中考第23题训练.doc
三角函数专项训练(中考23题)

三角函数专项训练(中考23题)1.如图,在菱形ABCD 中,AE ⊥BC ,E 为垂足,cosB= 54,EC=2, (1)求菱形ABCD 的边长.(2)若P 是AB 边上的一个动点,则线段EP 的长度的最小值是多少?2.如图,在矩形ABCD 中,CE ⊥BD 于点E ,BE=2,DE=8,则tan ∠ACE 的值为( ) A .21 B .34 C .43 D .23.如图,水坝的横断面是梯形,迎水坡AD 的坡角∠A=45°,背水坡BC 的坡度为31,坝顶DC 宽25米,坝高45米,求:(1)背水坡的坡角;(2)坝底AB 的长.4.小刚在一山坡上依次插了三根木杆,第一根木杆与第二根木杆插在倾斜角为30°,且坡面距离是6米的坡面上,而第二根与第三根又在倾斜角为45°,且坡面距离是8米的坡面上.则第一根与第三根木杆的水平距离是______米.(如图)(精确到0.01米)5.如图,是学校背后山坡上一棵原航空标志的古柏树AB 的示意图,在一个晴天里,数学教师带领学生进行测量树高的活动.通过分组活动,得到以下数据: 一是AC 是光线的方向,并且测得水平地面2m 的竹竿影长为0.5m .二是测得树在斜坡上影子BC 的长为10m ;三是测得影子BC 与水平线的夹角∠BCD 为30°;请你帮助计算出树的高度AB(根号 3 =1.732,精确到0.1m).6.如图,在航线l的两侧分别有观测点A和B,点A到航线l的距离为2km,点B位于点A北偏东60°方向且与A相距10km处.现有一艘轮船从位于点B南偏西76°方向的C处,正沿该航线自西向东航行,5min后该轮船行至点A的正北方向的D处.(1)求观测点B到航线l的距离;(2)求该轮船航行的速度(结果精确到0.1km/h).(参考数据:3 ≈1.73,sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)7.如图,某高速公路建设中需要确定隧道AB的长度.已知在离地面1500m,高度C处的飞机,测量人员测得正前方A、B两点处的俯角分别为60°和45°,求隧道AB的长.8.如图,某防洪指挥部发现长江边一处长500米,高10米,背水坡的坡角为45°的防洪大堤(横断面为梯形ABCD)急需加固.经调查论证,防洪指挥部专家组制定的加固方案是:背水坡面用土石进行加固,并使上底加宽3米,加固后背水坡EF的坡比i=1:根号3 .(1)求加固后坝底增加的宽度AF;(2)求完成这项工程需要土石多少立方米?(结果保留根号)9.在日常生活中,我们经常看到一些窗户上安装着遮阳蓬,如图(1).现在要为一个面向正南的窗户设计安装一个遮阳蓬,已知该地区冬天正午太阳最低时,光线与水平线的夹角为34°.夏天正午太阳最高时,光线与水平线的夹角为76°.把图(1)画成图(2),其中AB表示窗户的高,BCD表示直角形遮阳蓬.(1)遮阳蓬BCD怎样设计,才能正好在冬天正午太阳最低时光线最大限度地射入室内而夏天正午太阳最高时光线刚好不射入室内,请在图(3)中画图表示;(2)已知AB=150cm,在(1)的条件下,求出BC,CD的长度.(精确到1cm)10.两艘渔船同时从O点出发,甲船以40海里/小时的速度沿北偏东45°的方向航行,乙船沿正东方向航行,2小时后甲船到达小岛P处,发现乙船恰好位于甲船正南方向的H处,以O为坐标原点,建立如图所示的直角坐标系.(1)P点的坐标是______,乙船的速度是______海里/小时(结果保留根号);(2)若乙船发现正东方向有另一小岛M,且M位于P点南偏东60°的方向上,若乙船速度不变,它再航行多长时间可以到达小岛M?(根号3 取1.7,结果保留两个有效数字).11.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于21米,在l上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.(1)求AB的长(精确到0.1米,参考数据:根号3 =1.732,根号2 =1.414);(2)已知本路段限速为50千米/小时,若测得某辆汽车从A到B用时2秒,这辆车是否超速?说明理由.12.如图是某货站传送货物的平面示意图.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°.已知原传送带AB长为4米.如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNPQ是否需要挪走,通过计算说明理由.13.小明要测量河的宽度.如图所示是河的一段,两岸ABCD,河岸AB上有一排大树.小明先用测角仪在河岸CD的M处测得∠α=36°,然后沿河岸走50米到达N点,测得∠β=72°.请你根据这些数据帮小明算出河宽.(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73,sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)14.如图.是一座人行天桥的示意图,天桥的高是10米,坡面的倾斜角为45°,为了方便行人安全过天桥,市政部门决定降低坡度,使新坡面的倾斜角为30°.若新坡脚前需留2.5米的人行道,问离原坡脚10米的建筑物是否需要拆除?请说明理由.15.如图,甲楼AB的高度为123m,自甲楼楼顶A处,测得乙楼顶端C处的仰角(参考数据:sin31°为45°,测得乙楼底部D处的俯角为31°,求乙楼CD的高度.≈0.52,cos31°≈0.86,tan31°≈0.60,结果精确到1m).16.如图,在某中学教学楼A西南方向510米的C处,有一辆货车以60km/h的速度沿北偏东60°方向的道路CF行驶、(1)若货车以60km/h的速度行驶时其噪声污染半径为100米,试问教学楼是否受到货车噪声的影响?(2)假设货车以60km/h的以上速度行驶时,其行驶速度每增加10km/h时其噪声污染半径约增大15米,要使教学楼不受货车的噪声影响,在此路段应该限速多少?(精确到10km/h)17.如图所示,小杨在广场上的A处正面观测一座楼房墙上的广告屏幕,测得屏幕下端D处的仰角为30°,然后他正对大楼方向前进5m到达B处,又测得该屏幕上端C处的仰角为45°.若该楼高为26.65m,小杨的眼睛离地面1.65m,广告屏幕的上端与楼房的顶端平齐.求广告屏幕上端与下端之间的距离.(3≈1.732,结果精确到0.1m)18.如图,矩形ABCD是供一辆机动车停放的车位示意图.请你参考图中数据(BC=2.2m,CD=5.4m,∠DCF=40°),计算车位所占街道的宽度EF.(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,结果精确到0.1m.)19.小楠家附近的公路上通行车辆限速为60千米/小时.