2011年全国中考数学模拟汇编18二次函数的图象和性质(2份)
浙江省2011年中考数学试题分类解析汇编 专题6 函数的图像与性质

某某2011年中考数学试题分类解析汇编专题6:函数的图象与性质一、选择题1.(某某某某4分)已知点P (-1,4)在反比例函数()0ky k x=≠的图象上,则k 的值是A 、-14B 、14C 、4D 、-4【答案】D 。
【考点】曲线上的点与坐标的关系。
【分析】根据点在曲线上,点的坐标满足方程的关系,把点P 的坐标代入ky x=,即可求出4k =-。
故选D 。
2.(某某某某4分)已知二次函数的图象(0≤x ≤3)如图所示,关于该函数在所给自变量取值X 围内,下列说法正确的是 A 、有最小值0,有最大值3B 、有最小值﹣1,有最大值0C 、有最小值﹣1,有最大值3D 、有最小值﹣1,无最大值【答案】C 。
【考点】二次函数的最值。
【分析】由函数图象自变量取值X 围得出对应y 的值,即可求得函数的最值:根据图象可知此函数有最小值﹣1,有最大值3。
故选C 。
3.(某某某某4分)小敏从A 地出发向B 地行走,同时小聪从B 地出发向A 地行走,如图所示,相交于点P 的两条线段l 1、l 2分别表示小敏、小聪离B 地的距离y (km )与已用时间x (h )之间的关系,则小敏、小聪行走的速度分别是A 、3km/h 和4km/hB 、3km/h 和3km/hC 、4km/h 和4km/hD 、4km/h 和3km/h 【答案】D 。
【考点】一次函数的应用。
【分析】设小敏的速度为k ,函数式为y kx b =+。
由图知,小敏经过两点(1.6,4.8)和(2.8,0),代入得1648280.k b ..k b +=⎧⎨+=⎩,解得424k b .=-⎧⎨=⎩,由实际问题得小敏的速度为4km/h 。
设小聪的速度为m ,函数式为y mx =。
由m ,解得则m =3,即小聪的速度为3km/h 。
故选D 。
4.(某某某某3分) 如图,函数11-=x y 和函数xy 22=的图像相交于点M (2,m ),N (-1,n ),若21y y >,则x 的取值X 围是A. 1-<x 或20<<xB. 1-<x 或2>xC. 01<<-x 或20<<xD. 01<<-x 或2>x 【答案】D 。
2011年全国各地中考数学试卷考试试题分类汇编13二次函数

2011年全国各地中考数学试卷试题分类汇编第13章 二次函数一、选择题1. (2011山东滨州,7,3分)抛物线()223y x =+-可以由抛物线2y x =平移得到,则下列平移过程正确的是( )A.先向左平移2个单位,再向上平移3个单位B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向下平移3个单位D.先向右平移2个单位,再向上平移3个单位 【答案】B2. (2011广东广州市,5,3分)下列函数中,当x >0时y 值随x 值增大而减小的是( ). A .y = x 2B .y = x -1C . y = 34xD .y = 1x【答案】D3. (2011湖北鄂州,15,3分)已知函数()()()()22113513x x y x x ⎧--⎪=⎨--⎪⎩≤>,则使y=k 成立的x 值恰好有三个,则k 的值为( ) A .0B .1C .2D .34. (2011山东德州6,3分)已知函数))((b x a x y --=(其中a b >)的图象 如下面右图所示,则函数b ax y +=的图象可能正确的是【答案】D第6题图5. (2011山东菏泽,8,3分)如图为抛物线2y ax bx c =++的图像,A 、B 、C 为抛物线与坐标轴的交点,且OA =OC =1,则下列关系中正确的是A .a +b =-1B . a -b =-1C . b <2aD . ac <0【答案】B6. (2011山东泰安,20 ,3分)若二次函数y=ax 2+bx+c 的x 与y 的部分对应值如下表:X -7 -6 -5 -4 -3 -2 y-27-13-3353则当x =1时,y 的值为A.5B.-3C.-13D.-27 【答案】D7. (2011山东威海,7,3分)二次函数223y x x =--的图象如图所示.当y <0时,自变量x 的取值范围是( ). A .