任意角和弧度制知识点和练习

合集下载

教师版__任意角和弧度制知识点和练习

教师版__任意角和弧度制知识点和练习

9.一扇形半径长与弧长之比是3:,则该扇形所含弓形面积与该扇形的
面积之比为( )
(A)(B)(C) (D)
针对练习
1.下列角中终边与330°相同的角是( )
Α.30° B.-30° C.630° D.-630°
2.下列命题正确的是( )
A.终边相同的角一定相等 B.第一象限的角都是锐角。 C.锐角都是第一象
12.已知是第二象限角,且则的范围是
.
三、解答题
13. 在与范围内,找出与下列各角终边相同的角,并判断它们是第几象
限角?
(1)
(2)
(3)
14.写出角的终边在下图中阴影区域内角的集合(用弧度制表示)
(1)
(2)
(3)
于的角是锐角。
其中正确的命题序号是

例2:写出终边在直线上的角的集合;
练习:写出终边在直线上的角的集合。 例3: 求两个集合的交集 已知集合,, 练习:1、集合,,则等于( )
A、 B、 C、 D、 2、集合,,则等于( ) (A) (B) (C) (D) 3、,求 例4:判断下列角的集合的关系: 已知集合集合,则( )
A.三角形的内角是第一象限角或第二象限角 B.第一象限的角是锐角
C.第二象限的角比第一象限的角大 D.角α是第四象限角的充要条件 是2kπ-
<α<2kπ(k∈Z) 14.设k∈Z,下列终边相同的角是 ( )
A.(2k+1)·180°与(4k±1)·180° B.k·90°与k·180°+90° C.k·180°+30°与k·360°±30° D.k·180°+60°与k·60° 15.若90°<-α<180°,则180°-α与α的终边 ( ) A.关于x轴对称 B.关于y轴对称 C.关于原点对称 D.以上 都不对 16.设集合M={α|α=

