角D .第二象限的角必大于第一象限的角3.下列命题中正确的是( ) A .第一象限角是锐角 B .锐角是第一象限角C .终边相同的角必相等D .第二象限角必大于第一象限角题型二:终边相同的角4.终边落在直线y =上的角α的集合为( ) A .{}18030,Z k k αα=⋅︒+︒∈ B .{}18060,Z k k αα=⋅︒+︒∈ C .{}36030,k k αα=⋅︒+︒∈ZD .{}36060,Z k k αα=⋅︒+︒∈5.把375-︒表示成2πk θ+,Z k ∈的形式,则θ的值可以是( ) A .π12B .π12-C .5π12D .5π12-6.下列与角23π的终边一定相同的角是( ) A .53π B .()43k k Z ππ-∈ C .()223k k Z ππ+∈ D .()()2213k k Z ππ++∈题型三:象限角7.若α是锐角,则k θπα=+,()k ∈Z 是( ) A .第一象限角B .第三象限角C .第一象限角或第三象限角D .第二象限角或第四象限角8.下列说法中,正确的是( ) A .第二象限的角是钝角 B .第二象限的角必大于第一象限的角 C .150-︒是第二象限的角 D .25216,46744,118744'''-︒︒︒是终边相同的角9.“α是第四象限角”是“2α是第二或第四象限角”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件题型四:确定n 倍角所在象限10.若α是第一象限角,则2α-是( ) A .第一象限角 B .第一、四象限角 C .第二象限角 D .第二、四象限角11.下列有4个命题:(1)第二象限角大于第一象限角;(2)不相等的角终边可以相同;(3)若α是第二象限角,2α一定是第四象限角;(4)终边在x 轴正半轴上的角是零角;其中正确的命题有( ) A .(1)(2)B .(3)(4)C .(2)D .(1)(2)(3)(4)12.角α的终边属于第一象限,那么3α的终边不可能属于的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限题型五:度量角的两种单位制(角度制和弧度制)13.考生你好,本场考试需要2小时,在本场考试中,钟表的时针转过的弧度数为( ) A .3π B .3π-C .6π D .6π-14.现有两个相互啮合的齿轮,大轮有64齿,小轮有24齿,当小轮转一周时,大轮转动的弧度是( )A .π2B .7π8C .34π D .16π315.如图所示的时钟显示的时刻为10:10,将时针与分针视为两条线段,则该时刻的时针与分针( ) A .23π B .2336πC .1118πD .712π 变式.下列说法中正确的是() A.1弧度是1度的圆心角所对的弧 B.1弧度是长度为半径长的弧C.1弧度是1度的弧与1度的角之和D.1弧度是长度等于半径长的弧所对的圆心角的大小,它是角的一种度量单位题型六:角度与弧度的互化16.下列结论错误的是( ) A .-150°化成弧度是7rad 6π- B .10rad 3π-化成度是-600° C .6730︒'化成弧度是3rad 8π D .rad 12π化成度是15°17. 把下列各角从弧度化为度: (1)2π-; (2)103π; (3) 1.5-; (4)25.18.把下列各角从度化为弧度:(1)15° (2)36° (3)105-︒ (4)145°题型七:、与扇形的弧长、面积有关的计算19.已知某扇形的周长是6cm ,面积是22cm ,则该扇形的圆心角的弧度数为( ) A .1B .4C .1或4D .1或520.已知扇形AOB 的面积为8,且圆心角弧度数为2,则扇形AOB 的周长为( ) A.32B .24C .D .21.月牙泉,古称沙井,俗名药泉,自汉朝起即为“敦煌八景” 之一,得名“月泉晓澈”,因其形酷似一弯新月而得名,如图所示,月牙泉边缘都是圆弧,两段圆弧可以看成是ABC 的外接圆和以AB 为直径的圆的一部分,若2π3ACB ∠=,南北距离AB 的长大约,则该月牙泉的面积约为( )(参考数据: 3.14 1.73π≈)A .572m 2B .1448m 2C .1828m 2D .2028m 2【双基达标】一、单选题22.2022°是第( )象限角. A .一B .二C .三D .四23.下列选项中与角30α︒=-终边相同的角是( ) A .30B .240C .390D .33024.如果2弧度的圆心角所对的弦长为4,那么这个圆心角所对的弧长为( ) A .4sin1B .2sin1C .2sin1D .4sin125.给出下列四个命题:①-75°是第四象限角; ①小于90的角是锐角;①第二象限角比第一象限角大; ①一条弦的长等于半径,这条弦所对的圆心角等于1弧度. 其中正确的命题有( ) A .1个B .2个C .3个D .4个26.玉雕壁画是采用传统的手工雕刻工艺,加工生产成的玉雕工艺画.某扇形玉雕壁画尺寸(单位:cm )如图所示,则该玉雕壁画的扇面面积约为( )A .21600cmB .23200cmC .23350cmD .24800cm27.如图为某校数学兴趣小组用数学软件制作的“螺旋蚊香”图案,画法如下:在水平直线l 上取长度为1的线段AB ,作一个等边三角形ABC ,然后以点B 为圆心,AB 为半径逆时针画圆弧,交线段CB 的延长线于点D ,再以点C 为圆心,CD 为半径逆时针画圆弧,交线段AC 的延长线于点E ,以此类推,则如图所示的“螺旋蚊香”图案的总长度为( ) A .563πB .14πC .24πD .10π28.设α是第三象限角,且sin sin22αα=-,则2α的终边所在的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限29.如图,写出终边落在阴影部分的角的集合.(1) (2)30.已知一扇形的圆心角为α,半径为R ,弧长为()0L α>. (1)已知扇形的周长为10cm ,面积是24cm ,求扇形的圆心角;(2)若扇形周长为20cm ,当扇形的圆心角α为多少弧度时,这个扇形的面积最大?