-1<x <3B .x <-1C . x >3D .x <-1或x >3【答案】A8. (2011山东烟台,10,4分)如图,平面直角坐标系中,两条抛物线有相同的对称轴,则下列关系正确的是( )A .m =n ,k >hB .m =n ,k <hC .m >n ,k =hD .m <n ,k =h【答案】A9. (2011浙江温州,9,4分)已知二次函数的图象(0≤x≤3)如图所示.关于该函数在所给自变量取值范围内,下列说法正确的是( )A.有最小值0,有最大值3 B.有最小值-1,有最大值0C.有最小值-1,有最大值3 D.有最小值-1,无最大值【答案】D10.(2011四川重庆,7,4分)已知抛物线y=ax2+bx+c(a≠0)在平面直角坐标系中的位置如图所示,则下列结论中正确的是( )A.a>0 B.b<0 C.c<0 D.a+b+c>0【答案】D11.(2011台湾台北,6)若下列有一图形为二次函数y=2x2-8x+6的图形,则此图为何?【答案】A12. (2011台湾台北,32)如图(十四),将二次函数228999931+-=x x y 的图形画在坐标平面上,判断方程式0899993122=+-x x 的两根,下列叙述何者正确?A .两根相异,且均为正根B .两根相异,且只有一个正根C .两根相同,且为正根D .两根相同,且为负根 【答案】A13. (2011台湾全区,28)图(十二)为坐标平面上二次函数c bx ax y ++=2的图形,且此图形通(-1 ,1)、(2 ,-1)两点.下列关于此二次函数的叙述,何者正确?A .y 的最大值小于0B .当x =0时,y 的值大于1C .当x =1时,y 的值大于1D .当x =3时,y 的值小于0 【答案】D14. (2011甘肃兰州,5,4分)抛物线221y x x =-+的顶点坐标是A .(1,0)B .(-1,0)C .(-2,1)D .(2,-1)【答案】A15. (2011甘肃兰州,9,4分)如图所示的二次函数2y ax bx c =++的图象中,刘星同学观察得出了下面四条信息:(1)240b ac ->;(2)c >1;(3)2a -b <0;(4)a +b +c <0。
2011全国各地中考数学试题分类汇编考点15B二次函数的图象和性质

二次函数的图象和性质一、选择题1. (2011广西桂林,11,3分)在平面直角坐标系中,将抛物线y =x 2+2x +3绕着它与y 轴的交点旋转180°,所得抛物线的解析式是( ).A .y =-(x +1)2+2 B .y =-(x -1)2+4C .y =-(x -1)2+2D .y =-(x +1)2+4 【答案】B2. (2011黑龙江省哈尔滨市,4,3分)在抛物线1-x y 2+=上的一个点是( )A .(1,0)B .(0,0)C .(0,-1)D .(1,1) 【答案】A3. (2011湖北随州,15,3分)已知函数()()()()22113513x x y x x ⎧--⎪=⎨--⎪⎩≤>,则使y=k 成立的x 值恰好有三个,则k 的值为( )A .0B .1C .2D .3【答案】D4. (2011江苏常州,8,2分)已知二次函数215y x x =-+-,当自变量x 取m 时,对应的函数值大于0,当自变量x 分别取m-1,m+1时对应的函数值1y 、2y ,则必值1y ,2y 满足 ( ) A. 1y >0,2y >0 B. 1y <0,2y <0 C.1y <0,2y >0 D.1y >0,2y <0【答案】B5. (2011广东深圳,10,3分)对抛物线y = -x 2 +2x -3而言, 下列结论正确的是( ) A. 与x 轴有两个交点 B. 开口向上C. 与y 轴的交点坐标是(0, 3)D. 顶点坐标是(1, -2) 【答案】D6. (2011山西,12,2分)已知二次函数2y ax bx c =++的图象如图所示,对称轴为直线1x =,则下列结论正确的是( )A .0ac > B.方程20ax bx c ++=的两根是121,3x x =-=C. 20a b -=D. 