小楠家住在距离公路50米的居民楼(如图中的P点处),在他家前有一道路指示牌MN正好挡住公路上的AB段(即点P、M、A和点P、N、B分别在一直线上),已知MN∥AB,∠MNP=30°,∠NMP=45°,小楠看见一辆卡车通过A处,7秒后他在B处再次看见这辆卡车,他认定这辆卡车一定超速,你同意小楠的结论吗?请说明理由.20.如图所示,A,B两地之间有条河,原来从A地到B地需要经过桥DC,沿折线A⇒D⇒C⇒B到达.现在新建了桥EF,可直接沿直线AB从A地到达B地.已知BC=11km,∠A=45°,∠B=37°,桥DC和AB平行,则现在从A地到B地可比原来少走多少路程(结果精确到0.1km.参考数据: sin37°≈0.60,cos37°≈0.80)21.如图,河流的两岸PQ、MN互相平行,河岸PQ上有一排小树,已知相邻两树之间的距离CD=50米,某人在河岸MN的A处测得∠DAN=35°,然后沿河岸走了120米到达B处,测得∠CBN=70°.求河流的宽度CE(结果保留两个有效数字).(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)22.如图,某旅游区有一个景观奇异的望天洞,点D是洞的入口,游人从入口进洞游览后,要经山洞到达山顶的出口凉亭A处观赏旅游区风景,最后做缆车沿索道AB返回山脚下的B处.在同一平面内,若测得斜坡BD的长为100米,坡角∠DBC=10°,在A处测得的仰角∠ABC=40°,在D处测得的仰角∠ADF=45°,过点D做地面BE的垂线,垂足为点C.(1)求∠ADB的度数;(2)求索道AB的长(结果仅保留根号).23.如图是一座人行天桥的示意图,天桥的高BC为10米,坡面AC的坡角为53°.(1)求AB的长度.(精确到0.01米)(2)为了方便行人推车过天桥,市政部门决定降低坡度,使新坡面DC的坡角为30°,且新的坡角外侧需留3米宽的人行道,问离原坡角12米的建筑物EF是否需要拆除?24.为缓解“停车难”的问题,某单位拟建筑地下停车库,建筑设计师提供了该地下停车库的设计示意图,按规定,地下停车库坡道口上方要张贴限高标志,以便告知停车人车辆能否安全驶入,为标明限高,请你根据该图计算CE.(精确到0.1m)(下列数据提供参考:sin20°=0.3420,cos20°=0.9397,tan20°=0.3640)25.如图,A、B是两座现代化城市,C是一个古城遗址,C城在A城的北偏东30°,在B城的北偏西45°,且C城与A城相距120千米,B城在A城的正东方向,以C为圆心,以60千米为半径的圆形区域内有古迹和地下文物,现要在A、B两城市修建一条笔直的高速公路.(1)请你计算公路的长度(保留根号);(2)请你分析这条公路有没有可能对文物古迹造成损毁,并说明理由.26.人民海关缉私巡逻艇在东海海域执行巡逻任务时,发现在其所处位置O点的正北方向10海里处的A点有一涉嫌走私船只,正以24海里/小时的速度向正东方向航行.为迅速实施检查,巡逻艇调整好航向,以26海里/小时的速度追赶,在涉嫌船只不改变航向和航速的前提下,问:(1)需要几小时才能追上(点B为追上时的位置)?(2)确定巡逻艇的追赶方向.(精确到0.1°)参考数据:sin66.8°≈0.9191;cos66.8°≈0.393sin67.4°≈0.9231;cos67.4°≈0.3846sin68.4°≈0.9298;cos68.4°≈0.3681sin70.6°≈0.9432;cos70.6°≈0.3322.27.如图,为了测量河宽,在河的一边沿岸选取A、B两点,对岸岸边有一块石头C.在△ABC中,测得∠A=60°,∠B=45°,AB=60米.(1)求河宽(用精确值表示,保留根号);(2)如果对岸岸边有一棵大树D,且CD∥AB,并测得∠DAB=37°,求C、D两点之间的距离(结果精确到0.1米).(参考数据: sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,cot37°≈1.33)28.如图,在一个坡角为15°的斜坡上有一棵树,高为AB.当太阳光与水平线成50°时,测得该树在斜坡上的树影BC的长为7m,求树高.(精确到0.1m)29.阳光明媚的一天,数学兴趣小组的同学测量学校旗杆AB的高度(如图),发现旗杆AB的影子刚好落在水平面BC和斜坡的CD上,其中BC=48米,CD=4米,斜坡CD的坡角为27°.同一时刻,测得高为1米标杆的影长是2.5米.求出旗杆AB的高度?(结果精确到0.01米)。
黑龙江中考数学历届第23题二次函数及答案

2016中考题23.(本题满分6分)2015中考题23.(本题满分6分)23、(本题满分6分)解:(1)根据题意得 C(3,0)……………………………………………………1分9-3b+c=01-b+c=0 …………………………………………………………1分解得b=4c=3 ………………………………………………………1分 所以二次函数的解析式为y=x 2-4x+3 …………………………………1分(2) 设BC 解析式为y=kx+b (k ≠0)根据题意:⎩⎨⎧=+=033b k b 解得:⎩⎨⎧-==13k b ∴3+-=x y ………1分当x=2时,y=1∴ P (2,1) …………………………………1分2014中考题23.(本题满分6分)23、(本题满分6分)解:(1)D (-2,3)……………………………………………………………1分(2)设二次函数的解析式为y=ax 2+bx+c(a ≠0,a 、b 、c 常数),根据题意得 ………………………………………………………………1分9a-3b+c=0a+b+c=0 …………………………………………………………1分c=3解得 a=-1b=-2 …………………………………………………………1分c=3所以二次函数的解析式为y=-x2-2x+3 …………………………………1分(3) x<-2或x>1 ………………………………………………………1分2013中考题如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0)和B(3,0)两点,交y轴于点E.(1)求此抛物线的解析式.(2)若直线y=x+1与抛物线交于A、D两点,与y轴交于点F,连接DE,求△DEF的面积.2012中考题23.(本题满分6分)如图,抛物线y=﹣x2+bx+c经过坐标原点,并与x轴交于点A(2,0).(1)求此抛物线的解析式;(2)写出顶点坐标及对称轴;(3)若抛物线上有一点B,且S△OAB=8,求点B的坐标.解:(1)把(0,0),(2,0)代入y=﹣x2+bx+c,得,解得b=2,c=0,所以解析式为y=﹣x2+2x;(2)∵a=﹣1,b=2,c=0, ∴﹣=﹣=1,==1,∴顶点为(1,1),对称轴为直线x=1;(3)设点B 的坐标为(a ,b ),则×2|b|=8,∴b=8或b=﹣8,∵顶点纵坐标为1,8>1(或﹣x 2+2x=8中,x 无解),∴b=﹣8,∴﹣x 2+2x=﹣8,解得x 1=4,x 2=﹣2,所以点B 的坐标为(﹣2,﹣8)或(4,﹣8 ).2011中考题23、(本题满分6分)解:(1)y=x+3中,当y=0时, x=3∴点A 的坐标为(-3,0).......................................... 