板壳问题分析有限元分析作业

合集下载

有限元分析

有限元分析

5.案例分析5.1问题描述与分析货柜的结构如下图所示,各层隔板厚度为0.015m,两块侧立板厚度为0.01m,背板的厚度为0.01m,材料的弹性模量为1.2X109N/M2,泊松比为0.3,密度为800Kg/m3。

假设货柜底板完全固定,中间三块隔板上存放货物,货物产生的均匀分布应力分布压力作用在上面,压力大小等于200pa,计算货柜的变形和等效应力。

试计算轴承座结构的变形及von Mises 应力分布。

采用自顶向下和自底向上相结合的建模方法建立本实例的三维模型,选择shell63单元划分网格,单元长度控制为0.1。

图1 货柜的结构图5.2定义单元类型和材料属性在单元类型库里面选择Structutal shell ,shell63 ,相应单元类型号设为1。

材料类型定义为:Structutal/Linear/Elastic/Isotropic,并将其弹性常数设为1.2X109N/M2,泊松比设为0.3,密度为800Kg/m3。

5.3创建几何模型与网格划分在几何模型创建中采用Main menu-preprocessor-modeling-areas创建薄板,然后通过Main menu-preprocessor-modeling-copy-areas复制货柜相同的薄板,最后经过通过Main menu-preprocessor-modeling-operate-booleans- partition-volume进行粘接各面得模型图,如图1所示。

用网格划分器MeshTool对几何模型进行单元划分。

选择Main menu-preprocessor-MeshTool命令,弹出MeshTool对话框,选中element attributes下拉列表中的areas,将网格单元长度设置为0.1,划分所得的网格如图2所示。

图2 货柜的单元划分结果图5.4施加边界条件与载荷选择Main menu-solution-define loads-apply-structural-displacement-on Areas对货柜底部横隔板面进行约束;选择Main menu-solution-define loads-apply-structural-pressure-on Areas在货柜中间三个横隔板上施加压力载荷为200 Pa,如图3所示。

第九章板壳结构有限元解析

第九章板壳结构有限元解析
基于面积坐标性质,上述位移模式还可改写为:
薄板三角形单元
进行一系列的推导后,可得到
形函数的具体计算式为:
薄板三角形单元
建立了位移模式之后,那么剩下的工作就并不复杂:位移模式→ 应变离散→ 应力离散→刚度矩阵→载荷向量→约束处理→求解。
但位移模式是建立在面积坐标上的,相关的计算怎么进行?
导数间的关系为
单元数 (1/4板)
2×2 4×4 6×6 理论解
四边固定
板中心挠度 wD/PL2
边中点弯矩 M/P
0.00614
-0.1178
0.00580
-0.1233
0.00571
-0.1245
0.00560
-0.1257
薄板三角形单元
三角形单元能较好地适应斜边界,实 际中广泛应用。单元的结点位移仍然 为结点处的挠度wi和绕x,y轴的转角
壳体:壳体的变形除了横向弯曲变形外,同时存在中面变形。 因此可以认为壳体是平面应力问题和平板弯曲问题的组合。当 然,对于厚壳结构,仍需要横向剪切变形的影响。
薄板结构有限元
薄板基础理论知识
薄平板,取其中性面为坐标面,z轴垂直于中性面。其中 t 为 板厚。当板受有垂直于板中性面的外力时,板的中性面将发 生弯扭变形,从而变成一个曲面。板变形的同时,在板的横 截面上将存在内力——弯矩和扭矩。
Mxy=Myx
内力列向量为
薄板基础理论知识
内力可以根据应力进行计算得到
使用记号
平面应力问题 中的弹性矩阵
于是
薄板基础理论知识
进行反向回代,可以得到
在板的上、下表面处,z=±0.5t,于是应力为
薄板基础理论知识
如果薄板在z方向承受分布荷载
此时薄板内部产生应力 则可以采用虚功原理