最新高一三角函数知识点加练习题

最新高一三角函数知识点加练习题

《三角函数》一、任意角的概念与弧度制1、将沿x 轴正向的射线,围绕原点旋转所形成的图形称作角. 逆时针旋转为正角,顺时针旋转为负角,不旋转为零角2、同终边的角可表示为{}()360k k Z ααβ︒=+∈x 轴上角:{}()180k k Z αα=∈ y 轴上角:{}()90180k k Z αα=+∈3、第一象限角:{}()036090360k k k Z αα︒︒+<<+∈第二象限角:{}()90360180360k k k Z αα︒︒+<<+∈第三象限角:{}()180360270360k k k Z αα︒︒+<<+∈第四象限角:{}()270360360360k k k Z αα︒︒+<<+∈4、区分第一象限角、锐角以及小于90的角 第一象限角:{}()036090360k k k Z αα︒︒+<<+∈ 锐角:{}090αα<< 小于90的角:{}90αα<5、若α为第二象限角,那么2α为第几象限角? ππαππk k 222+≤≤+ππαππk k +≤≤+224,24,0παπ≤≤=k ,2345,1παπ≤≤=k所以2α在第一、三象限6、弧度制:弧长等于半径时,所对的圆心角为1弧度的圆心角,记作1rad .7、角度与弧度的转化:01745.01801≈=︒π 815730.571801'︒=︒≈︒=π8、角度与弧度对应表: 角度 0︒ 30︒ 45︒ 60︒90120︒ 135︒ 150︒ 180︒ 360︒弧度6π 4π 3π 2π 23π 34π 56π π2π9、弧长与面积计算公式 弧长:l R α=⨯;面积:21122S l R R α=⨯=⨯,注意:这里的α均为弧度制. 二、任意角的三角函数1、正弦:sin y r α=;余弦cos x r α=;正切tan yxα=ry)(x,P其中(),x y 为角α终边上任意点坐标,22r x y =+.2、三角函数值对应表:3、三角函数在各象限中的符号口诀:一全正,二正弦,三正切,四余弦.(简记为“全s t c ”)例题:1.已知α∠为第二象限角,135sin =α求αcos 、αtan 、αcot 的值2.已知α∠为第四象限角,3tan -=α求αcos 、αsin 、αcot 的值方法:①画直角三角形 ②利用勾股定理先算大小后看正负4、同角三角函数基本关系式22sin cos 1αα+= sin tan tan cot 1cos ααααα=⇒= ααααcos sin 21)cos (sin 2+=+ ααααcos sin 21)cos (sin 2-=-(ααcos sin +,ααcos sin -,ααcos sin ∙,三式之间可以互相表示)例题:1.已知sin 2cos 5,tan 3sin 5cos ααααα-=-+那么的值为_____________.已知2tan =α,则1.ααααcos sin cos sin -+=_____________.2.αααα22cos sin cos sin -=_____________. 3.1cos sin +αα=_____________.(“1”的代换)度 0 30 45 60 90 120 135 150 180︒270360弧度 0 6π 4π 3π 2π23π 34π 56π π 32π 2π sin α 0 12 22 32 1 32 2212 0 1 0 cos α 1 32 22 12 0 12- 22- 32- 1-0 1 tan α 0 33 1 3 无 3- 1- 33- 0 无 02.已知三角函数αsin 和αcos 的和或差的形式求αsin .αcos方法:等式两边完全平方(注意三角函数中判断正负利用角的范围进行取舍)例题:已知πα<∠<0,αsin +αcos =21,求①αsin .αcos ②αcos -αsin6、诱导公式口诀:奇变偶不变,符号看象限(所谓奇偶指的是απ+2n 中整数n 的奇偶性,把α看作锐角)212(1)sin ,sin()2(1)s ,n n n n co n απαα-⎧-⎪+=⎨⎪-⎩为偶数为奇数;212(1)s ,s()2(1)sin ,nn co n n co n απαα+⎧-⎪+=⎨⎪-⎩为偶数为奇数. ①.公式(一):α与()2,k k Z απ+∈απαsin )2sin(=+k ;απαcos )2cos(=+k ;απαtan )2tan(=+k②.公式(二):α与α-()sin sin αα-=-;()cos cos αα-=;()tan tan αα-=-③.公式(三):α与πα+()sin sin παα+=-;()cos cos παα+=-;()tan tan παα+=④.公式(四):α与πα-()sin sin παα-=;()cos cos παα-=-;()tan tan παα-=-⑤.公式(五):α与2πα+sin cos 2παα⎛⎫+= ⎪⎝⎭;cos sin 2παα⎛⎫+=- ⎪⎝⎭; ⑥.公式(六):α与2πα-sin cos 2παα⎛⎫-= ⎪⎝⎭;cos sin 2παα⎛⎫-= ⎪⎝⎭; ⑦.公式(七):α与32πα+ 3sin cos 2παα⎛⎫+=- ⎪⎝⎭;3cos sin 2παα⎛⎫+= ⎪⎝⎭; ⑧.公式(八):α与32πα- 3sin cos 2παα⎛⎫-=- ⎪⎝⎭;3cos sin 2παα⎛⎫-=- ⎪⎝⎭;例题1.)619sin(π-的值等于( )A. 21B. 21-C. 23D.23-2. 若⎭⎬⎫⎩⎨⎧∈-==z k k M ,52ππαα,{}παπα<<-=N 则N M 等于( )A. ⎭⎬⎫⎩⎨⎧-ππ103,5B. ⎭⎬⎫⎩⎨⎧-ππ54,107C. ⎭⎬⎫⎩⎨⎧--ππππ107,54,103,5D. ⎭⎬⎫⎩⎨⎧-ππ107,103 3. 已知33)6cos(=-απ求)6(sin )65cos(2πααπ+-+的值。

高一任意角与弧度制题型练习(全)

高一任意角与弧度制题型练习(全)