当x=0时,y=3∴点C 坐标为(0,3)∵抛物线的对称轴为直线x=-2∴点A 与点B 关于直线x=-2对称∴点B 的坐标是(-1,0)..........................................1分(2)设二次函数的解析式为y=ax 2+bx+c∵二次函数的图象经过点C (0,3)和点A(-3,0),且对称轴是直线x=-2∴可列得方程组: C=39a -3b+c=0-a b 2=-2...........................................1分解得: a=1b=4c=3∴二次函数的解析式为y=x 2+4x+3..........................................1分(或将点A 、点B 、点C 的坐标依次代入解析式中求出a 、b 、c 的值也可)(3)由图象观察可知,当-3<x <0时,二次函数值小于一次函数值。
重庆中考数学23题专练

中考23题应用题专项练习1. 随着经济水平的不断提升,越来越多的人选择到电影院去观看电影,体验视觉盛宴,并且更多的人通过淘票票,猫眼等网上平台购票,快捷且享受更多优惠,电影票价格也越来越便宜. 2018年从网上平台购买5张电影票的费用比在现场购买3张电影票的费用少10元,从网上平台购买4张电影票的费用和现场购买2张电影票的费用共为190元.(1)请问2018年在网上平台购票和现场购票的每张电影票的价格各为多少元(2)2019年“元旦”当天,南坪上海城的“华谊兄弟影院”按照2018年在网上平台购票和现场购票的电影票的价格进行销售,当天网上和现场售出电影票总票数为600张. “元旦”假期刚过,观影人数出现下降,于是该影院决定将1月2日的现场购票的价格下调,网上购票价格保持不变,结果发现现场购票每张电影票的价格每降价元,则当天总票数比“元旦”当天总票数增加4张,经统计,1月2日的总票数中有53通过网上平台售出,其余均由电影院现场售出,且当天票房总收益为19800元,请问该电影院在1月2日当天现场购票每张电影票的价格下调了多少元2. 为了提高教学质量,促进学生全面发展,某中学计划投入99000元购进一批多媒体设备和电脑显示屏,且准备购进电脑显示屏的数量是多媒体设备数量的6倍现从商家了解到,一套多媒体设备和一个电脑显示屏的售价分别为3000元和600元(1)求最多能购进多媒体设备多少套(2)恰“315°次乐购时机,每套多媒体设备的售价下降a 53%,每个电脑显示屏的售价下降5a 元,决定多媒体设备和电脑显示屏的数量在(1)中购进最多量的基础上都增加a %,实际投入资金与计划投入资金相同,求a 的值3. 某商店经销甲、乙两种商品。
现有如下信息: 信息1:甲、乙两种商品的进货单价之和是3元; 信息2:甲商品零售单价比进货单价多1元,乙商品零售单价比进货单价的2倍少1元;信息3:按零售单价购买甲商品3件和乙商品2件,共付了12元请根据以上信息,解答下列问题: (1)求甲、乙两种商品的零售单价;(2)该商店平均每天卖出甲商品500件和乙商品1200件. 经调查发现,甲种商品零售单价每降元,甲种商品每天可多销售100件.商店决定把甲种商品的零售单价下降m(m>0)元,乙种商品的零售单价和销量都不变. 在不考虑其他因素的条件下,当m 为多少时,商店每天销售甲、乙两种商品获取的总利润为1700元4.幸福水果店计划用12 元/盒的进价购进一款水果礼盒以备销售。
武汉市中考第23题

武汉市中考第23题二次函数应用题题目设置与应考策略一、分段函数(一)一涨再涨或一降再降1.(10四月)某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件;如果售价超过80元后,若再涨价,则每涨1元每月少卖3件.设每件商品的售价为x元,每个月的销售量为y件.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)设每月的销售利润为W,请直接写出W与x的函数关系式;(3)每件商品的售价定位多少元时,每个月可获得最大利润?最大的月利润是多少元?(二)涨、降结合型2.(10五月)某商品的进价为每件40元,售价每件不低于50元且不高于80元.售价为每件60元时,每个月可卖出100件;如果每件商品的售价每上涨1元,则每个月少卖2件.如果每件商品的售价每降价1元,则每个月多卖1件.设每件商品的售价为x元(x 为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)当每件商品的售价高于60元时,定价为多少元使得每个月的利润恰为2250元?解:(1)当50≤x ≤60时,6400200)60100)(40(2-+-=-+-=x x x x y ;当60<x ≤80时,88003002)1202100)(40(2-+-=+--=x x x x y ;∴ 64002002-+-x x (50≤x ≤60且x 为整数) y =880030022-+-x x (60<x ≤80且x 为整数)(2)当50≤x ≤60时,3600)100(2+--=x y ;∵a =-1<0,且x 的取值在对称轴的左侧,∴y 随x 的增大而增大,∴当x =60时,y 有最大值2000;当60<x ≤80时,2450)75(22+--=x y ;∵a =-2<0,∴当x =75时,y 有最大值2450.综上所述,每件商品的售价定为75元时,每个月可获得最大利润,最大的月利润是2450元.(3)当60<x ≤80时,2450)75(22+--=x y .当y =2250元时,22502450)75(22=+--x ,解得:;85,6521==x x其中,x =85不符合题意,舍去.∴当每件商品的售价为65元时,每个月的利润恰为2250元.二、一次函数与二次函数结合型,(注意自变量的取值范围)3.(2010中考)某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满.当每个房间每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用.根据规定,每个房间每天的房价不得高于340元.设每个房间的房价每天增加x 元(x 为10的整数倍).(1) 设一天订住的房间数为y ,直接写出y 与x 的函数关系式及自变量x 的取值范围;(2) 设宾馆一天的利润为w 元,求w 与x 的函数关系式;(3) 一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?