当x > 0时,y 随x 的增大而减小7. (2011陕西,10,3分)若二次函数c x x y +-=62的图像过),23(),,2(),,1(321y C y B y A +-三点,则321y y y 、、大小关系正确的是( )A .321y y y >>B .231y y y >>C .312y y y >>D .213y y y >> 【答案】B8. (2011湖北襄阳,12,3分)已知函数12)3(2++-=x x k y的图象与x 轴有交点,则k 的取值范围是 A .4<kB .4≤kC .4<k且3≠kD .4≤k且3≠k【答案】B9. (2011广东佛山,8,3)下列函数的图象在每一个象限内,y 值随x 值的增大而增大的是A y = -x + 1 B. y = x 2-1 C.y=1x D.y=-1x【答案】D10.(2010湖南长沙,7,3分)如图,关于抛物线y =(x -1)2-2,下列说法错误的是( ) A .顶点坐标是(1,-2) B .对称轴是直线x =1C .开口方向向上D .当x >1时,y 随x 的增大而减小(第7题)-1-2-1O 123xy11. (2011山东莱芜,12,3分)已知二次函数)0(2≠++=a c bx ax y 的图象在同一坐标系中大致可能是( )DC B A OyxxyOxyOOyxyx-11O【答案】A12. (2011北京市,7,4分)抛物线265y x x =-+的顶点坐标为( ) A . (3,4-) B . (3,4) C . (3-,4-) D . (3-,4)【答案】A13. (2011内蒙古呼和浩特市,8,3分)已知一元二次方程032=-+bx x的一根为3-,在二次函数32-+=bx x y 的图象上有三点⎪⎭⎫⎝⎛-1,54y 、⎪⎭⎫ ⎝⎛-2,45y 、⎪⎭⎫ ⎝⎛3,61y ,y 1、y 2、y 3的大小关系是( ) A.321y y y <<B.312y y y <<C.213y y y <<D.231y y y <<【答案】A14. (2011福建莆田,5,4分)抛物母y=-6x 2可以看作是由抛物线y=-6x 2+5按下列何种变换得到( )A .向上平移5个单位 B.向下平移5个单位 C .向左平移5个单位 D.向右平移5个单位 【答案】B15. (2011广东肇庆,10,3分)二次函数522-+=x x y 有A . 最大值-5B . 最小值-5C . 最大值-6D . 最小值-6【答案】D16. (2011广西桂林,11,3分)在平面直角坐标系中,将抛物线223y x x =++绕着它与y 轴的交点旋转180°,所得抛物线的解析式是( ). A .2(1)2y x =-++ B .2(1)4y x =--+ C .2(1)2y x =--+ D .2(1)4y x =-++17. (2011黑龙江省哈尔滨市,4,3分)在抛物线1-x y 2+=上的一个点是( )A .(1,0)B .(0,0)C .(0,-1)D .(1,1) 【答案】A18. (2011黑龙江绥化,19,3分)已知二次函数()02≠++=a c bx ax y 的图象如图所示,现有下列结论:①042>-ac b ②0>a ③0>b ④0>c ⑤039<++c b a ,则其中结论正确的个数是( )个.A 、2B 、3C 、4D 、5【答案】B19. (2011湖北省随州市,10,4分)已知函数y =.)3(1)5()3(1)1(22⎪⎩⎪⎨⎧>--≤--x x x x ,则使y =k 成立的x 值恰好有三个,则k 的值为( )A .0B .1C .2D .3 【答案】D 20.(2011江西b 卷,6,3分)已知二次函数y=x 2+bx -2的图象与x 轴的一个交点为(1,0),则它与x 轴的另一个交点坐标是( ).A .(1,0) B.(2,0) C.(-2,0) D.(-1,0) 【答案】C21. (2011福建龙岩,9,4分)下列图象中,能反映函数y 随x 增大而减小的是( )xyODx yOCxyOBxyOA【答案】D22. (2011四川广元,10,3分)在平面直角坐标系中,如果抛物线y =3x 2不动,而把x 轴、y 轴分别向上、向右平移3个单位,那么在新坐标系下此抛物线的解析式是( D )A . y =3(x -3)2+3 B . y =3(x -3)2-3C . y =3(x +3)2+3D . y =3(x +3)2-3 【答案】D23. (2011湖北鄂州,15,3分)已知函数()()()()22113513x x y x x ⎧--⎪=⎨--⎪⎩≤>,则使y=k 成立的x 值恰好有三个,则k 的值为( )A .0B .1C .2D .3【答案】D24. (2011云南省昆明市,8,3分)抛物线y =ax 2+bx +c (a ≠0)的图象如图所示,则下列说法正确的是( )A .b 2-4ac <0B .abc <0C .