并求此扇形的最大面积.【高分突破】一、单选题31.若角α的终边与函数()1f x x =-的图象相交,则角α的集合为( ) A .π5π|2π+2π,Z 44k k k αα⎧⎫<<+∈⎨⎬⎩⎭B .3π7π|2π+2π,Z 44k k k αα⎧⎫<<+∈⎨⎬⎩⎭ C .3ππ|2π2π,Z 44k k k αα⎧⎫-<<+∈⎨⎬⎩⎭D .5ππ|2π2π,Z 44k k k αα⎧⎫-<<+∈⎨⎬⎩⎭32.已知{}4536090360k k ααα∈︒+⋅︒≤≤︒+⋅︒,则角α的终边落在的阴影部分是( )A .B .C .D .33.一个扇形的半径为3,圆心角为α,且周长为8,则α=( ) A .53B .23C .35D .3234.沈括的《梦溪笔谈》是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”.如图,AB 是以O 为圆心,OA 为半径的圆弧,C 是AB 的中点,D 在AB 上,CD AB ⊥.“会圆术”给出AB 后的弧长的近似值s 的计算公式:2CD s AB OA=+,记实际弧长为l .当2OA =,60AOB ∠=︒时,l s -的值约为( )(参考数据: 3.14π≈,3 1.73≈) A .0.01 B .0.05 C .0.13 D .0.53二、多选题35.已知扇形的周长是6,面积是2,则扇形的圆心角的弧度数是( ) A .1B .2C .3D .436.下列给出的各角中,与53π-的终边相同的角有( ) A .3π B .133πC .23π-D .53π37.中国传统扇文化有着极其深厚的底蕴,一般情况下,折扇可看作是从一个圆面中剪下的扇形制作而成,如图,设扇形的面积为1S ,其圆心角为θ,圆面中剩余部分的面积为2S ,当1S 与2S 的比值为512-时,扇面为“美观扇面”,下列结论正确的是(参考数据:5 2.236≈)( ) A .122S S θπθ=- B .若1212S S =,扇形的半径3R =,则12S π= C .若扇面为“美观扇面”,则138θ≈D .若扇面为“美观扇面”,扇形的半径20R =,则此时的扇形面积为()20035- 38.若α是第二象限角,则( ) A .πα-是第一象限角 B .2α是第一或第三象限角 C .32πα+是第二象限角 D .α-是第三或第四象限角39.北京天坛的圜丘坛为古代祭天的场所,卫星图片可以看成一个圆形,如果将其一分为二成两个扇形,设其中一个扇形的面积为1S ,圆心角为1α,天坛中剩余部分扇形的面积为2S ,圆心角为2α,()12αα<当1S 与2S 的比值为510.6182-≈时,则裁剪出来的扇形看上去较为美观,那么( )A .1137.5α︒≈B .1127.5α︒≈C .2(51)απ=-D .12512αα-=40.下列说法正确的是( ) A .150-化成弧度是76π-B .103π-化成角度是600- C .若角2rad α=,则角α为第二象限角D .若一扇形的圆心角为30,半径为3cm ,则扇形面积为23cm 2π41.下列说法错误的是( ) A .与735°终边相同的角是15°B .若一扇形的圆心角为15°,半径为3cm ,则扇形面积为23cm 4πC .设α是锐角,则角2α为第一或第二象限角D .设α是第一象限,则2α为第一或第三象限角三、填空题42.一个扇形的弧长为6π,面积为27π,则此扇形的圆心角为____________度. 43.若α是第二象限角,则180°-α是第______象限角.44.若两个角的差为1弧度,和为1°,则这两个角的弧度数分别为______.45.彝族图案作为人类社会发展的一种物质文化,有着灿烂历史.按照图案的载体大致分为彝族服饰图案、彝族漆器图案、彝族银器图案等,其中蕴含着丰富的数学文化,如图1,漆器图案中出现的“阿基米德螺线”,该曲线是由一动点匀速离开一个固定点的同时又以固定的角速度绕该固定点转动所形成的轨迹.这些螺线均匀分布,将其简化抽象为图2,若2OA =,则AOB ∠所对应的弧长为______.46.如图,用弧度制表示终边落在阴影部分(包括边界)的角的集合:______. 四、解答题47.已知α是第二象限角. (1)指出2α所在的象限,并用图形表示其变化范围; (2)若24α+≤,求α的取值范围.48.某地政府部门欲做一个“践行核心价值观”的宣传牌,该宣传牌形状是如图所示的扇形环面(由扇形OAD 挖去扇形OBC 后构成的).已知2OA =米,OB x =米()02x <<,线段BA 、线段CD 与弧BC 、弧AD 的长度之和为6米,圆心角为θ弧度.(1)求θ关于x 的函数解析式;(2)记该宣传牌的面积为y ,试问x 取何值时,y 的值最大并求出最大值.49.集合22,Z 33A x k x k k ππππ⎧⎫=-<<+∈⎨⎬⎩⎭,222,Z 3B x k x k k πππ⎧⎫=<<+∈⎨⎬⎩⎭,,Z 62C x k x k k ππππ⎧⎫=+<<+∈⎨⎬⎩⎭,[]10,10D =-,分别求A B ⋂,A C ,A D .。
任意角的概念与弧度制知识点习题附答案

典型题一 有关角的概念的问题
1.下列命题正确的是: ( )
A.终边相同的角一定相等。
B.第一象限的角都是锐角。
C.锐角都是第一象限的角。
D.小于 900 的角都是锐角。
2.下列结论:①第一象限角都是锐角
②锐角都是第一象限角
③第一象限角一定不是负角
④第二象限角是钝角
⑤小于 180°的角是钝角、直角、或锐角。
4.与角 终边相同的角的集合为 k 360 , k k 180 45, k
1)终边落在 y=x 上:
45 +k 360, k
2)终边落在第一象限角平分线上:
5.弧度制:把长度等于半径长的弧所对的圆心角叫做 1 弧度的角,用符号 rad 表示,读作弧度。 以弧度为单位来度量角的单位制度叫弧度制。
C.3 个
D.4 个
2.[四川遂宁 2019 高一测试]将表的分针拨慢 20 分钟,则分针转过的角的弧度是(
)
A. 2 3
B. 3
C. 2 3
D.