任意角知识梳理一、角的概念的推广1.角按其旋转方向可分为:正角,零角,负角.①正角:习惯上规定,按照逆时针方向旋转而成的角叫做正角;②负角:按照顺时针方向旋转而成的角叫做负角;③零角:当射线没有旋转时,我们也把它看成一个角,叫做零角.例如,画出下列各角:,,.2.在直角坐标系中讨论角:①角的顶点在原点,始边在轴的非负半轴上,角的终边在第几象限,就说这个角是第几象限角.②若角的终边在坐标轴上,就说这个角不属于任何象限,它叫轴线角.二、终边相同的角的集合设表示任意角,所有与终边相同的角,包括本身构成一个集合,这个集合可记为.集合的每一个元素都与的终边相同,当时,对应元素为.例如,如图,角、角和角都是以射线为终边的角,它们是终边相同的角.特别提醒:为任意角,“”这一条件不能漏;与中间用“”连接,可理解成;当角的始边相同时,相等的角的终边一定相同,而终边相同的角不一定相等.终边相同的角有无数个,它们相差的整数倍.终边不同则表示的角一定不同.三、区间角、区域角1.区间角、区域角的定义介于两个角之间的角的集合叫做区间角,如.终边介于某两角终边之间的角的几何叫做区域角,显然区域角包括无数个区间角.2.区域角的写法(1)若角的终边落在一个扇形区域内,写区域角时,先依逆时针方向由小到大写出一个区间角,然后在它的两端分别加上“”,右端末注明“”即可.(2)若角的终边落在两个对称的扇形区域内,写区域角时,可以先写出终边落在一个扇形区域内的一个区间角,在此区间角的两端分别加上“”,右端末注明“”即可.例如,求终边落在图中阴影内(包括边界)的角的集合,可先求落在第一象限内的区间角,故终边落在图中阴影内(包括边界)的角的集合为.3.各象限角的集合象限角象限角的集合表示第一象限角第二象限角第三象限角第四象限角四、倍角和分角问题已知角的终边所在的象限,求的终边所在象限.1.代数法由的范围求出的范围.通过分类讨论把写成的形式,然后判断的终边所在的象限.2.几何法画出区域:将坐标系每个象限等分,得个区域.标号:自轴正向起,沿逆时针方向把每个区域依次标上、、、,如图所示(此时).确定区域:找出与角的终边所在象限标号一致的区域,即为所求.题型训练题型一任意角的概念1.下列四个命题中,正确的是()A.第一象限的角必是锐角B.锐角必是第一象限的角C.终边相同的角必相等D.第二象限的角必大于第一象限的角2.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③锐角一定是第一象限的角;④小于的角一定是锐角;⑤终边相同的角一定相等.其中正确命题的个数是()A.1B.2C.3D.43.设集合,,则?题型二终边相同的角的集合1.下列各个角中与2020°终边相同的是()A.-150°B.680°C.220°D.320°2.写出终边在图中直线上的角的集合.3.写出终边落在图中阴影部分(包括边界)的角的集合.4.下列各组中,终边相同的角是()A.和()B.和C.和D.和5.若角与的终边关于轴对称,且,则所构成的集合为.6.与2021°终边相同的最小正角是.7.写出角的终边在阴影中的角的集合.题型三象限角的定义1.在,,,,这五个角中,属于第二象限角的个数是()A.2B.3C.4D.52.若是第四象限角,则一定是第几象限角?3.已知,则所在的象限是()A.第一象限B.第二象限C.第一或第二象限D.第三或第四象限题型四角所在象限的研究1.已知α为第二象限角,则所在的象限是()A.第一或第二象限B.第二或第三象限C.第一或第三象限D.第二或第四象限2.已知θ为第二象限角,那么是()A.第一或第二象限角B.第一或四象限角C.第二或四象限角D.第一、二或第四象限角3.若是第二象限角,则,是第几象限角?弧度制知识梳理一、弧度制和弧度制与角度制的换算1.角度制角可以用度为单位进行度量,度的角等于周角的,这种用度作为单位来度量角的单位制叫做角度制.2.弧度制①弧度的角:长度等于半径长的弧所对的圆心角.②弧度制定义:以弧度作为单位来度量角的单位制.记法:用符号表示,读作弧度.特别提醒:(1)用弧度为单位表示角的大小时,“弧度”或“”可以略去不写,只写这个角对应的弧度数即可,如角可写成.而用度为单位表示角的大小时,“度”或“°”不可以省略.(2)不管是以弧度还是以度为单位的角的大小都是一个与半径大小无关的定值.二、角度与弧度的换算1.弧度与角度的换算公式(1)关键:抓住互化公式rad=180°是关键;(2)方法:度数弧度数;弧度数度数2.一些特殊角的度数与弧度数的对应表:【注意】①在同一问题中,角度制与弧度制不能混用;②弧度制下角可以与实数可以建立一一对应的关系,所以弧度制表示的角的范围可以用区间表示,如,但角度制表示的角的范围一般不用区间表示,即不用表示,因为区间表示的是数集,但角度数不是实数.三、弧长公式、扇形面积公式如图,设扇形的半径为,弧长为,圆心角为.1.弧长公式:.注意:在应用弧长公式时,要注意的单位是“弧度”,而不是“度”,如果一直角是以“度”为单位的,则必须先把它化为以“弧度”为单位,再代入计算.2.扇形面积公式:.3.弧长公式及扇形面积公式的两种表示角度制弧度制弧长公式扇形面积公式注意事项是扇形的半径,是圆心角的角度数是扇形的半径,是圆心角的弧度数题型训练题型一弧度制与角度制互化1.与角终边相同的最小正角是?(用弧度制表示)2.若四边形的四个内角之比为,则四个内角的弧度数依次为.3.对应的弧度数为4.把化为弧度的结果是5.如图,用弧度制表示终边落在下列阴影部分的角.6.若θ=-3rad,则θ的终边落在()A.第一象限B.第二象限C.第三象限D.第四象限题型二扇形的弧长、面积、与圆心角问题1.半径为,中心角为的角所对的弧长为()A.B.C.D.2.已知扇形的面积为,扇形圆心角的弧度数是,则扇形的周长为()A.2B.4C.6D.83.已知扇形的周长为,圆心角为,则扇形的面积为?4.一个扇形的弧长与面积都是,则这个扇形圆心角的弧度数为()A.B.C.D.5.已知弧度的圆心角所对的弦长为,那么,这个圆心角所对的弧长是()A.B.C.D.6.半径为,圆心角为的扇形的弧长为()A.B.C.D.7.设扇形的弧长为,半径为,则该扇形的面积为?8.已知扇形的周长为,面积为,则扇形圆心角的弧度数为?。