-b2a<-1 D .a -b +c <0【答案】C25. (2011云南玉溪,6,3分)如图,函数2y x bx c =-++的部分图像与x 轴、x 轴的交点分别为A (1,0),B (0,3),对称轴是x =-1,在下列结论中,错误的是( )A . 顶点坐标为(-1,4)B . 函数的解析式为223y x x =--+C . 当x <0时,x 随x 的增大而增大D .抛物线与x 轴的另一个交点是(-3,0)【答案】C.26. (2011内蒙古包头,12,3分)已知二次函数y=ax 2+bx+c 同时满足下列条件:①对称轴是x=1;②最值是15;③二次函数的图象与x 轴有两个交点,其横坐标的平方和为15-a .则b 的值是( )A .4或-30B .-30C .4D .6或-20 【答案】C27. (2011•泸,12,2分)已知二次函数y=ax 2+bx+c (a ,b ,c 为常数,a≠0)的图象如图所示,有下列结论:①abc >0,②b 2﹣4ac <0,③a ﹣b+c >0,④4a ﹣2b+c <0,其中正确结论的个数是( )第8题图xOy-1A 、1B 、2C 、3D 、4【答案】A .28. (2011四川自贡,10,3分)有下列函数:①3y x =-②1y x =- ③1(0)y x x=->④221y x x =++,其中函数值y 随自变量x 增大而增大的函数有 ( )A. ①②B. ②④C. ②③D. ①④ 【答案】C29. (2011四川雅安12,3分)已知二次函数c bx ax y ++=2的图像如图,其对称轴1-=x ,给出下列结果①ac b 42>②0>abc ③02=+b a ④0>++c b a ⑤0<+-c b a ,则正确的结论是( )A ①②③④B ②④⑤C ②③④D ①④⑤ 【答案】 D30. (2011年青海,18,3分)将y =2x 2的函数图象向左平移2个单位长度后,得到的函数解析式是( )A. y =2x 2+2B. y =2(x +2)2C. y =(x -2)2D. y =2x 2-2 【答案】B31. (2011广西崇左,18,3分)已知:二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列结论中:①abc >0;②2a +b <0;③a +b <m (am +b )(m ≠1的实数);④(a +c )2<b 2;⑤a >1.其中正确的项是( ) A .①⑤ B .①②⑤ C .②⑤D .①③④【答案】A32. (2011广西玉林、防港,6,3分)已知二次函数y=ax 2的图象开口向上,则直线y=ax-1经过的象限是( )A .第一、二、三象限B .第二、三、四象限C .第一、二、四象限D .第一、三、四象限【答案】D33. (2011广西玉林、防港,9,3分)已知抛物线2123y x =-+,当15x ≤≤时,y 的最大值是( )A.2B.23C.53D.73【答案】C34. (2011广西百色,10,3分)二次函数的图像如图,则反比例函数y=-xa 与一次函数y=bx+c的图像在同一坐标系内的图像大致是【答案】:B.35. (2011贵州黔南,4,4分)下列函数:(1)y=-x,(2)y=2x,(3)y=-x1,(4)y=x 2(x <0),y 随x 增大而减小的函数有( )A.1个B.2个C.3个D.4个 【答案】B36. (2011贵州黔南,9,4分)二次函数y=-x 2+2x+k 的部分图像如图所示,则关于x 的一元二次方程-x 2+2x+k=0的一个解是x 1=3,另一个解x 2=( ) A.1 B.-1 C.-2 D.0【答案】B37. (2011黑龙江黑河,19,3分)已知二次函数y=ax 2+bx+c(a≠0)的图象如图所示,现有下列结论:① b 2-4ac >0 ② a >0 ③ b >0 ④ c >0 ⑤9a+3b+c <0,则其中结论正确的个数是 ( )A 2个B 3个C 4个D 5个【答案】B 38.二、填空题1. (2011福建泉州,15,4分)已知函数()4232+--=x y ,当x = 时,函数取最大值为 . 