3
3.已知扇形的周长为 6cm,半径是 2cm,则扇形的圆心角的弧度数是( )
A.4
B.1
C.1 或 4
D.2
4.若角α是第二象限角,则 是(
)
2
D. α-β=90°+ k 360 (k∈Z)
12.已知角α与β的终边关于 y 轴对称,则α与β的关系为( )
A. α-β=π+2kπ B. α-β=π +2kπ
2
13.若α=2kπ+π (k∈Z),则α的终边在(
3
3
2
C. α+β=2kπ )
A.第一象限
B.第四象限
任意角和弧度制测试题(含解析)

任意角和弧度制测试题一、单选题1.在单位圆中,200∘的圆心角所对的弧长为( )A. 7π10B. 10π9C. 9πD. 10π二、多选题2.给出下列说法正确的有()A. 终边相同的角同一三角函数值相等;B. 不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;C. 若sinα=sinβ,则α与β的终边相同;D. 若cosθ<0,则θ是第二或第三象限的角3.下列说法错误..的是.( )A. 若角α=2rad,则角α为第二象限角B. 将表的分针拨快5分钟,则分针转过的角度是30°C. 若角α为第一象限角,则角α2也是第一象限角D. 若一扇形的圆心角为30°,半径为3cm,则扇形面积为3π2cm24.下列结论正确的是( )A. 是第三象限角B. 若圆心角为的扇形的弧长为,则该扇形面积为C. 若角的终边过点,则D. 若角为锐角,则角为钝角三、填空题5.(1)第三象限角的集合表示为(以弧度为单位).(2)弧度数为3的角的终边落在第象限.(3)−2π3弧度化为角度应为.(4)与880∘终边相同的最小正角是.(5)若角α的终边经过点A(−2,3),则tanα值为.(6)已知扇形的圆心角α=2π3,半径r=3,则扇形的弧长l为.6.下列说法中,正确的是.(填序号)①第一象限的角必为锐角;②锐角是第一象限的角;③终边相同的角必相等;④小于900的角一定为锐角;⑤角α与−α的终边关于x轴对称;⑥第二象限的角必大于第一象限的角.7.集合{α|k⋅180∘+45∘⩽α⩽k⋅180∘+90∘,k∈Z}中,角所表示的取值范围(阴影部分)正确的是(填序号).8.−600°是第象限角,与−600°终边相同的最小正角为弧度.9.线段OA的长度为3,将OA绕点O顺时针旋转120∘,得到扇形的圆心角的弧度数为,扇形的面积为.四、解答题10.已知角β的终边在直线y=−x上.(1)写出角β的集合S;(2)写出S中适合不等式−360°<β<360°的元素.答案和解析1.B 根据弧长公式,l =nπR 180,代入计算即可.2.AB 解:对于A ,由任意角的三角函数的定义知,终边相同的角的三角函数值相等,故A 正确;对于B ,不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关,故B 正确; 对于C ,若sinα=sinβ,则α与β的终边相同或终边关于y 轴对称,故C 错误;对于D ,若cos θ<0,则θ是第二或第三象限角或θ的终边落在x 轴的非正半轴上,故D 错误. 3.BCD 解:对于选项A .若角α=2rad ,2∈(π2,π),则角α为第二象限角,正确;对于选项B .将表的分针拨快5分钟,则分针转过的角度是−30°,故错误;对于选项C .若角α为第一象限角,2kπ<α<π2+2kπ,k ∈Z ,则kπ<α2<π4+kπ,k ∈Z , 当k =2n ,n ∈Z 时,2nπ<α2<π4+2nπ,k ∈Z ,即角α2是第一象限角;当k =2n +1,n ∈Z 时,2nπ+π<α2<5π4+2nπ,k ∈Z ,即角α2是第三象限角; 则角α2是第一或第三象限角,故错误;对于选项D .扇形面积为30°π·32360°=3π4cm 2,故错误. 4.BC 解:A 、−7π6=−2π+5π6,所以−7π6与5π6终边相同,是第二象限角,所以不正确; B 、若圆心角为π3的扇形半径为r ,由弧长为π3⋅r =π,则半径r =3,所以该扇形面积为12×π×3=3π2,正确;C 、若角α的终边过点P(−3,4),则r =√(−3)2+42=5,cos α=−35,正确; D 、若角α为锐角,设α=30∘,则角2α=60∘为锐角,所以不正确. 5.解:(1)第三象限角的集合表示为{α|π+2kπ<α<3π2+2kπ,k ∈Z}. 故答案为{α|π+2kπ<α<3π2+2kπ,k ∈Z}. (2)∵π2<3<π,∴弧度数为3的角为第二象限角,故其终边落在第二象限,故答案为二.(3)−2π3=−23×180°=−120°,故答案为−120∘.(4)与880∘终边相同的角α=880°+360°×k (k ∈Z ),当k =−2时,α=160∘即为最小正角,故答案为160∘.(5)根据任意角三角函数的定义,可知tanα=y x =−32,故答案为−32. (6)l =|α|·r =2π,故答案为2π. 6.解:命题①,390°角的终边在第一象限内,但不是锐角,故说法错误;命题②,锐角是第一象限角,故说法正确;命题③,390°角与30°角的终边相同,但两个角不相等,故说法错误;命题④,−30°小于90°,但不是锐角,故说法错误;命题⑤,角α与角−α的终边关于x 轴对称,故说法正确;命题⑥,120°角是第二象限角,390°角是第一象限角,120°小于390°,故说法错误. 故答案为②⑤.7.解:集合{α|k ⋅180∘+45∘⩽α⩽k ⋅180∘+90∘,k ∈Z}中,当k 为偶数时,集合为 {α|n ⋅360∘+45∘⩽α⩽n ⋅360∘+90∘,n ∈Z},当k 为奇数时,集合为 {α|n ⋅360∘+225∘⩽α⩽n ⋅360∘+270∘,n ∈Z},符合题意的只有③8.解:由−600°=(−2)×360°+120°,∴−600°在第二象限,∴与−600°终边相同的最小正角为120°,而120°=2π3,故答案为二;2π3. 9.解:由题意得扇形的圆心角α=−120∘ =−2π3,故扇形的面积S =12|α|⋅|OA|2= 12×2π3×9=3π.10.解:(1)直线y =−x 过原点,它是第二、四象限的角平分线所在的直线,故在0°~360°范围内,终边在直线y =−x 上的角有两个:135°,315°.因此,终边在直线y =−x 上的角的集合S ={β|β=135°+k ·360°,k ∈Z}∪{β|β=315°+k ·360°,k ∈Z}={β|β=135°+2k ·180°,k ∈Z}∪{β|β=135°+(2k +1)·180°,k ∈Z} ={β|β=135°+n ·180°,n ∈Z}.(2)由于−360°<β<360°,即−360°<135°+n ·180°<360°,n ∈Z .解得−114<n <54,n ∈Z.所以n =−2,−1,0,1.所以集合S 中适合不等式−360°<β<360°的元素为:135°−2×180°=−225°;135°−1×180°=−45°;135°+0×180°=135°; 135°+1×180°=315°;(2)在集合S 内,分别取k =−2,−1,0,1,可得适合不等式−360°<β<360°的元素.。