解:(1)y=50-10x (0≤x <160);(2)w=(180+x-20)y=(180+x-20)(50-10x )=800034102++-x x ; (3)因为w=800034102++-x x ,所以当x=a b 2-,即x=170时,利润最大,此时订房数y=50-10x =33.此时的利润是5110元. 添“枝”加“叶”型5.某商品的进价为每件40元,售价为每件60元时,每个月可卖出100件;如果每件商品的售价每上涨1元,则每个月少卖2件.设每件商品的售价为x 元(x 为正整数),每个月的销售利润为y 元.(1)求y 与x 的函数关系式并直接写出自变量x 的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)当售价的范围是是多少时,使得每件商品的利润率不超过80%且每个月的利润不低于2250元?(1)y =[100-2(x -60)](x ﹣40)=—2x 2+300x —8800;(60≤x ≤110且x 为正整数)………………………3分(2)y =—2(x —75)2+2450,当x =75时,y 有最大值为2450元………………6分(3)当y =2250时,—2(x —75)2+2450=2250,解得x 1=65,x 2=85∵a =—2<0,开口向下,当y ≥2250时,65≤x ≤85∵每件商品的利润率不超过80%,则x-4040≤80%,则x ≤72 则65≤x ≤72.……………………………………………………………………10分三、与二次等式有关类型(2009中考)某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x 元(x 为正整数),每个月的销售利润为y 元.(1)求y 与x 的函数关系式并直接写出自变量x 的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?解:(1)2(21010)(5040)101102100y x x x x =-+-=-++(015x <≤且x 为整数);(2)210( 5.5)2402.5y x =--+.100a =-< ,∴当 5.5x =时,y 有最大值2402.5.015x < ≤,且x 为整数,当5x =时,5055x +=,2400y =(元),当6x =时,5056x +=,2400y =(元) ∴当售价定为每件55或56元,每个月的利润最大,最大的月利润是2400元.(3)当2200y =时,21011021002200x x -++=,解得:12110x x ==,. ∴当1x =时,5051x +=,当10x =时,5060x +=.∴当售价定为每件51或60元,每个月的利润为2200元.当售价不低于51或60元,每个月的利润为2200元.当售价不低于51元且不高于60元且为整数时,每个月的利润不低于2200元(或当售价分别为51,52,53,54,55,56,57,58,59,60元时,每个月的利润不低于2200元). (2009四月调考)某商场将进货价为30元的书包以40元售出,平均每月能售出600个。
2024信息技术中考复习第23套题

2024年模拟题第二十三套试题一、单选题1. 在windows中,活动窗口与其他窗口的区别是()A 窗口是固定的,不能与非活动窗口切换B 活动窗口占用更多的系统资源C 活动窗口的程序在运行,其他窗口的程序停止D 活动窗口的标题栏默认是蓝色2. 下列关于操作系统的描述错误的是()A 操作系统是计算机的一种系统软件B 操作系统是管理和控制计算机硬件和软件资源的程序C 微软公司的视窗操作系统是我们常见的家用计算机操作系统D 计算机可以只有软件和硬件,不需要操作系统3. 我国国内不属于第三方支付产品的是()A 支付宝B 微信C 工行手机银行D 百度钱包4. 小红要用Audition软件为学校宣传片的解说词配乐,如图所示,以下说法错误的是( )。
A 可以通过调整振幅,增大解说词音量B 背景音乐已添加了淡入淡出效果C 选择导出“混缩音频”,可以生成最终音频D 可以删除解说词中的冗余声音5. 用标题自动生成目录,能够高效进行自动化排版,某同学用word整理班级的作文集,想利用这个功能提高排版效率,他首先要做的操作是()。
A 自动生成目录B 定义标题样式C 更新整个目录D 只更新页码6. 在Excel2013中,要想快速生成30名参赛选手的“参赛序号”,可以使用()A 复制法录入B 自动填充功能C 使用数字小键盘D 使用公式7. 在PowerPoint 2013中,要实现幻灯片从第3张到第6张跳转,可执行“插入”中的()A 自定义动画B 预设动画C 超链接或动作D 幻灯片切换8. 使用Photoshop 创作社团海报时,编辑画面如图所示,下列说法错误的是()A 移动图层顺序,图像内容一定会发生变化B “标志”图层不是当前编辑图层C “背景”图层是可见的D “大脑”图层的不透明度为45%9. 在Python中,以下属于逻辑运算符的是()A forB andC inD **10. 下列选项中不属于Python合法变量名的是()A int32B 2abC zan_D _name_二、判断题1. 人类到了20世纪以后才学会使用信息。
初中数学精品试题:中考专项第21、22、23题训练(1)

1.有一组互不全等的三角形,它们的边长均为整数,每个三角形有两条边的长分别为5和7.(1)请写出其中一个三角形的第三边的长;(2)设组中最多有n个三角形,求n的值;(3)当这组三角形个数最多时,从中任取一个,求该三角形周长为偶数的概率.2.在平面直角坐标系内,反比例函数和二次函数y=k(x2+x﹣1)的图象交于点A(1,k)和点B(﹣1,﹣k).(1)当k=﹣2时,求反比例函数的解析式;(2)要使反比例函数和二次函数都是y随着x的增大而增大,求k应满足的条件以及x的取值范围;(3)设二次函数的图象的顶点为Q,当△ABQ是以AB为斜边的直角三角形时,求k的值.3.已知,如图,在梯形ABCD中,AD∥BC,DA=DC,以点D为圆心,DA长为半径的⊙D与AB相切于A,与BC交于点F,过点D作DE⊥BC,垂足为E.(1)求证:四边形ABED为矩形;(2)若AB=4,AD3BC4,求CF的长.4.为进一步建设秀美、宜居的生态环境,某村欲购买甲、乙、丙三种树美化村庄,已知甲、乙丙三种树的价格之比为2:2:3,甲种树每棵200元,现计划用210000元资金,购买这三种树共1000棵.(1)求乙、丙两种树每棵各多少元?(2)若购买甲种树的棵树是乙种树的2倍,恰好用完计划资金,求这三种树各能购买多少棵?(3)若又增加了10120元的购树款,在购买总棵树不变的前提下,求丙种树最多可以购买多少棵?5.如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为对角线OB的中点,点E(4,n)在边AB上,反比例函数(k≠0)在第一象限内的图象经过点D、E,且tan∠BOA=.