7_板壳问题有限元分析

7_板壳问题有限元分析
T i
1 1 2 h 1 1 2
h

BiT DB j abd d dz
(6.17)
21 /44
薄板问题的有限元法
代入 D 、 Bi 和 B j 于是有
D 1 1 b2 T kij N i , N j , uN iT, N T, uN iT, N T, j j 1 1 a 2 ab +2(1- )N
2
24 /44
薄板问题的有限元法
k23 15H ab(i j )(i j ) b2 b2 k31 3Ha (2 3 5 2 ) j0 15 2 j 5i0 a a k32 15H ab(i j )(i j )
23 /44
薄板问题的有限元法
其中
b2 a2 a2 b2 k11 3H 0 15( 2 0 2 0 ) (14 4 5 2 5 2 ) 00 b b a a a2 a2 k12 3Hb (2 3 5 2 ) 0i 15 2 i 5 0i b b b2 b2 k13 3Ha (2 3 5 2 )i0 15 2 i 50 j a a a2 a2 k21 3Hb (2 3 5 2 ) 0 j 15 2 j 5 0i b b a2 k22 Hb 2(1 ) 0 (3 50 ) 5 2 (3 0 )(3 0 ) b
1 E D 2 1 0
薄板问题的有限元法
图 6.2 平板内力
10 /44
薄板问题的有限元法
设 M x 、 M y 和 M xy 表示单位宽度上的内力矩,于是有
2w 2 x Mx h h3 2 w h3 M M y h2 z dz D DC D 'C (6.5) 2 12 y 12 2 M xy 2w 2 xy

弹性力学:平板弯曲问题的有限元分析(1)

弹性力学:平板弯曲问题的有限元分析(1)
其中为薄板的弯曲刚度9899薄板的弹性曲面微分方程薄板横截面上的内力称为薄板横截面上的内力称为薄板内力薄板内力是指薄板横截面的单是指薄板横截面的单位宽度上由应力合成的位宽度上由应力合成的主矢量主矢量和和主矩主矩
平板弯曲问题的有限元分析(1) Kirchhoff弹性薄板理论
参考文献: “弹性力学(下册)”第13章。徐芝纶
x
2w
2 (z2
2
2
)dz 4
E 3 12(1 2 )
x
2w
(c)
同样,在y为常量的截面上,每单位宽度内的 y , yx , yz
也分别合成如下的弯矩,扭矩,和横向剪力:
M y
2 2
z
y dz
E
12(1
3
2
)
(
2w y2
2w x2
)
(d)
M yx
2
2
z yxdz
E 3 12(1 2 )
(9-6)
( z )z q
(f)
2
将(9-6)式代入薄板上板面的边界条件:
得:
E
12(1
3
2
)
4
w
q
(9-7)
或 D4w q, (9-8)
其中
D
E
12(1
3
2
)
(9-9)
薄板的弹性曲面微分方程
为薄板的弯曲刚度
§9-3 薄板横截面上的内力
► 薄板横截面上的内力,称为薄板内力,是指薄板横截面的单 位宽度上,由应力合成的主矢量和主矩。
对z积分,得到: z
2(1 2 )
2
( 4
z
z2 )4w 3
F3 (x,

《结构分析中的有限元法》2015-有限元习题-参考答案

《结构分析中的有限元法》2015-有限元习题-参考答案
3、简述结点力和结点载荷的差别。 结点力:单元与单元间通过结点的相互作用力。 结点载荷:作用于结点上的外载荷。
4、列表给出有限元几类基本单元的图形、结点数、结点自由度数和单元总自由 度数(包括杆单元、梁单元、平面三角形单元、平面四边形单元、轴对称问题三 角形单元、四边形壳单元、四面体单元)。
单元 类型 杆单
(1)单元的类型和形式 为了扩大有限元法的应用领域,新的单元类型和形式不断涌现(等参元,梁板 壳,复合材料) (2)有限元法的理论基础和离散格式 将 Hellinger-Reissner、Hu—Washizu(多场变量变分原理)应用于有限元分析, 发展了混合模型、杂交型的有限元表达格式,应研究了各自的收敛条件;将加权 余量法用于建立有限元的表达格式;进一步研究发展有限元解的后验误差估计和 应力磨平方法。 (3)有限元方程的解法(大型复杂工程结构问题——静态, 特征值, 瞬态等) (4)有限元法的计算机软件(专用软件, 通用软件)
弹性力学中的虚功原理可表达为:在外力作用下处于平衡状态的弹性体,如
果发生了虚位移,那么所有的外力在虚位移上的虚功(外力功)等于整个弹性体内
应力在虚应变上的虚功(内力功)。
根据虚功原理得到 ( εT uT F )d uTTd 0
p
(1 T uT F)d 2
uT
Td
0
其中的 p 即为总势能泛函。由上面变分为零式表明:在所有区域内满足几 何关系,在边界上满足给定位移条件的可能位移中,真实位移使系统的总势能取 驻值(可证明此驻值为最小值)。此即总势能泛函的极值条件。
10, 0
3 2, 0
解:根据拉格朗日插值基函数:
u(x, y) l1(x, y)u1 l2 (x, y)u2 l3(x, y)u3 l4 (x, y)u4