【答案】2,42. (2011河南,11,3分)点1(2,)A y 、2(3,)B y 是二次函数221y x x =-+的图象上两点,则1y 与2y 的大小关系为1y 2y (填“>”、“<”、“=”). 【答案】 <3. (2011辽宁大连,16,3分)如图5,抛物线y =-x 2+2x +m (m <0)与x 轴相交于点A (x 1,0)、B (x 2,0),点A 在点B 的左侧.当x =x 2-2时,y ______0(填 “>”“=”或“<”号).【答案】<O13xy第9题图B AO yx图5第19题图4. (2011山东枣庄,18,4分)抛物线2y ax bx c =++上部分点的横坐标x ,纵坐标y 的对应值如下表:x … -2 -1 0 1 2 … y…4664…从上表可知,下列说法中正确的是 .(填写序号)①抛物线与x 轴的一个交点为(3,0); ②函数2y ax bx c =++的最大值为6; ③抛物线的对称轴是12x =; ④在对称轴左侧,y 随x 增大而增大.【答案】①③④5. (2011昭通,20,3)把抛物线42++=bx x y 的图像向右平移3个单位,再向下平移2个单位,所得图像的解析式为322+-=x x y ,则b 的值为________________。
广东2011年中考数学试题分类解答汇编专题6:函数的图像与性质

广东2011年中考数学试题分类解析汇编专题6:函数的图像与性质一、选择题1. (佛山3分)下列函数的图像在每一个象限内,y 值随x 值的增大而增大的是A 、1y x =-+B 、21y x =-C 、1y x=D 、1y x=-【答案】D 。
【考点】一次函数、二次函数和反比例函数的性质。
【分析】根据两一次函数和反比例函数的性质知,A 、函数1y x =-+的图像在每一个象限内,y 值随x 值的增大而减小;B 、函数21y x =-的图像在对称轴左边,y 值随x 值的增大而减小,在对称轴右边,y 值随x 值的增大而增大;C 、函数1y x=的图像在每一个象限内,y 值随x 值的增大而减小;D 、、函数1y x=-的图像在每一个象限内,y 值随x 值的增大而增大。
故选D 。
2. (广州3分)下列函数中,当x >0时,y 值随x 值增大而减小的是A 、2y x =B 、1y x =-C 、34y x =错误!未找到引用源。
D 、1y x=错误!未找到引用源。
【答案】D 。
【考点】二次函数、一次函、正比例函数、反比例函数的性质。
【分析】A 、二次函数2y x =的图象,开口向上,并向上无限延伸,在y 轴右侧(x >0时),y 随x 的增大而增大;故本选项错误;B 、一次函数1y x =-的图象,y 随x 的增大而增大; 故本选项错误;C 、正比例函数错误!未找到引用源。
的图象在一、三象限内,y 随x 的增大而增大; 故本选项错误;D 、反比例函数错误!未找到引用源。
中的1>0,所以y 随x 的增大而减小; 故本选项正确;故选D 。
3.(茂名3分)若函数2m y x+=的图象在其象限内y 的值随x 值的增大而增大,则m 的取值范围是A 、m >﹣2B 、m <﹣2C 、m >2D 、m <2【答案】B 。
【考点】反比例函数的性质。
【分析】根据反比例函数的性质,可得m+2<0,从而得出m 的取值范围:m <﹣2。
福建省2011年中考数学试题分类解析汇编 专题6:函数的图像与性质

福建省2011年中考数学试题分类解析汇编专题6:函数的图象与性质一、选择题1(福建龙岩4分)下列图象中,能反映函数y 随x 增大而减小的是xx【答案】D 。
【考点】一次、二次、反比例函数图象的增减性。
【分析】A :直线y 随x 增大而增大,选项错误;B :抛物线在对称轴左边y 随x 增大而减小,右边y 随x 增大而增大,选项错误; C :双曲线分别在两个象限内y 随x 增大而增大,选项错误; D 、直线y 随x 增大而减小,选项正确。
故选D 。
2.(福建福州4分)如图是我们学过的反比例函数图象,它的函数解析式可能是A 、2y x =B 、4y x =C 、3y x=-D 、12y x =【答案】B 。
【考点】反比例函数的图象。
【分析】根据图象可知:函数是反比例函数,且k >0,选项B 的k =4>0,符合条件。
故选B 。