(1)求边AB的长;(2)求反比例函数的解析式和n的值;(3)若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点O与点F重合,折痕分别与x、y轴正半轴交于点H、G,求线段OG的长.6.某汽车租赁公司拥有20辆汽车.据统计,当每辆车的日租金为400元时,可全部租出;当每辆车的日租金每增加50元,未租出的车将增加1辆;公司平均每日的各项支出共4800元.设公司每日租出工辆车时,日收益为y元.(日收益=日租金收入一平均每日各项支出)(1)公司每日租出x辆车时,每辆车的日租金为元(用含x的代数式表示);(2)当每日租出多少辆时,租赁公司日收益最大?最大是多少元?(3)当每日租出多少辆时,租赁公司的日收益不盈也不亏?7.将△ABC绕点A按逆时针方向旋转θ度,并使各边长变为原来的n倍,得△AB′C′,即如图①,我们将这种变换记为[θ,n].(1)如图①,对△ABC作变换[60°,]得△AB′C′,则S△AB′C′:S△ABC=;直线BC与直线B′C′所夹的锐角为度;(2)如图②,△ABC中,∠BAC=30°,∠ACB=90°,对△ABC作变换[θ,n]得△AB'C',使点B、C、C′在同一直线上,且四边形ABB'C'为矩形,求θ和n的值;(4)如图③,△ABC中,AB=AC,∠BAC=36°,BC=l,对△ABC作变换[θ,n]得△AB′C′,使点B、C、B′在同一直线上,且四边形ABB'C'为平行四边形,求θ和n的值.8.周末,小明骑自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象.已知妈妈驾车的速度是小明骑车速度的3倍.(1)求小明骑车的速度和在甲地游玩的时间;(2)小明从家出发多少小时后被妈妈追上?此时离家多远?(3)若妈妈比小明早10分钟到达乙地,求从家到乙地的路程.9.如图,一次函数y1=kx+b的图象与反比例函数y2=的图象相交于点A(2,3)和点B,与x轴相交于点C(8,0).(1)求这两个函数的解析式;(2)当x取何值时,y1>y2.10.为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.如表是该市居民“一户一表”生活用水及提示计费价格表的部分信息:自来水销售价格污水处理价格每户每月用水量单价:元/吨单价:元/吨17吨以下a0.80超过17吨但不超过30吨的部分b0.80超过30吨的部分 6.00 0.80(说明:①每户产生的污水量等于该户自来水用水量;②水费=自来水费用+污水处理费用)已知小王家2012年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元.(1)求a、b的值;(2)随着夏天的到来,用水量将增加.为了节省开支,小王计划把6月份的水费控制在不超过家庭月收入的2%.若小王家的月收入为9200元,则小王家6月份最多能用水多少吨?11.在锐角△ABC中,AB=4,BC=5,∠ACB=45°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1.(1)如图1,当点C1在线段CA的延长线上时,求∠CC1A1的度数;(2)如图2,连接AA1,CC1.若△ABA1的面积为4,求△CBC1的面积;(3)如图3,点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转过程中,点P的对应点是点P1,求线段EP1长度的最大值与最小值.12.如图,等边△OAB和等边△AFE的一边都在x轴上,双曲线y=kx(k>0)经过边OB的中点C和AE的中点D.已知等边△OAB的边长为4.(1)求该双曲线所表示的函数解析式;(2)求等边△AEF的边长.13.小明参加班长竞选,需进行演讲答辩与民主测评,民主测评时一人一票,按“优秀、良好、一般”三选一投票.如图是7位评委对小明“演讲答辩”的评分统计图及全班50位同学民主测评票数统计图.(1)求评委给小明演讲答辩分数的众数,以及民主测评为“良好”票数的扇形圆心角度数;(2)求小明的综合得分是多少?(3)在竞选中,小亮的民主测评得分为82分,如果他的综合得分不小于小明的综合得分,他的演讲答辩得分至少要多少分?14.如图,在△ABC中,BE是它的角平分线,∠C=90°,D在AB边上,以DB为直径的半圆O经过点E,交BC于点F.(1)求证:AC是⊙O的切线;(2)已知sinA=,⊙O的半径为4,求图中阴影部分的面积.15.在直角坐标系中,点A是抛物线y=x2在第二象限上的点,连接OA,过点O作OB⊥OA,交抛物线于点B,以OA、OB为边构造矩形AOBC.(1)如图1,当点A的横坐标为时,矩形AOBC是正方形;(2)如图2,当点A的横坐标为12时,①求点B的坐标;②将抛物线y=x2作关于x轴的轴对称变换得到抛物线y=-x2,试判断抛物线y=-x2经过平移交换后,能否经过A,B,C三点?如果可以,说出变换的过程;如果不可以,请说明理由.16.邻边不相等的平行四边形纸片,剪去一个菱形,余下一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又剩下一个四边形,称为第二次操作;…依此类推,若第n次操作余下的四边形是菱形,则称原平行四边形为n阶准菱形.如图1,▱ABCD中,若AB=1,BC=2,则▱ABCD为1阶准菱形.(1)判断与推理:①邻边长分别为2和3的平行四边形是_________阶准菱形;②小明为了剪去一个菱形,进行了如下操作:如图2,把▱ABCD沿BE折叠(点E在AD上),使点A落在BC边上的点F,得到四边形ABFE.请证明四边形ABFE是菱形.(2)操作、探究与计算:①已知▱ABCD的邻边长分别为1,a(a>1),且是3阶准菱形,请画出▱ABCD及裁剪线的示意图,并在图形下方写出a的值;②已知▱ABCD的邻边长分别为a,b(a>b),满足a=6b+r,b=5r,请写出▱ABCD是几阶准菱形.参考答案:1.解:(1)设三角形的第三边为x,∵每个三角形有两条边的长分别为5和7,∴7﹣5<x<5+7,∴2<x<12,∴其中一个三角形的第三边的长可以为10.(2)∵2<x<12,它们的边长均为整数,∴x=3,4,5,6,7,8,9,10,11,∴组中最多有9个三角形,∴n=9;(3)∵当x=4,6,8,10时,该三角形周长为偶数,∴该三角形周长为偶数的概率是.2.解:(1)当k=﹣2时,A(1,﹣2),∵A在反比例函数图象上,∴设反比例函数的解析式为:y=,代入A(1,﹣2)得:﹣2=,解得:m=﹣2,∴反比例函数的解析式为:y=﹣;(2)∵要使反比例函数和二次函数都是y随着x的增大而增大,∴k<0,∵二次函数y=k(x2+x﹣1)=k(x+)2﹣k,的对称轴为:直线x=﹣,要使二次函数y=k(x2+x﹣1)满足上述条件,在k<0的情况下,x必须在对称轴的左边,即x<﹣时,才能使得y随着x的增大而增大,∴综上所述,k<0且x<﹣;(3)由(2)可得:Q(﹣,k),∵△ABQ是以AB为斜边的直角三角形,A点与B点关于原点对称,(如图是其中的一种情况)∴原点O平分AB,∴OQ=OA=OB,作AD⊥OC,QC⊥OC,∴OQ==,∵OA==,∴=,解得:k=±.3.(1)证明:∵⊙D与AB相切于点A,∴AB⊥AD。