完整版)三角函数知识点归纳

完整版)三角函数知识点归纳

完整版)三角函数知识点归纳三角函数一、任意角、弧度制及任意角的三角函数1.任意角1)角的概念的推广角可以按照旋转方向分为正角、负角和零角,也可以按照终边位置分为象限角和轴线角。

2)终边与角α相同的角可写成α+k·360°(k∈Z)。

3)弧度制弧度制是一种角度量,1弧度的角是指长度等于半径长的弧所对的圆心角。

弧度与角度可以互相转换。

2.任意角的三角函数定义设α是一个任意角,角α的终边上任意一点P(x,y),它与原点的距离为r(x^2+y^2),那么角α的正弦、余弦、正切分别是:sinα=y/r,cosα=x/r,tanα=y/x。

3.特殊角的三角函数值特殊角的三角函数值可以通过计算得到,如30度角的正弦为1/2,余弦为√3/2,正切为√3/3,以此类推。

注意:删除了明显有问题的段落,同时对每段话进行了小幅度的改写以提高表达清晰度。

和周期;2掌握三角函数的图像及其性质;3熟练运用诱导公式和基本关系进行化简和求值。

二、同角三角函数的基本关系与诱导公式A.基础梳理1.同角三角函数的基本关系1)平方关系:sin^2α+cos^2α=1;(在利用同角三角函数的平方关系时,若开方,要特别注意判断符号)2)商数关系:sinα/cosα=tanα,cosα/sinα=1/tanα,1+tan^2α=sec^2α,1+ cot^2α=csc^2α。

2.诱导公式公式一:sin(α+2kπ)=sinα,cos(α+2kπ)=cosα,tan(α+2kπ)=tanα其中k∈Z.公式二:sin(π+α)=-sinα,cos(π+α)=-cosα,tan(π+α)=tanα.公式三:sin(π-α)=sinα,cos(π-α)=-cosα,XXX(π-α)=-tanα.公式四:sin(-α)=-sinα,cos(-α)=cosα,tan(-α)=-tanα.公式五:sin(π/2-α)=cosα,cos(π/2-α)=sinα.公式六:sin(π/2+α)=cosα,cos(π/2+α)=-sinα.诱导公式可概括为k·±α的各三角函数值的化简公式.口诀:奇变偶不变,符号看象限.其中的奇、偶是指的奇数22倍和偶数倍,变与不变是指函数名称的变化.若是奇数倍,则函数名称要变(正弦变余弦,余弦变正弦);若是偶数倍。