有限元静力分析基本原理

有限元静力分析基本原理
04
此外,随着大数据和人工智能技术的快速发展,有限元分析可以与这 些技术相结合,实现更加智能化、自动化的工程设计和管理。
THANKS
感谢观看
离散化
将连续的物理系统划分为有限个离散的单元, 每个单元具有一定的形状和大小。
集成
将所有单元的数学方程集成为一个整体的有 限元方程组。
单元分析
对每个离散单元进行数学建模,建立单元的 数学方程。
求解
通过求解有限元方程组,得到物理系统的近 似解。
有限元的数学基础
线性代数
01
有限元方法涉及大量的线性代数运算,如矩阵运算、线性方程
定不变的载荷作用下的响应。
它主要关注的是结构的平衡状态 和位移,而不考虑时间因素和动
态效应。
静力分析广泛应用于工程领域, 如建筑、机械、航空航天等,用 于评估结构的强度、刚度和稳定
性。
静力分析的基本步骤
建立数学模型
首先需要建立结构的数学模型,包括对结构的离散化、选 择合适的单元类型和确定边界条件等。
该方法基于离散化的思想,将 复杂的结构分解为简单的、相 互连接的单元,通过求解每个 单元的平衡方程来获得结构的
整体响应。
有限元静力分析在工程领域中 广泛应用于结构强度、刚度、 稳定性等方面的分析,为结构 设计提供了重要的理论依据和 实践指导。
随着计算机技术的发展,有限 元分析软件不断涌现,为工程 师提供了更加高效、精确的数 值分析工具。
施加载荷
根据实际工况,在结构上施加相应的载荷,包括重力、外 部力、压力等。
求解平衡方程
通过有限元方法,将连续的结构离散为有限个单元,并建 立平衡方程组。然后使用数值方法求解这个方程组,得到 各节点的位移和应力等结果。

4 .板壳问题的有限元法(4学时)

4 .板壳问题的有限元法(4学时)
机电工程学院
第五章 板壳问题的有限元法
章节内容: 5.1 薄板弯曲的基本理论 5.2 薄板单元:矩形单元和三角形单元 5.3 薄壳有限元分析的简介
车辆工程教研室
机电工程学院
5.1 薄板弯曲的基本理论
5.1.1 薄板(thin plate)



工程实际中,存在大量的板壳构件(plate and shell) 几何特点:厚度远远小于其它两个方向的尺寸。 薄板:t/b < 1/15 中面:平分板厚度的平面 坐标系oxyz :xy轴在中面上,z轴垂直于中面 z 载荷 作用于中面内的载荷:平面应力问题 垂直于中面的载荷:板弯曲
其中
车辆工程教研室
机电工程学院
5.5 薄壳有限元分析

局部坐标系
局部坐标系对整体 坐标系的方向余弦 矩阵(从整体坐标 到局部坐标)