天津中考数学23专题训练2

.此文档可编辑打印,页脚下载后可删除!1.如图:学校旗杆附近有一斜坡.小明准备测量学校旗杆AB 的高度,他发现当斜坡正对着太阳时,旗杆AB 的影子恰好落在水平地面和斜坡的坡面上,此时小明测得水平地面上的影长BC =20米,斜坡坡面上的影长CD =8米,太阳光线AD 与水平地面成角,斜坡CD 与水平地面BC 成的角,求旗杆AB 的高度. (注:,,结果精确到0.1)2.某市一中学九年级学生开展数学实践活动,测量该市电视塔AB 的高度.由于该塔还没有完成内外装修,其周围障碍物密集,于是在开阔地带的C 处测得电视塔顶点A 的仰角为45°,然后沿CB 向电视塔的方向前进90m 到达D 处,在D 处测得顶点A 的仰角为60°,如下图.求电视塔的高度〔精确到,414.12≈,732.13≈〕3.如图,塔CD 的高为36米,近处有一大楼AB ,测绘人员在楼底A 处测得塔顶D 处的仰角为60°,在楼顶B 处测得塔顶D 处的仰角为45°.其中A C 、两点分别位于B D 、两点正下方,且A C 、两点在同一水平线上,求大楼AB 的高度〔参考数据:3 1.732≈,结果精确到0.1米〕.4.如图:某幢大楼顶部有一块广告牌CD ,甲、乙两人分别在地面上相距12米的A 、B 两处测得点D 和点C 的仰角为045和060,且A 、B 、E 三点在一条直线上,假设m BE 25=,求这块广告牌的高度。
〔取73.13≈,计算结果精确到1.0〕5.如图, 海上有一灯塔P, 在它周围3海里处有暗礁. 一艘客轮以9海里/时的速度由西向东航行, 行至A 点处测得P 在它的北偏东600的方向, 继续行驶20分钟后, 到达B 处又测得灯塔P 在它的北偏东45方向. 问客轮不改变方向继续前进有无触礁的危险?6. 如图某幢大楼顶部有广告牌CD .张老师目高MA 为,他站立在离大楼45米的A 处测得大楼顶端点D 的仰角为30;接着他向大楼前进14米站在点B 处,测得广告牌顶端点C 的仰角为45.(计算结果保存一位小数)(1)求这幢大楼的高DH ;(2)求这块广告牌CD 的高度.第(23)题45°60°.此文档可编辑打印,页脚下载后可删除!7.九年级〔3〕班在完成测量校内旗杆高度的数学活动后,小明填写了如下?数学活动报告?中的附件 〔运算表〕的一局部。
中考数学解答重难专题专题一 第23题圆的综合题

专题一第23题圆的综合题(2010~2019.23)【专题解读】圆的综合题近10年每年必考,分值均为8分.涉及三角形:①相似三角形(6次);②锐角三角函数(2次);③全等三角形(1次,2012年19题考查相似三角形,故23题考查全等三角形).设问形式:①证明角相等或线段相等;②线段平行;③线段垂直;④切线的判定;⑤计算线段长、线段比例关系;⑥求正切值等.1.如图,在△ABC中,以AC为直径的⊙O与边AB交于点D,BC是⊙O的切线,点E为⊙O上一点,连接CE并延长交AB于点F,连接ED.(1)求证:∠B+∠FED=90°;(2)若FC=6,DE=3,FD=2.求⊙O的直径.第1题图2.如图,AB是⊙O的直径,AC切⊙O于点A,连接BC交⊙O于点D,点E是弧BD的中点,连接AE交BC于点F.(1)求证:AC=CF;(2)若AB=4,AC=3,求∠BAE的正切值.第2题图3.如图,P A,PB是⊙O的切线,A、B为切点,连接AO并延长,交PB的延长线于点C,连接PO,交⊙O于点D.(1)求证:PO平分∠APC;(2)连接DB,若∠C=30°,求证:DB∥AC.第3题图4.如图,△ABC内接于⊙O,AB是⊙O的直径,CD切⊙O于点C,AD交⊙O于点E,AC平分∠BAD,(2)若sinP=,BH=3,求BD的长.连接BE.(1)求证:AD⊥CD;(2)若CD=4,AE=2,求⊙O的半径.第4题图5.(2019西工大附中模拟)如图,P为⊙O直径AB延长线上的一点,PC切⊙O于点C,过点B作CP的垂线BH交⊙O于点D,交CP于点H,连接AC、CD.(1)求证:∠PBH=2∠HDC;34第5题图6.(2019陕西定心卷)如图,在△Rt ABC中,∠C=90°,点D、E分别在边AC、BC上,DE∥△AB,DCE 的外接圆⊙O与AB相切于点F.(1)求证:CD·C B=CA·C E;(2)若BE=5,⊙O的半径为4,求CD的长.第6题图7.如图,AB是⊙O的直径,AC是⊙O的切线,BC与⊙O交于点D,点E在⊙O上,且DE=DA,AE 与BC相交于点F.求证:(1)∠CAD=∠B;(2)FD=CD.(2)若BC=8,tanB=,求⊙O的半径.(2)若3AE=4DE,求的值.第7题图8.如图,AB为⊙O的直径,CD切⊙O于点D,AC⊥CD于点C,交⊙O于点E,连接AD、BD、ED.(1)求证:BD=ED;(2)若CE=3,CD=4,求AB的长.第8题图9.如图,在△Rt ABC中,∠ACB=90°,CE为△ABC外接圆的切线,过点A作AE⊥CE于点E.(1)求证:∠ACE=∠B;(2)若AE=2,AB=8,求CE的长.第9题图10.如图,在△Rt ABC中,点O在斜边AB上,以O为圆心,OB为半径作⊙O,分别与BC,AB相交于点D、E,连接AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线;12第10题图11.如图,在△ABC中,CD是AB边上的高,以CD为直径的⊙O分别交CA、CB于点E、F,点G是AD的中点,连接ED、EG.(1)求证:GE是⊙O的切线;EGOD(2)若EB=10,CD=9,tan∠ABE=,求⊙O的半径.第11题图12.(2019西工大附中模拟)如图,已知四边形ABCD的外接圆为⊙O,AD是⊙O的直径,过点B作⊙O 的切线与DA的延长线交于点E,连接BD,且∠E=∠DBC.(1)求证:DB平分∠ADC;12第12题图∴DE DF32=,即=,参考答案1.(1)证明:∵∠A+∠DEC=180°,∠FED+∠DEC=180°,∴∠FED=∠A,∵BC是⊙O的切线,AC为⊙O的直径,∴∠BCA=90°,∴∠B+∠A=90°,∴∠B+∠FED=90°;(2)解:∵∠CFA=∠DFE,∠FED=∠A,∴△FED∽△FAC,AC CF AC6解得AC=9,即⊙O的直径为9.2.(1)证明:如解图,连接BE,∵CA是⊙O的切线,AB是⊙O的直径,∴∠CAB=90°,∠AEB=90°,∴∠CAF+∠BAE=90°,∠FBE+∠EFB=90°,∵E是弧BD的中点,︵︵∴DE=BE,∴∠BAE=∠FBE,∴∠CAF=∠EFB=∠AFC,∴AC=CF;第2题解图(2)解:如解图,连接AD,在△Rt ABC中,AB=4,AC=3,∴BC=AB2+AC2=5.