典型例题:任意角和弧度制

任意角和弧度制第1题:写出终边在直线y x =上的角的集合S ,并把S 中适合不等式360720β-<≤的元素β写出来.答案:解:如图,在直角坐标系中画出直线y x =,可以发现它与x 轴的夹角是45,在o o 0360到范围内,终边在直线y x =上的角有两个:45,225. 因此,终边在直线y x =上的角的集合. {}{}|45360,|225360,S k k k k ββββ==+⋅∈=+⋅∈Z Z{}|45180,k k ββ==+⋅∈Z .S 中适合360720β-<≤的元素是 452180315-⨯=-, 451180135-⨯=-, 4518045⨯=+0, 45180225⨯=+1, 452180405⨯=+,2254545180585⨯=+3.第2题:已知α是锐角,那么2α是( ) (A )第一象限角 (B )第二象限角 (C )小于180的正角 (C )第一或第二象限角 答案:C .第3题:已知相互啮合的两个齿轮,大轮有48齿,小轮有20齿,当大轮转动一周时,小轮转动的角是 ,即 rad .如果大轮的转速为180min r /(转/分),小轮的半径为10.5 cm ,那么小轮周上一点每1s 转过的弧长是 . 答案:864,24π5,151.2πcm 第4题:已知扇形的周长是6cm ,面积是22cm ,则扇形的圆心角的弧度数是( ) (A )1(B )1或4(C )4(D )2或4答案:B第5题:已知集合{}M =第一象限角,{}N =锐角,{}90P =小于角,则下列关系式中正确的是( ) (A )M N P == (B )M P(C )M P N =(D )N P N =答案:D第6题:若三角形的三个内角的比等于2:3:7,则各内角的弧度数分别为 . 答案:ππ7π6412,,第7题:写出角α的终边在下图中阴影区域内角的集合(包括边界).答案:(1){}|904590k k k αα+∈Z ,··≤≤; (2){}|120360150360k k k αα-++∈Z ,··≤≤第8题:单位圆上两个动点M N ,,同时从(10)P ,点出发,沿圆周运动,M 点按逆时针方向旋转π6弧度/秒,N 点按顺时针方向旋转π3弧度/秒,试求它们出发后第三次相遇时的位置和各自走过的弧度.答案:解:设从P 点出发后,t 秒时M N ,第三次相遇,则有ππ6π63t t +=,解得12t =(秒).故M 走了π122π6⨯=弧度,N 走了π124π3⨯=弧度,且知两点又回到了P 点. 第9题:已知扇形OAB 的圆心角为120,半径长为6cm ,求: (1)弧AB 的长;(2)该扇形所含弓形的面积.答案:解(1)2120π3α==,6cm r =,2π64πcm 3l ∴=⨯=.(2)2114π612πcm 22OAB S lr ==⨯⨯=扇形,2132AOB S =⨯=△.212πAOB OAB OAB S S S ∴=-=-弓形扇形△.第10题:将时钟拨快了10分钟,则时针转了 度,分针转了 弧度. 答案:π53--,第11题:已知扇形的周长为10cm ,面积为24cm ,则扇形的圆心角α的弧度数为 . 答案:12第12题:若角π|π(1)4m m m θαα⎧⎫==+-∈⎨⎬⎩⎭Z ,·,则角θ所在的象限是 .答案:第一或第二象限第13题:在扇形AOB 中,90AOB ∠=,弧AB 的长为l ,则此扇形内切圆的面积为 . 21282- 第14题:下列选项中,错误的是( ) (A )“度”与“弧度”是度量的两种不同的度量单位 (B )一度的角是周角的1360,一弧度的角是周角的12π(C )根据弧度的定义,180一定等于π弧度(D )不论是用角度制还是弧度制度量角,它们与圆的半径长短有关 答案:D第15题:如图,圆上一点A 以逆时针方向作匀速圆周运动,已知点A 每分钟转过θ角(0πθ<≤),经过2分钟到达第三象限,经过14分钟回到原来位置,求θ的大小.答案:解:由题目得142πk k θ=∈Z ,,即π7k θ=,k ∈Z , 又0πθ<≤,所以022πθ<≤,又2θ在第三象限,即3π2π2θ<<,则π3π24θ<<,即ππ3π274k <<. 解得72124k <<,k ∈Z ,故4k =或5. 4π7θ∴=或5π7.。
1 5.1.1 任意角 纯答案

5.1任意角和弧度制答案5.1.1任意角答案:(1)×(2)×(3)√(4)×答案:C解析:选A.由终边相同的角的定义可知与30°角终边相同的角的集合是{α|α=30°+k·360°,k∈Z}.答案:{α|α=125°+k·360°,k∈Z}答案:-25°395°任意角的概念【解析】①90°的角既不是第一象限角,也不是第二象限角,故①不正确;②始边相同而终边不同的角一定不相等,故②正确;③钝角大于-100°的角,而-100°的角是第三象限角,故③不正确;④0°角小于180°,但它既不是钝角,也不是直角或锐角,故④不正确.【答案】②解析:选B.钟表的时针和分针都是顺时针旋转,因此转过的角度都是负的,而212×360°=60°,2×360°=720°,故钟表的时针和分针转过的角度分别是-60°,-720°.终边相同的角【解】与10 030°终边相同的角的一般形式为β=k·360°+10 030°(k∈Z).(1)由-360°<k·360°+10 030°<0°,得-10 390°<k·360°<-10 030°,解得k=-28,故所求的最大负角为β=-50°.(2)由360°≤k·360°+10 030°<720°,得-9 670°≤k·360°<-9 310°,解得k=-26,故所求的角为β=670°.(变问法)在本例条件下,求最小的正角.解:由0°<k·360°+10 030°<360°,得-10 030°<k·360°<-9 670°,解得k=-27,故所求的最小正角为β=310°.1.