第5章-5.1.2-弧度制高中数学必修第一册湘教版

第5章-5.1.2-弧度制高中数学必修第一册湘教版
−135∘ 角的终边,化为弧度,即−
π
3

,60∘
4

图5.1.2-3
的终边即 的终边,所以终边落在阴影部分内
(不包括边界)的角的集合为{|2π −

4
π
3
< < 2π + , ∈ }.
(2)与(1)类似可写出终边落在阴影部分内(不包括边界)的角的集合为
π
6
π
2
π
6
π
2
{|2π + < < 2π + , ∈ } ∪ {|2π + π + < < 2π + π + ,
工制作零件,零件的截面如图5.1.2-6所示.为圆孔及轮廓
圆弧所在圆的圆心,是圆弧与直线的切点,
是圆弧与直线的切点,四边形为矩形,
3
5
⊥ ,垂足为,tan ∠ = ,//, = 12 cm,
图5.1.2-6
= 2 cm,到直线和的距离均为7 cm,圆孔半径为1 cm,则图中阴影部分的面
π
,则−
4
+ 2π <
π+
2
< 2π , ∈
π+

的终边
∵ 扇形面积 =
1

2
= 1,∴ =
∴ 周长 = + 2 =
2
+

2


2 ≥ 4,当且仅当 = 1时取等号.
∴ 当 = 1时,周长最小.
【学会了吗丨变式题】
2.已知扇形的周长为100 cm,则该扇形的面积的最大值为( B
A.100 cm2

高中数学《7、1角与弧度》知识点+教案课件+习题

高中数学《7、1角与弧度》知识点+教案课件+习题

知识点:1.弧度制(1)弧度制的定义长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad表示,读作弧度.以弧度作为单位来度量角的单位制叫做弧度制.(2)任意角的弧度数与实数的对应关系正角的弧度数是一个正数;负角的弧度数是一个负数;零角的弧度数是零.(3)角的弧度数的计算如果半径为r的圆的圆心角α所对弧的长为l,那么,角α的弧度数的绝对值是2.角度制与弧度制的换算(1)(2)一些特殊角的度数与弧度数的对应关系视频教学:练习:1.将表的分针拨慢20分钟,则分针转过的角的弧度是( )A. B. C. D.2.集合,,则有( )A. B. C. D.3.与角的终边相同的角的表达式中,正确的是( )A. B. C. D.4.若扇形的半径为2,面积为,则它的圆心角为( )A. B. C. D.5.已知扇形的圆心角为,半径为,则此扇形的面积为( )A. B. C. D.课件:教案:教材分析前一节已经学习了任意角的概念,而本节课主要依托圆心角这个情境学习一种用长度度量角的方法—弧度制,从而将角与实数建立一一对应关系,为学习本章的核心内容—三角函数扫平障碍,打下基础.教学目标与核心素养课程目标1.了解弧度制,明确1弧度的含义.2.能进行弧度与角度的互化.3.掌握用弧度制表示扇形的弧长公式和面积公式.数学学科素养1.数学抽象:理解弧度制的概念;2.逻辑推理:用弧度制表示角的集合;3.直观想象:区域角的表示;4.数学运算:运用已知条件处理扇形有关问题.教学重难点重点:弧度制的概念与弧度制与角度制的转化;难点:弧度制概念的理解.课前准备教学方法:以学生为主体,采用诱思探究式教学,精讲多练。

教学工具:多媒体。

教学过程一、情景导入度量单位可以用米、英尺、码等不同的单位制,度量质量可以用千克、磅等不同的单位制,不同的单位制能给解决问题带来方便.角的度量是否也可以用不同的单位制呢?能否像度量长度那样,用十进制的实数来度量角的大小呢?要求:让学生自由发言,教师不做判断。