局部坐标系与整体坐标系的关系
车辆工程教研室
机电工程学院
5.5 薄壳有限元分析

坐标变换矩阵
车辆工程教研室
机电工程学院
5.5 薄壳有限元分析

单元刚度矩阵
转换矩阵:
3.
应力
引起的形变很小,在计算变形时可以忽略。
车辆工程教研室
机电工程学院
5.1 薄板弯曲的基本理论
5.1.2 位移

位移分量:薄板中面的挠度 w 根据挠度,可以计算:在x和y轴方向上的位移分量和绕x和y轴方 向的转角。
y
z
b
o
车辆工程教研室
t
x
机电工程学院
5.1 薄板弯曲的基本理论
5.1.3 应变及几何方程
机电工程学院

5.1.5 平衡方程

11第4章板壳问题有限元

11第4章板壳问题有限元

w S1 w ,
w n

S1
( 4-1-5)
其中 n 表示边界的法线方向。特例情况下, S1 为固支边,则 w S 0 ,
1
w 0 n S1
146
2 、 在边界 S 2 上,给定位移 w 和力矩 M n ,即
w S w , M n
2
S2
M n
( 4-1-6)
特例情况下, S 2 为简支边,则 w S 0 , M n
2 2
(常曲率和常扭率)项,因为将它们代入式( 4-1-1)可以得
2 w 2 2 4 x 2 w 2 2 6 y
2
2 w 2 5 x y
( 4-2-3)
因此,在板弯曲单元的挠度函数中存在常数项、一次项和二次项,就可以满足完备性条件。 (2 )协调条件: 以单元 1-2 边为例,该边上 y 为常数,挠度 w 是 x 的三次函数
如平板的表面上作用有 z 向的分布荷载 q , 则从以上各式可以得到经典薄板理论的系统总位能泛函 表达式
1 w T D qw dxdy Q wdS M n dS b n S3 S2 S3 2 n
{M } [Db ]{ }
式中, [ Db ] 为板弯曲弹性矩阵,对于各向同性材料有
(4-1-3)
1 0 Et [D b ] 1 0 2 12(1 ) 1 0 0 2
3
(4-1-4)
为建立平板弯曲问题的能量泛函,还要考虑荷载和边界条件。关于边界条件有三种情况: 1 、 在边界 S1 上,给定位移 w 和截面转角 ,即
2 4 w T e ] z [B i ]{ z[ B ]{ } i} x y i 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图 3 应力分布 图 4 应力分布局部放大图 由图 3 和图 4 可知, 结构的最大应力发生在固定端上边缘转角处, 计算结果表明最大应 7 力为 1.2 10 Pa。 1.3.2 结构变形和截面转角
图 5 模型位移 由图 5 可知结构的变形。计算结果表明,最大位移量为 5.04 10-4m,最大截面转 角为 3.824 10-3rad。
ቤተ መጻሕፍቲ ባይዱ
图 1 网格图 对模型添加边界约束和施加载荷。该梁为悬臂梁,由受力分析可知,固定端所有节点的 六个自由度均被约束,受分布长度为 500mm、集度为 q=1 104N/m2 的均布载荷,集中载荷 为 p=5N。施加载荷和约束结果如图 2 所示。
图 2 载荷和边界约束 1.3 提交计算和观察分析结果 1.3.1 应力分布
1 . 横 截 面 为 槽 型 的 悬 臂 梁 。 梁 长 为 1m , 板 厚 5m, 其 弹 性 模 量 和 泊 松 比 分 别 为 E=2.1 104kg/mm2 及 μ=0.3,分布载荷的分布长度为 500mm,集度为 q=1 104N/m2,集中 载荷为 p=5N(作用点在上缘中点处) ,试计算结构的应力分布、最大应力、最大位移(变 形)和最大截面转角。 1.1 问题分析 分析对象悬臂梁为薄壁构建,板厚远小于梁长( 5<<1000),受全方位载荷,所以该问 题可简化为板壳问题。 1.2 建立计算模型 分析类型选择 Structural(结构)型,采用 Shell(板壳)8 node 93 单元类型。板的厚 度为 0.005m,材料为各向同性的线性材料,其弹性模量 E=2.1 104kg/mm2 和泊松比 μ=0.3。 建立几何模型(梁的中面) ,之后,进行网格划分(单元长度采用 0.02) ,结果如图 1 所示。
相关文档
最新文档