解析:选D.与37°角的终边在同一直线上的角可表示为37°+k·180°,k∈Z,当k=-1时,37°-180°=-143°,故选D.2.解析:选B.角2α与240°角的终边相同,则2α=240°+k·360°,k∈Z,则α=120°+k·180°,k∈Z.选B.3.解析:由题意可知,终边在直线y =-x 上的角有两种情况:①当终边在第二象限时,可知{β|β=135°+k ·360°,k ∈Z };②当终边在第四象限时,可知{β|β=315°+k ·360°,k ∈Z }.综合①②可得,终边在直线y =-x 上的角的集合S ={β|β=135°+k ·180°,k ∈Z }.答案:{β|β=135°+k ·180°,k ∈Z }象限角与区域角的表示【解析】 (1)阴影部分的角从-45°到90°+30°=120°,再加上360°的整数倍,即k ·360°-45°≤α≤k ·360°+120°,k ∈Z .(2)因为α是第三象限角,所以k ·360°+180°<α<k ·360°+270°(k ∈Z ),所以k ·180°+90°<α2<k ·180°+135°(k ∈Z ). 当k =2n (n ∈Z )时,n ·360°+90°<α2<n ·360°+135°(n ∈Z ),所以α2是第二象限角;当k =2n +1(n ∈Z )时,n ·360°+270°<α2<n ·360°+315°(n ∈Z ), 所以α2是第四象限角. 【答案】 (1)C (2)D1.答案:-300°,30° -240°,124° -145°,210°-45°,300°2.解:(1)因为与角β终边相同的一个角可以表示为-45°,所以阴影部分(不包括边界)所表示的角的集合为{γ|k ·360°-45°<γ<k ·360°+60°,k ∈Z }.(2){θ|0°≤θ<60°或315°<θ<360°}.1.解析:选B.根据角的概念可知,90°角是以x 轴的非负半轴为始边,逆时针旋转了90°,故其终边在y 轴的非负半轴上.2.解析:选D.-390°=330°-720°,所以与330°角终边相同的角是-390°.3.解析:如图,设75°角的终边为射线OA ,射线OA 关于直线y =0对称的射线为OB ,则以射线OB 为终边的一个角为-75°,所以以射线OB 为终边的角的集合为{α|α=k ·360°-75°,k ∈Z }.又-360°<α<360°,令k =0或1,得α=-75°或285°.答案:-75°或285°4.解:(1)因为-150°=-360°+210°,所以在0°~360°范围内,与-150°角终边相同的角是210°角,它是第三象限角.(2)因为650°=360°+290°,所以在0°~360°范围内,与650°角终边相同的角是290°角,它是第四象限角.[A 基础达标]1.解析:选B.420°=360°+60°,终边位于第一象限;860°=2×360°+140°,终边位于第二象限;1 060°=2×360°+340°,终边位于第四象限;1 260°=3×360°+180°,终边位于x 轴非正半轴.故选B.2.解析:选C.因为1 303°=4×360°-137°,所以与1 303°终边相同的角是-137°.3.解析:选C.令k =-1,0,1,2,则A ,B 的公共元素有-126°,-36°,54°,144°.4.解析:选C.当k =2n ,n ∈Z 时,n ·360°+45°≤α≤n ·360°+90°,n ∈Z ;当k =2n +1,n ∈Z 时,n ·360°+225°≤α≤n ·360°+270°,n ∈Z .故选C.5.解析:选A.因为角α,β的终边相同,故α-β=k ·360°,k ∈Z .所以α-β的终边落在x 轴的非负半轴上.6.解析:与-120°终边相同的角为α=-120°+k ·360°(k ∈Z ),由0°≤-120°+k ·360°<360°,k ∈Z ,得13≤k <43, 又k ∈Z ,所以k =1,此时α=-120°+360°=240°.答案:240°7.解析:顺时针方向旋转3周转了-(3×360°)=-1 080°,又50°+(-1 080°)=-1 030°,故所得的角为-1 030°.答案:-1 030°8.解析:因为终边在第一象限的角的集合为{α|k ·360°<α<90°+k ·360°,k ∈Z },终边在第三象限的角的集合为{α|180°+k ·360°<α<270°+k ·360°,k ∈Z },故终边在第一或第三象限的角的集合为{α|k ·180°<α<90°+k ·180°,k ∈Z }.答案:{α|k ·180°<α<90°+k ·180°,k ∈Z }9.解:(1)集合M 的角可以分成四类,即终边分别与-150°角,-60°角,30°角,120°角的终边相同的角.(2)令-360°<30°+k ·90°<360°,k ∈Z ,则-133<k <113,k ∈Z , 所以k =-4,-3,-2,-1,0,1,2,3,所以集合M 中大于-360°且小于360°的角共有8个,分别是-330°,-240°,-150°,-60°,30°,120°,210°,300°.(3)集合M 中的第二象限角与120°角的终边相同,所以β=120°+k ·360°,k ∈Z .10.解:(1)由题可知,角β的集合S ={β|β=60°+k ·180°,k ∈Z }.(2)在S ={β|β=60°+k ·180°,k ∈Z }中,取k =-2,得β=-300°,取k =-1,得β=-120°,取k =0,得β=60°,取k =1,得β=240°,取k =2,得β=420°,取k =3,得β=600°.所以S 中适合不等式-360°<β<720°的元素分别是-300°,-120°,60°,240°,420°,600°.[B 能力提升]11.解析:选B.由α是第二象限角可知α2是第一或第三象限角,2α是第三或第四象限角,所以α2和2α都不是第二象限角.12.解析:因为5α与α的始边和终边相同,所以这两个角的差应是360°的整数倍,即5α-α=k ·360°,α=k ·90°.又180°<α<360°,令k =3,得α=270°.答案:270°13.解:由题意可知,α+β=-280°+k ·360°,k ∈Z ,因为α,β都是锐角,所以0°<α+β<180°.取k =1,得α+β=80°.①因为α-β=670°+k ·360°,k ∈Z .因为α,β都是锐角,所以-90°<α-β<90°.取k =-2,得α-β=-50°.②由①②,得α=15°,β=65°.[C 拓展探究]14.解:根据题意可知14α,14β均为360°的整数倍,故可设14α=m ·360°,m ∈Z ,14β=n ·360°,n ∈Z . 由于两只蚂蚁在第2秒时均位于第二象限,又由0°<α<β<180°,知0°<2α<2β<360°,进而知2α,2β都是钝角,即90°<2α<2β<180°,即45°<α<β<90°,所以45°<α=m 7·180°<90°,45°<β=n 7·180°<90°, 所以74<m <72,74<n <72. 因为α<β,所以m <n ,又m ,n ∈Z ,所以m =2,n =3,所以α=⎝⎛⎭⎫3607°,β=⎝⎛⎭⎫5407°.。