∵CF=AC=3,∴BF=BC-CF=2.∵AB是⊙O的直径,∵cos∠ABC===,∴BD=,∴AD=AB2-BD2=,DF=BD-BF=.∴tan∠BAE=tan∠DAE==.∴∠OPC=∠APC=×60°=30°,∴∠ADB=90°,BD AB4AB BC516512565DF1AD23.证明:(1)如解图,连接OB,∵PA,PB是⊙O的切线,OA、OB为⊙O的半径,∴OA⊥AP,OB⊥BP,又∵OA=OB,∴PO平分∠APC;第3题解图(2)∵OA⊥AP,OB⊥BP,∴∠CAP=∠OBP=90°,∵∠C=30°,∴∠APC=90°-∠C=90°-30°=60°,∵PO平分∠APC,1122∴∠POB=90°-∠OPB=90°-30°=60°,又∵OD=OB,∴△ODB是等边三角形,∴∠OBD=60°,∴∠DBP=∠OBP-∠OBD=90°-60°=30°,∴∠DBP=∠C,∴DB∥AC.4.(1)证明:如解图,连接OC,交BE于点F,∴DC是⊙O的切线,∴OC⊥DC,又∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠BAD,∴∠DAC=∠OAC.∴∠OCA=∠DAC,∴OC∥AD,∴∠D=∠OCD=90°,即AD⊥CD;第4题解图(2)解:∵AB是⊙O的直径,∴∠AEB=90°,∵∠D=90°,∴∠AEB=∠D,∴BE∥CD,∵OC⊥CD,∴OC⊥BE,∵OC∥AD,OA=BO,∴EF=BF,∵OC∥ED,∴四边形EFCD是矩形,∴EF=CD=4,∴BE=8,∴AB=AE2+BE2=22+82=217,∴⊙O的半径为17.5.(1)证明:如解图,连接OC,∵PC切⊙O于点C,∴OC⊥PC,又∵DH⊥PC,∴DH∥OC,∴∠PBH=∠BOC,∵∠BOC=2∠HDC,∴∠PBH=2∠HDC;OC PO∵sinP = = ,BH =3, ∴BH r 4+r∴CD CE =,第 5 题解图(2)解:如解图,过点 O 作 OM ⊥DH 于点 M ,则 DM =BM ,设⊙O 的半径为 r,∵∠OCH =∠OMH =∠CHM =90°,∴四边形 OMHC 为矩形, BH 3 BP 4∴BP =4,∵OC ∥DH ,∴△PHB ∽△PCO ,PB = , 3 4 ∴ = ,解得 r =12,∴MH =OC =12,∴MB =MH -BH =12-3=9,∴BD =2MB =18. 6.(1)证明:∵DE ∥AB ,∴∠CED =∠B.又∵∠C =∠C ,∴△CDE ∽△CAB ,CA CB∴CD · C B =CA · C E ;(2)解:如解图,连接 OF ,过点 E 作 EG ⊥AB 于点 G ,∵AB 为⊙O 的切线,切点为点 F ,∴OF ⊥AB ,∴∠OFG =∠EGF =90°,∵DE ∥AB ,∴∠FOE =180°-∠OFG =90°,又∵OE =OF ,∴四边形 OEGF 为正方形,∴EG =OF =4,DE =2OE =8, ∵∠CED =∠B ,∠C =∠EGB ,∴CD DE CD8=,即=,∴CD=.∴△CDE∽△GEB,GE BE45325第6题解图7.证明:(1)∵AC是⊙O的切线,AB是⊙O的直径,∴BA⊥AC,∠ADB=90°,∴∠CAD+∠BAD=90°,∠B+∠BAD=90°,∴∠CAD=∠B;(2)∵DA=DE,∴∠EAD=∠E,而∠B=∠E,∴∠B=∠EAD,由(1)知,∠CAD=∠B,∴∠EAD=∠CAD,在△ADF和△ADC中,⎧⎪∠ADF=∠ADC=90°⎨AD=AD,⎪⎩∠F AD=∠CAD∴△ADF≌△ADC,∴FD=CD.8.(1)证明:如解图,连接OD、OE.∵CD切⊙O于点D,∴OD⊥CD.∵AC⊥CD,∴OD∥AC.∴∠EAO=∠DOB,∠AEO=∠EOD.∵∠EAO=∠AEO,∴∠EOD=∠DOB.∵OE=OD=OB,∴△OED≌△ODB,∴BD=ED;∴CE DE35=,即=,∴AB=.第8题解图(2)解:∵CE=3,CD=4,AC⊥CD,∴ED=5.∵BD=ED,∴BD=5.∵AB为⊙O的直径,∴∠ADB=90°,∴∠ACD=∠ADB.∵四边形ABDE内接于⊙O,∴∠CED=∠B,∴△CDE∽△DAB.DB AB5AB2539.(1)证明:如解图,取AB的中点O,连接OC,∵∠ACB=90°,∴AB为直径,点O为△ABC外接圆的圆心,∴OC=OB,∴∠OCB=∠B,∵CE为△ABC外接圆的切线,∴∠OCE=90°,∵∠ACB=90°,∴∠OCE-∠ACO=∠ACB-∠ACO,即∠ACE=∠OCB,∴∠ACE=∠B;第9题解图(2)解:∵AE⊥CE,∴∠AEC=∠ACB=90°,∴AE AC=,在△Rt ACD中,tan∠1=tanB=,解得r=.∵∠ACE=∠B,∴△ACE∽△ABC,AC AB∴AC=AE·A B=4,在△Rt ACE中,CE=AC2-AE2=23.10.(1)证明:如解图,连接OD,∵OB=OD,∴∠3=∠B,∵∠B=∠1,∴∠1=∠3,在△Rt ACD中,∠1+∠2=90°,∴∠4=180°-(∠2+∠3)=90°,∴OD⊥AD,∵OD是⊙O的半径,∴AD是⊙O的切线;第10题解图(2)解:设⊙O的半径为r,在△Rt ABC中,AC=BC·tan B=4,根据勾股定理得AB=42+82=45,∴OA=45-r,12∴CD=AC·tan∠1=2,根据勾股定理得AD2=AC2+CD2=16+4=20,在△Rt ADO中,OA2=OD2+AD2,即(45-r)2=r2+20,35211.(1)证明:如解图,连接OE,∵CD是⊙O的直径,∴∠AED=∠CED=90°,∵G是AD的中点,∴EG=AD=DG,∴GE AGOE OD DE∴AE4=,∴GE GE4==.12∴∠GED=∠GDE,∵OE=OD,∴∠OED=∠ODE,∵CD是AB边上的高,∴∠ODE+∠GDE=90°,∴∠GED+∠OED=90°,即OE⊥EG,又∵OE是⊙O的半径,∴GE是⊙O的切线;第11题解图(2)解:由(1)得∠ODE+∠GDE=90°,∵∠A+∠GDE=90°,∴∠A=∠ODE,∵AG=GE,OD=OE,∴∠A=∠ODE=∠AEG=∠OED,∴△AGE∽△DOE,AE==,∵3AE=4DE,DE3又∵OD=OE,OD OE312.(1)证明:如解图,连接OB,延长EB至点F.∵AD是⊙O的直径,∴∠ABD=90°.∵EB是⊙O的切线,∴OB⊥EF,∴∠4+∠5=∠5+∠DBF=90°,∴∠DBF=∠4=∠3.又∵四边形ABCD是⊙O的内接四边形,∴∠1=∠ABE ,即 tan ∠1=tan ∠ABE = = . ∴ CD BC 9 x = ,即=,∴⊙O 的半径为 .∴∠BCD =180°-∠3.∵∠EBD =180°-∠DBF ,∴∠BCD =∠EBD.又∵∠E =∠DBC ,∴△DBE ∽△DCB ,∴∠1=∠2,即 DB 平分∠ADC ;第 12 题解图(2)解:∵BE 为⊙O 的切线,AD 为⊙O 的直径,OB =OD ,∴∠ABE +∠4=∠4+∠5=∠1+∠4=90°, AB 1 AD 2设 AB =x ,则 BD =2x.∵∠1=∠2,∴BC =AB =x.∵△DBE ∽△DCB ,BD EB 2x 10解得 x =3 5(负值已舍),即 AB =3 5,∴BD =6 5,在 △Rt ABD 中,由勾股定理得AD = AB 2+BD 2=15, 15 2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