任意角的概念与弧度制知识点习题附答案

任意角的概念与弧度制知识点习题附答案

典型题一 有关角的概念的问题
1.下列命题正确的是: ( )
A.终边相同的角一定相等。
B.第一象限的角都是锐角。
C.锐角都是第一象限的角。
D.小于 900 的角都是锐角。
2.下列结论:①第一象限角都是锐角
②锐角都是第一象限角
③第一象限角一定不是负角
④第二象限角是钝角
⑤小于 180°的角是钝角、直角、或锐角。
4.与角 终边相同的角的集合为 k 360 , k k 180 45, k
1)终边落在 y=x 上:
45 +k 360, k
2)终边落在第一象限角平分线上:
5.弧度制:把长度等于半径长的弧所对的圆心角叫做 1 弧度的角,用符号 rad 表示,读作弧度。 以弧度为单位来度量角的单位制度叫弧度制。
C.3 个
D.4 个
2.[四川遂宁 2019 高一测试]将表的分针拨慢 20 分钟,则分针转过的角的弧度是(

A. 2 3
B. 3
C. 2 3
D.
3
3.已知扇形的周长为 6cm,半径是 2cm,则扇形的圆心角的弧度数是( )
A.4
B.1
C.1 或 4
D.2
4.若角α是第二象限角,则 是(
)
2
D. α-β=90°+ k 360 (k∈Z)
12.已知角α与β的终边关于 y 轴对称,则α与β的关系为( )
A. α-β=π+2kπ B. α-β=π +2kπ
2
13.若α=2kπ+π (k∈Z),则α的终边在(
3
3
2
C. α+β=2kπ )
A.第一象限
B.第四象限

(完整版)任意角和弧度制知识点和练习

(完整版)任意角和弧度制知识点和练习

知识点一:任意角的表示⎧⎪⎨⎪⎩正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角知识点二:象限角的范围2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角. 第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z o o o 第二象限角的集合为{}36090360180,k k k α⋅+<⋅+∈Z o o o o 第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z o o o o 第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z o o o o终边在x 轴上的角的集合为{}180,k k αα=⋅∈Z o终边在y 轴上的角的集合为{}18090,k k αα=⋅+∈Z o o 终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z o知识点三:终边角的范围3、与角α终边相同的角的集合为{}360,k k ββα=⋅+∈Z o4、已知α是第几象限角,确定()*n n α∈N 所在象限的方法:先把各象限均分n 等份,再从x 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则α原来是第几象限对应的标号即为n α终边所落在的区域.知识点四:弧度制的转换5、长度等于半径长的弧所对的圆心角叫做1弧度.6、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是l r α=. 7、弧度制与角度制的换算公式:2360π=o ,1180π=o ,180157.3π⎛⎫=≈ ⎪⎝⎭oo . 知识点五:扇形8、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+,21122S lr r α==.例题分析【例1】如果α角是第二象限的角,那么2α角是第几象限的角?说说你的理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

知识点一:任意角
⎧⎪
⎨⎪⎩
正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角
2、象限角:角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角.
第一象限角的集合为{}
36036090,k k k αα⋅<<⋅+∈Z o o o
第二象限角的集合为{}36090360180,k k k α⋅+<⋅+∈Z o
o
o
o
第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z o
o
o
o
第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z o
o
o
o
终边在x 轴上的角的集合为{}180,k k αα=⋅∈Z o
终边在y 轴上的角的集合为{}18090,k k αα=⋅+∈Z o
o 终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z o
3、终边相同的角:
与角α终边相同的角的集合为{}
360,k k ββα=⋅+∈Z o 4、已知α是第几象限角,确定
()*
n n
α
∈N 所在象限:若α是第k 象限角,把单位圆上每个象限的圆弧n 等分,并从x 轴正半轴开始,沿逆时针方向依次在每个区域标上1,2,3,4,再循环,直到填满为止,则有标号k
的区域是角
n
α
终边所在的范围。

知识点二、弧度制的转换:
5、长度等于半径长的弧所对的圆心角叫做1弧度.
6、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是l
r
α=
. 7、弧度制与角度制的换算公式:2360π=o
,1180π
=o
,180157.3π⎛⎫
=≈ ⎪⎝⎭
o
o .
8、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,
则弧长公式:l r α=,扇形周长:2C r l =+,扇形面积:211
S lr r α==.
例题分析 【例1】在~ 间,找出与下列各角终边相同的角,并判定它们是第几象限角
(1) ;(2)
;(3)