高一数学 必修四课时训练:1.1 任意角和弧度制 1.1.2 Word版含答案

1.1.2 弧度制1.角的单位制(1)角度制:规定周角的________为1度的角,用度作为单位来度量角的单位制叫做角度制.(2)弧度制:把长度等于________的弧所对的圆心角叫做1弧度的角,记作________.(3)角的弧度数求法:如果半径为r 的圆的圆心角α所对的弧长为l ,那么l ,α,r 之间存在的关系是:____________;这里α的正负由角α的________________决定.正角的弧度数是一个________,负角的弧度数是一个________,零角的弧度数是________.23.扇形的面积 S =________一、选择题 1.集合A =⎩⎨⎧⎭⎬⎫α|α=k π+π2,k ∈Z 与集合B =⎩⎨⎧⎭⎬⎫α|α=2k π±π2,k ∈Z 的关系是( )A .A =B B .A ⊆BC .B ⊆AD .以上都不对2.已知2弧度的圆心角所对的弦长为2,那么这个圆心角所对的弧长是( )A .2B .sin 2 C.2sin 1 D .2sin 13.扇形周长为6 cm ,面积为2 cm 2,则其中心角的弧度数是( )A .1或4B .1或2C .2或4D .1或54.已知集合A ={α|2k π≤α≤(2k +1)π,k ∈Z },B ={α|-4≤α≤4},则A ∩B 等于() A .∅B .{α|-4≤α≤π}C .{α|0≤α≤π}D .{α|-4≤α≤-π,或0≤α≤π}5.把-114π表示成θ+2k π(k ∈Z )的形式,使|θ|最小的θ值是( )A.π4 B .-π4 C.34π D .-34π6.扇形圆心角为π3,半径长为a ,则扇形内切圆的圆面积与扇形面积之比为( )A .1∶3B .2∶3C .4∶3D .4∶9二、填空题7.将-1 485°化为2k π+α (0≤α<2π,k ∈Z )的形式是________.8.若扇形圆心角为216°,弧长为30π,则扇形半径为____.9.若2π<α<4π,且α与-7π6角的终边垂直,则α=______. 10.若角α的终边与角π6的终边关于直线y =x 对称,且α∈(-4π,4π),则α=________________.三、解答题11.把下列各角化成2k π+α (0≤α<2π,k ∈Z )的形式,并指出是第几象限角:(1)-1 500°;(2)236π;(3)-4.12.已知一扇形的周长为40 cm ,当它的半径和圆心角取什么值时,才能使扇形的面积最大?最大面积是多少?能力提升13.已知一圆弧长等于其所在圆的内接正方形的周长,那么其圆心角的弧度数的绝对值为________.14.已知一扇形的中心角是α,所在圆的半径是R .(1)若α=60°,R =10 cm ,求扇形的弧长及该弧所在的弓形面积;(2)若扇形的周长是一定值c (c >0),当α为多少弧度时,该扇形有最大面积?1.1.2 弧度制答案知识梳理1.(1)1360 (2)半径长 1 rad (3)|α|=l r终边的旋转方向 正数 负数 0 2.2π 360° π 180° π180 ⎝⎛⎭⎫180π° 3.απR 180 αR απR 2360 12αR 2 12lR 作业设计1.A2.C [r =1sin 1,∴l =|α|r =2sin 1.] 3.A [设扇形半径为r ,圆心角为α,则⎩⎪⎨⎪⎧2r +αr =612αr 2=2, 解得⎩⎪⎨⎪⎧ r =1α=4或⎩⎪⎨⎪⎧r =2α=1.] 4.C [集合A 限制了角α终边只能落在x 轴上方或x 轴上.]5.D [∵-114π=-2π+⎝⎛⎭⎫-34π,∴θ=-34π.] 6.B [设扇形内切圆半径为r ,则r +r sin π6=r +2r =a .∴a =3r ,∴S 内切=πr 2. S 扇形=12αr 2=12×π3×a 2=12×π3×9r 2=32πr 2. ∴S 内切∶S 扇形=2∶3.]7.-10π+74π 解析 ∵-1 485°=-5×360°+315°,∴-1 485°可以表示为-10π+74π. 8.25解析 216°=216×π180=6π5,l =α·r =6π5r =30π,∴r =25. 9.73π或103π 解析 -76π+72π=146π=73π,-76π+92π=206π=103π. 10.-11π3,-5π3,π3,7π3解析 由题意,角α与π3终边相同,则π3+2π=73π, π3-2π=-53π,π3-4π=-113π. 11.解 (1)-1 500°=-1 800°+300°=-10π+5π3,∴-1 500°与53π终边相同,是第四象限角. (2)236π=2π+116π,∴236π与116π终边相同,是第四象限角. (3)-4=-2π+(2π-4),∴-4与2π-4终边相同,是第二象限角.12.解 设扇形的圆心角为θ,半径为r ,弧长为l ,面积为S , 则l +2r =40,∴l =40-2r .∴S =12lr =12×(40-2r )r =20r -r 2=-(r -10)2+100. ∴当半径r =10 cm 时,扇形的面积最大,最大值为100 cm 2,此时θ=l r =40-2×1010=2 rad. 13.4 2解析 设圆半径为r ,则内接正方形的边长为2r ,圆弧长为42r .∴圆弧所对圆心角|θ|=42r r=4 2. 14.解 (1)设弧长为l ,弓形面积为S 弓,∵α=60°=π3,R =10,∴l =αR =10π3(cm). S 弓=S 扇-S △=12×10π3×10-12×102×sin 60°=50⎝⎛⎭⎫π3-32 (cm 2). (2)扇形周长c =2R +l =2R +αR ,∴α=c -2R R , ∴S 扇=12αR 2=12·c -2R R ·R 2=12(c -2R )R =-R 2+12cR =-(R -c 4)2+c 216. 当且仅当R =c 4,即α=2时,扇形面积最大,且最大面积是c 216.。