3.(福建漳州3分)如图,P (x ,y)是反比例函数y = 3x 的图象在第一象限分支上的一个动点,PA⊥x 轴于点A ,PB⊥y 轴于点B ,随着自变量x 的增大,矩形OAPB 的 面积A .不变B .增大C .减小D .无法确定【答案】A 。
【考点】反比例函数系数k 的几何意义。
【分析】因为过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 是个定值,即S= 12|k|,所以随着x 的逐渐增大,矩形OAPB 的面积将不变。
故选A 。
4.(福建三明4分)下列4个点,不在..反比例函数y =-6x图象上的是A 、(2,﹣3)B 、(﹣3,2)C 、(3,﹣2)D 、(3,2)【答案】D 。
【考点】反比例函数图象上点的坐标特征,曲线上点的坐标与方程的关系。
【分析】原式可化为:xy=﹣6,所以只要点的横坐标与纵坐标的积等于﹣6,就在函数图象上:A 、2×(﹣3)=﹣6,符合条件;B 、(﹣3)×2=﹣6,符合条件;C 、3×(﹣2)=﹣6,符合条件;D 、3×2=6,不符合条件。
北京市2011中考数学二模数学分类汇编 函数和图像

2011初三二模数学分类汇编—函数和图像(某某)(西城)6.小明的爷爷每天坚持体育锻炼,一天他步行到离家较远的公园,打了一会儿太极拳后跑步回家.下面的四个函数图象中,能大致反映当天小明的爷爷离家的距离y 与时间x 的函数关系的是(丰台18. (1(3)24.25. 已知:如图,二次函数图象的顶点坐标为C (1,-2),直线y kx m =+的图象与该二次函数的图象交于、A B 两点,其中A 点坐标为(3,0),B 点在y 轴上.点P P 且垂直于x 轴的直线与这个二次函数的图象交于点E .(1)求这个二次函数的解析式;(2)设点P 的横坐标为x ,求线段PE 的长(用含x (3)点D 为直线AB 相似,请求出P 点的坐标.(顺义)18.已知:如图,在平面直角坐标系xOy 中,直线AB 与x 轴交于点A ,与y 轴的交点为(0,2)C ,与反比例函数在第一象限内的图象交于点(2,)B n ,连结BO ,若S 4AOB ∆=. (1)求直线AB 的解析式和反比例函数的解析式; (2).求tan ABO ∠的值.18.解:(1)由(0,2)C ,得2OC =.∵点(2,)B n 在第一象限内,4AOB S ∆=. ∴112422OC OA OC ⋅+⨯=.∴2OA =.∴点A 的坐标是(2,0)-.----------------------------------------------------1分 设直线AB 的解析式为(0)y kx b k =+≠.将点A ,C 的坐标分别代入,得20,2.k b b -+=⎧⎨=⎩解得1,2.k b =⎧⎨=⎩∴直线AB 的解析式为2y x =+. --------------------------2分∵点(2,)B n 在直线AB 上 ∴4n =设反比例函数的解析式为(0)ky a x=≠. 将点B 的坐标代入,得42k=,∴8k =. ∴反比例函数的解析式为:8y x=. ---------------------------------------3分 (2)过点O 作OD AB ⊥于D ,BE y ⊥轴于E∴2OD CD == ,22BC = -------------------------------------4分∴32BD = ∴1tan 3OD ABO BD ∠== -------------------------------------------------------5分 (延庆)ABCO xy8.定义新运算:1()(0)a a ba b aa b bb⎧-⎪⊕=⎨->≠⎪⎩且≤,则函数3y x=⊕的图象大致是 B17.已知:如图,一次函数mxy+=3与反比例函数xy33=的图象在第一象限的交点为),3(nA.(1)求m与n的值;(2)设一次函数的图像与x轴交于点B,连接OA,求BAO∠的度数.17.(1)∵xy33=的图象过点),3(nA.∴3=n一次函数mxy+=3的图象过点),3(nA∴32-=m(2) ∵过点A做轴x⊥AC于点C∴3AC=,3OC=∴2A B=∵一次函数mxy+=3的图象与x轴的交点B(2,0)∴2OB=∴OBAB=在332tanOACRt==∠∆OCAC中,∴302=∠∴601=∠23.已知关于x函数kxxky+-=2)-2(2(1)若此函数的图像与坐标轴只有2个交点,求k的值.