【例2】如果α角是第二象限的角,那么
2α,3
α
角分别是第几象限的角?说说你的理由。

【例3】写出角的终边在图中阴影区域内的角的集合(不包括边界)
【例4】(1)扇形的中心角为π3
2
,弧长为π2,则其半径=r ______.
(2)一条弦的长等于半径,则这条弦所对的圆心角是 弧度.
(3)点P 从圆心在原点O 的单位圆上点)0,1(出发,沿逆时针方向运动π65
弧长,到达点Q ,则点
Q 的坐标是_______________.
(4)将65π
rad 化为角度是 .
(5)已知扇形的周长为cm 3
24π
+
,其半径为cm 2,则该扇形的圆心角的弧度数为 . (6)若2弧度的圆心角所对的弦长为2,则这个圆心角所夹扇形的面积为( )
A 、1sin 2
B 、21sin 2
C 、 21sin 1
D 、tan1
【例5】如图,一条弦AB 的长等于它所在的圆的半径R,求弦AB 和劣弧AB 所组成的弓形的面积.
A B
R R
【例6】如图,圆上一点A 以逆时针方向作匀速圆周运动,已知点A 每分钟转过θ角(0πθ<≤),经过2分钟到达第三象限,经过14分钟回到原来位置,求θ的大小.
【例7】一扇形周长为20cm ,当扇形的圆心角α等于多少弧度时,这个扇形的面积最大?并求此
扇形的最大面积?
针对练习
1.下列角中终边与330°相同的角是( )
Α.30° B.-30° C.630° D.-630° 2.下列命题正确的是( )
Α.终边相同的角一定相等。

B.第一象限的角都是锐角。

C.锐角都是第一象限的角。

D.小于︒90的角都是锐角。

3.如果一扇形的弧长为2πcm ,半径等于2cm ,则扇形所对圆心角为( )
A.π B.2π C.π2 D.3π
2
4.若α是第四象限角,则180°+α一定是( )
Α.第一象限角 B. 第二象限角 C.第三象限角 D. 第四象限角 5.若3rad α=-,则它是( )C
A 、第一象限角
B 、第二象限角
C 、第三象限角
D 、第四象限角 6.一个半径为R 的扇形,它的周长为4R ,则这个扇形所含弓形的面积为( )
A.2112sin 222
R ⎛⎫-
⎪⎝

B.21sin 22
R C.212
R
D.221
sin 22
R R -
7.若α角的终边落在第三或第四象限,则2α
的终边落在( ) A .第一或第三象限 B .第二或第四象限
8.某扇形的面积为12cm ,它的周长为4cm ,那么该扇形圆心角的度数为 ( )
A .2°
B .2
C .4°
D .4 9.下列说法正确的是
( )
A .1弧度角的大小与圆的半径无关
B .大圆中1弧度角比小圆中1弧度角大
C .圆心角为1弧度的扇形的弧长都相等
D .用弧度表示的角都是正角
10.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是 ( )
A .2
B .
1
sin 2
C .1sin 2
D .2sin
二、填空题
11.若三角形的三个内角的比等于2:3:7,则各内角的弧度数分别为 .
12.将时钟拨快了10分钟,则时针转了 度,分针转了 弧度.
13.若角α的终边为第二象限的角平分线,则α的集合为______________________.
14.已知α是第二象限角,且,4|2|≤+α则α的范围是 . 三、解答题
15.求所有与所给角终边相同的角的集合,并求出其中的最小正角,最大负角: (1)ο210-; (2)731484'-ο.
16.写出角的终边在下图中阴影区域内角的集合(用弧度制表示)
(1) (2) (3)
17.绳子绕在半径为50cm的轮圈上,绳子的下端B处悬挂着物体W,如果轮子按逆时针方向每分钟匀速旋转4圈,那么需要多少秒钟才能把物体W的位置向上提升100cm?
18、已知两角的和为1弧度,两角的差为1°,求这两个角各是多少弧度?。

相关文档
最新文档