高一数学任意角和弧度制和任意角的三角函数试题答案及解析

高一数学任意角和弧度制和任意角的三角函数试题答案及解析1.如果角的终边经过点,则()A.B.C.D.【答案】A【解析】直接利用三角函数的定义,求出.因为角θ的终边经过点,由三角函数的定义可知,,故选A.【考点】任意角的三角函数的定义.2.已知扇形半径为8, 弧长为12, 则中心角为弧度, 扇形面积是【答案】.【解析】圆心角;由扇形的面积公式得.【考点】扇形的面积公式及圆心角的计算.3.若点P位于第三象限,则角是第象限的角.【答案】二【解析】点P位于第三象限,则即,所以角是第二象限的角,答案为二.【考点】三角函数的符号4.半径为,中心角为所对的弧长是().A.B.C.D.【答案】D.【解析】弧长cm,故选D.【考点】弧长公式:(其中的单位是弧度).5.已知cosθ•tanθ<0,那么角θ是().A.第一或第二象限角B.第二或第三象限角C.第三或第四象限角D.第一或第四象限角【答案】B【解析】,,是第二象限角或第三象限角.【考点】象限角的符号.6.已知,则的集合为()A.B.C.D.【答案】D【解析】由知,在第一或第三象限,因为,所以.【考点】简单三角方程7.与角-终边相同的角是()A.B.C.D.【答案】C【解析】与−终边相同的角为2kπ−,k∈z,当 k=-1时,此角等于,故选:C.【考点】终边相同的角的定义和表示方法.8.如图,长为4米的直竹竿AB两端分别在水平地面和墙上(地面与墙面垂直),T为AB中点,,当竹竿滑动到A1B1位置时,,竹竿在滑动时中点T也沿着某种轨迹运动到T1点,则T运动的路程是_________米.【答案】.【解析】如图可知,点运动的轨迹为一段圆弧,由题意已知:,,∴,∴点运动的路程为.【考点】弧度制有关公式的运用.9.已知角的终边上有一点(1,2),则的值为( ).A.B.C.D.–2【答案】A【解析】角的终边过,,.【考点】任意角三角函数的定义.10.若角的终边上有一点,则的值是()A.B.C.D.【答案】B.【解析】先利用诱导公式化简,根据三角函数的定义知,即,故选B.【考点】运用诱导公式化简求值;任意角的三角函数的定义.11. 60°=_________.(化成弧度)【答案】【解析】根据,可得.【考点】角度与弧度的互化.12.与终边相同的最小正角是.【答案】【解析】因为与终边相同的角是所以当时,与终边相同的最小正角是【考点】与终边相同的角13.比较的大小 .【答案】【解析】,在上为增函数,可知,,可得.【考点】正弦函数的性质,特殊角的三角函数.14.已知扇形的周长为30,当它的半径R和圆心角各取何值时,扇形的面积S最大?并求出扇形面积的最大值.【答案】当扇形半径为,圆心角为2时,扇形有最大面积.【解析】根据条件扇形的周长为30可以得到l+2R=30,从而扇形的面积S=lR=(30-2R)R=,即把S表示为R的二次函数,根据二次函数求最值的方法,可以进一步变形为S=-(R-)2+,从而得到当扇形半径为,圆心角为2时,扇形有最大面积.∵扇形的周长为30,∴l+2R=30,l=30-2R,∴S=lR=(30-2R)R==-(R-)2+.....5分∴当R=时,扇形有最大面积,此时l=30-2R=15,==2........8分答:当扇形半径为,圆心角为2时,扇形有最大面积.....10分.【考点】1、弧度制下扇形相关公式;2、二次函数求最值.15.若点P(Cos,Sin)在直线y=-2x上,则=( )A.B.C.D.【答案】B【解析】因为点在直线上,所以,则.【考点】任意角的三角函数的定义;同角三角函数间的基本关系.16.已知是第一象限的角,那么是()A.第一象限角B.第二象限角C.第一或第二象限角D.第一或第三象限角【答案】D【解析】∵α的取值范围(k∈Z)∴的取值范围是(k∈Z),分类讨论①当k="2n+1" (其中n∈Z)时的取值范围是即属于第三象限角.②当k=2n(其中n∈Z)时的取值范围是即属于第一象限角.故答案为:D.【考点】象限角、轴线角.17.设,,,则( )A.B.C.D.【答案】D【解析】因为,所以<;因为,所以>,<,,所以b<a<c.故答案为:D.【考点】三角函数值.18.扇形的半径是,圆心角是60°,则该扇形的面积为 .【答案】π【解析】扇形的面积公式为.【考点】扇形的弧度制面积公式.19.的值()A.小于B.大于C.等于D.不存在【答案】A【解析】因为,所以,从而,选A.【考点】任意角的三角函数.20.计算:= ;【答案】1【解析】原式=【考点】三角函数值的计算21.已知扇形的圆心角为2rad,扇形的周长为8cm,则扇形的面积为___________cm2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
任意角和弧度制练习题
一、选择题
1、下列角中终边与330°相同的角是( )
A .30°
B .-30°
C .630°
D .-630°
2、-1120°角所在象限是 ( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
3、把-1485°转化为α+k ·360°(0°≤α<360°, k ∈Z )的形式是( )
A .45°-4×360°
B .-45°-4×360°
C .-45°-5×360°
D .315°-5×360°
4.在“①160°②480°③-960°④-1600°”这四个角中,属于第二象限的角是( )
A.①
B.①②
C.①②③
D.①②③④
5、终边在第二象限的角的集合可以表示为: ( )
A .{α∣90°<α<180°}
B .{α∣90°+k ·180°<α<180°+k ·180°,k ∈Z }
C .{α∣-270°+k ·180°<α<-180°+k ·180°,k ∈Z }
D.{α∣-270°+k ·360°<α<-180°+k ·360°,k ∈Z }
6.终边落在X 轴上的角的集合是( )
Α.{ α|α=k ·360°,K ∈Z } B.{ α|α=(2k+1)·180°,K ∈Z }
C.{ α|α=k ·180°,K ∈Z }