L (2015二中广雅九下周二)如图,。
以48为直径,若AC=AE, BD = BC,分别延长CE、CD 交③。
于F、G ⑴直接写出』DCE=
/ FG
求——
AB
DF
⑶若△/£)与△BCE相似,求——
AB
2(2015二中广雅九下周四).已知,△48C中,ZC=90°, 48 = 10
⑴如图1,正方形PQMN的一边在48上,其余两顶点分别在边CA. CB上,求证QM? = PQ - AM
⑵ 如图2, 8C=6,在△48C中放入正方形PQMN和正方形QEFG,使得M、Q、G三点在边48 上,N、F分别在边AC、8C上,MH、GT分别为△AMN, △BGF的角平分线,求FT+AH的值
图1 图3
图1
图2
3. (2015二中广雅九下周六)如图1, △A8C 中,AB=AC,点。
在8A 的延长线上,点E 在8C 上,DE=DC,点F 是DE 与AC 的交点,且DF=FE
⑴ 图1中是否存在与Z8DE 相等的角?若存在,请找出,并加以证明;若不存在,说明理由 ⑵求证:BE=EC
⑶ 若将“点D 在BA 的延长线上,点E 在BC 上”和“点F 是DE 与AC 的交点,且DF=FE”分 别改为“点D 在舶上,点E 在CB 的延长线上”和“点F 是ED 的延长线与AC 的交点,且DF= kFE",其他条件不变(如图2).当AB=l f ZABC= a 时,8£的长(用含A 、。
的式子表示)
E
4. (2015二中广雅九下周八)已知线段48=10,过B 点向上作射线BM±AB, P 为射线8M 上 一
点(不与B 点重合),以平分匕8PD,旦4D_L",过D 作DC IBM 于C. (1) 如图1,当P8=6时,直接写出P 。
的长为;
(2) 当点P 在射线上运动时,其它条件不变,求证:PD=PB+BC ;
5.
(2015七一九下三月月考)如图1,在Rt^ABC,ZACB=90°
(1)__________ 若AC=4, 8C=3,以AB为直角边作Rt/XABT,并且与Rt/\ABC相似,请你直接写出△人8丁的周氏
⑵如图,点M、D、G、P在边上,设正方形NMDQ、EDGF、RGPH周长分别为G、C2. C3, 求证:c1 + c
3
= c
2
⑶作CS1AB, STLAC,设△AST、/\CBS、△48C 的周 R分别为、C2> C3,直接写出G +C?
6.(2015 七一九下五月月考)△ABC 中,AB=AC, AD//BC, CD_LAC,连BD,交 AC 于£
AJ7
(1)如图(1),若ZBAC=60° ,求——的值;
EC
(2)如图(2), CF±AB于 F,交 BD 于 G,求证:CG=FG;
3
(3)若48=13, tanZABC=-9直接写出EC的长为_______________ .
2
大值为
时,四边形EFCD
与四边形PEFC
7.2015六中九下周练二)如图,已知正方形A8CD,点P为射线所上的一点(不和点4、B重合),过P作PELCP,且CP=PE.过E作EF//CD交射线8D于F (1)若 CB = 6, P8=2,则 EF=;DF= ⑵如图,连接EC,交8D于G,求证:FG=DG ⑶如图2,点P在线段BA的延长线上,当tcmZBPC=
8.(2015六中九下周练四)在左ACB中,NACB = 90。
,CDA.AB于D,点E在AC上,BE交CD 于点G, EF1BE交AB于点、F
⑴ 如图1, AC=BC,点、E为AC的中点,求证:EF=EG
图2
⑵如图2, 8E平分ZCBA, AC=2BC,试探究线段EF与EG的数量关系,并证明你的结论
CF
⑶ 如图3, AC=2BC,当EFB为等腰直角三角形时,求兰的值
AE
9.(2015 —初慧泉九下周练五)已知:如图1,知形ABCD中,P为上一动点,AE1AP交CD 的延长
BC=nBP
线于 E, EP 交 AD 于 F, AB=l/2BC
z
(1)求证:ZiABPsAADE
EF
(2)连AC交PE于G,若n=4时,如图2,求——
PG
(3)连CF,如图3,当四边形APCE为菱形时,直接写出n的值为
图1 图2 图3
第23题
10.(2015 ―初慧泉九下五月月考)等边△48C的边长为2, P是8C边上的任一点(与8、C 不重合),连接AP,以AP为边向两侧作等边△4PD和等边△APE,分别与边48、AC交于点M、N(如图 1).
(1)求证:AM=AN;
3
(2)若BM=—
求8P的值; O
f
⑶若ZB4D= 152时,连接DE分别与边48、AC
交于点G、H(如图2).判断以。
G、GH、HE这三条线段为边构成的三角形是什么特殊的三角形?并说明理由.
H
G
11 (2014二中广雅中考模拟一)如图,在梯形ABCD 中,AB 〃CD, AC=2CD, AB=nDC, E 为 对角线AC 的中点。
DF
(1) 如图1,当〃 =2时,求——;
AF
(2) 在(1)的条件下,连接CF 、DF,求证:CF±DE;
(3) 如图3,若ZABC=90° ,当n 时,BF1AD (直接写出答案)
12 (2014二中广雅中考模拟二)己知正方形ABCD 中,E 、F 在对角线BD ±, BE=DF, AE 交BC 于G,GF 交AD 于Mo (1)如图 1,若 BE=-ED ;
①求 tan/AGB ;②求证:AM=3DM 。
(2)如图2, AF 交CD 于H,连接MH,
BF
①求证:ZMHD=ZHAD ;②连GH,当二二 时,四边形AGHM 为等腰梯形。
D
D
B
M
H
13(2014二中广雅中考模拟三)直角梯形ABCD中,AB〃CD, ZD=90° , DE1CB于E,连AE, FE1AE 交 CD 于 F。
(1)求证:△AEDs^FEC;
(2)求证:AB=DF;
14(2015二中广雅中考模拟二)锐角三角形ABC中,D为BC上一点,过。
作DE1AC于E、
DF1AB于 F, G 为 AC 上一点,P 为 OG 上一点,PHLAC 于 H, PM//DF交 FG 于且DE=DF,如图 1.
(1)求证:PH=PM;
(2)过P作PQLBC于Q,延长PM交48于/,如图2,若PH+PQ=PI.
%1求证G在ZABC的死平分线上;
%1若P/=10, P到HQ的距离为2,则PC的最大值为 (请直接写出结果)。