D.{ α|α=k ·180°+90°,K ∈Z }
7.若α是第四象限角,则180°+α一定是( )
Α.第一象限角 B. 第二象限角 C.第三象限角 D. 第四象限角
8.下列结论中正确的是( )
A.小于90°的角是锐角
B.第二象限的角是钝角
C.相等的角终边一定相同
D.终边相同的角一定相等
9.下列命题中的真命题是 ( )
A .三角形的内角是第一象限角或第二象限角
B .第一象限的角是锐角
C .第二象限的角比第一象限的角大
D .{
}Z k k ∈±⋅=,90360| αα={}Z k k ∈+⋅=,90180| αα 10、已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是( )
A .B=A ∩C
B .B ∪C=
C C .A ⊂C
D .A=B=C
11.若α是第一象限的角,则-2α是( ) A.第一象限的角 B.第一或第四象限的角 C.第二或第三象限的角 D.第二或第四象限的角
12.集合A={α|α=k ·90°,k ∈N +}中各角的终边都在( )
A.x 轴的正半轴上
B.y 轴的正半轴上
C.x 轴或y 轴上
D.x 轴的正半轴或y 轴的正半轴上
13.α是一个任意角,则α与-α的终边是( ) A.关于坐标原点对称 B.关于x 轴对称
C.关于直线y=x 对称
D.关于y 轴对称
14.设k ∈Z ,下列终边相同的角是 ( )
A .(2k +1)·180°与(4k ±1)·180°
B .k ·90°与k ·180°+90°
C .k ·180°+30°与k ·360°±30°
D .k ·180°+60°与k ·60° 15.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是()
A .2
B .1sin 2
C .1sin 2
D .2sin
16.一钟表的分针长10 cm ,经过35分钟,分针的端点所转过的长为:( )
A .70 cm
B .
670 cm C .(3425-3
π)cm D .3π35 cm 17.180°-α与α的终边( )
A .关于x 轴对称
B .关于y 轴对称
C .关于原点对称
D .以上都不对
18.设集合M ={α|α=5
-2ππk ,k ∈Z },N ={α|-π<α<π},则M ∩N 等于() A .{-105ππ3,} B .{-5
10ππ4,7} C .{-5-105ππππ4,107,3,} D .{07,031-1ππ } 19.某扇形的面积为12cm ,它的周长为4cm ,那么该扇形圆心角的度数为( )
A .2°
B .2
C .4°
D .4
20.如果弓形的弧所对的圆心角为
3
π,弓形的弦长为4 cm ,则弓形的面积是:( ) A .(344-9π) cm 2 B .(344-3
π )cm 2 C .(348-3π)cm 2 D .(328-3π) cm 2 21.设集合M ={α|α=k π±6
π,k ∈Z },N ={α|α=k π+(-1)k 6π,k ∈Z }那么下列结论中正确的是( )
A.M=N B.M N C.N M D.M N且N M
二、填空题(每小题4分,共16分,请将答案填在横线上)
22. 若角α的终边为第二象限的角平分线,则α的集合为
____________________.
23.与1991°终边相同的最小正角是______,绝对值最小的角是_________.
α角的终边在,2α角的终边
24.若角α是第三象限角,则
2
在______________.
25. 若角α、β的终边互为反向延长线,则α与β之间的关系是___________.
α则α的范围是.
26.已知α是第二象限角,且,4
|2
+
|≤
27. 在0与360范围内,找出与下列各角终边相同的角,并判断它们是第几象限
角?(1)120
-(2)640(3)95012'
-
28.中心角为60°的扇形,它的弧长为2π,求它的内切圆的面积
29.已知扇形的周长为20 cm,当扇形的中心角为多大时,它有最大面积,最大
面积是多少?
答案:
1.B
2.D
3.D
4.D
5.D
6.C
7.B
8.C
9.D 10.B
11.D 12.C 13.B 14.A 15.B
16.D 17.B 18.C 19.B 20.C 21.C
22.
试题分析:在上第一个出现终边在第二象限角平分线的角为,之后每隔个单位出现一个落在第二象限角平分线上角,因此所求集合为.
23. 1991=360*5+191=360*6-169
与1991°终边相同的最小正角是(191),绝对值最小的角是(169)
24.这里有一个技巧,就是把每个象限两等分(求角的几等分,就把每个象限几等分),就是
沿原点对折,给这八个区域依次编上号,怎么编呢,就是1,2,3,4,1,2,3,4,这里出现三的区域是第二象限和第四象限 (看原来的那个角在第几象限,这里就找出现几的区域),所以答案就是第二象限和第四象限,你多练几次,就知道了.第二问的话,因为180度+2k π= 25. 角α与角β的终边互为反向延长线,说明α=β+(2k+1)π,k ∈Z , 故答案为:(1)α=π-β+2k π,(k ∈z );(2)α=π+β+2k π,(k ∈z ). 26. 第二象限角为2k π+π∕2﹤a ﹤2k π+π,又由绝对值≤4得,-6≤a ≤2. k=0时,π∕2﹤a ﹤π,满足范围;
k=1时,-3/2 π﹤a ﹤-π,满足范围.k 取其他值时不成立,故a 的取值范围为]2,2
(),23(πππ⋃-- 27. (1)-120度=-360度+240度 所以0度到360度的范围内 240度和-120度终边相同 在第三象限
(2)640度=360度+280度 所以0度到360度的范围内 280度和640度终边相同 在第四象限
(3)-990度12分=-360度×3+89度48分 所以0度到360度的范围内 89度48分和-990度12分终边相同 在第一象限
28. 设扇形和内切圆的半径分别为R ,r .
由2π=
π 3
R ,解得R=6.
∵3r=R=6,∴r=2.
∴S=4π
29.25. 设半径=x,则弧长为20-2x
扇形面积
=1/2*半径*弧长
=1/2*x*(20-2x)
=-x ²+10x
对称轴是x=5
∴x=5时,扇形面积最大值=-25+50=25平方厘米
弧长为=10cm
圆心角=弧长/半径=10/5=2 rad。