(2)求证:关于x的一元二次方程2)-2(2=+-kxxk必有一个根是1.23.解:(1)解:分情况讨论:(ⅰ)10k-=时,得1k=.此时41y x=+与坐标轴有两个交点,符合题意. ……………………1分(ⅱ)10k-≠时,得到一个二次函数.①抛物线与x轴只有一个交点,222)1(4)2(4)2(4-=---=-=∆kkkacb…………………2分解得1=k(舍去)…………………………………………………………3分D.第8题图C.B.A.第17题图………………1分………………2分………………3分………………4分………………5分………………1分y 2x13123-1-1-2O② 抛物线与x 轴有两个交点,其中一个交点是(0,0)…………………4分 把(0,0)带入函数解析式,易得0k =………………………………5分(2)设关于x 的一元二次方程02)-2(2=+-k x x k 的两个实数根分别为21,x x ∴)(k k a ac b b x --±=-±-=22)1(22242 ∴1,221=-=x k k x∴必有一个根是1(昌平)7.将二次函数223y x x =-+化为2()y x h k =-+的形式,结果为 D A .2(1)4y x =++ B .2(1)4y x =-+C .2(1)2y x =++D . (大兴)16.已知:点P(1,a )在反比例函数xky =的图象上,它关于y 轴的对称点在一次函数42+=x y 的图象上,求此反比例函数的解析式16.解法:点P (1,a )关于y 轴的对称点为(-1,a ) ……………1分 ∵(-1,a )在一次函数42+=x y 的图象上,∴a =2. ………………………………………………3分 ∴点P 坐标为(1,2).∴反比例函数的解析式为xy 2=………………………5分 (东城)7.已知反比例函数2k y x -=的图象如图所示,则一元二次方程22(21)10x k x k --+-根的情况是A A .没有实根 B . 有两个不等实根C .有两个相等实根D .无法确定8.用min{a ,b }表示a ,b 两数中的最小数,若函数}1,1m in{22x x y -+=,则y 的图象为 A9. 反比例函数k y x=的图象经过点(-2,1),则k 的值为__-2_____.(房山)18.(本小题满分5分)已知反比例函数y =k x的图象与二次函数y =ax2+x -1的图象相交于点A (2,2)(1)求反比例函数与二次函数的解析式;………………6分………………7分O xyx y 0A 1-1-1-1-11111111x y 0Bx y 0C x y0D(2)设二次函数图象的顶点为B ,判断点B 是否在反比例函数的图象上,并说明理由; (3)若反比例函数图象上有一点P ,点P 的横坐标为1,求△AOP 的面积.18.解:(1)∵反比例函数y =kx的图象与二次函数y =ax 2+x -1的图象相交于点A (2,2) ∴k =4 ,a =14∴反比例函数的解析式为:4y x=二次函数的解析式为:2114y x x =+- ------------------------------------2分 (2)∵二次函数2114y x x =+-的图象的顶点为B (-2,-2),在4y x= 中,当x=-2时,y=422=--∴顶点B (-2,-2)在反比例函数的图象上----------------------------------------------3分 (3)∵点P 在4y x=的图象上,且点P 的横坐标为1 ∴P (1,4) ------------------------------------------------------------------------- 4分∴AOP 3S ∆= ------------------------------------------------------------------------ 5分23.(本小题满分7分)已知:二次函数y=22(2)x n m x m mn +-+-. (1)求证:此二次函数与x 轴有交点; (2)若m-1=0,求证方程22(2)0x n m x m mn +-+-=有一个实数根为1;(3)在(2)的条件下,设方程22(2)0x n m x m mn +-+-=的另一根为a,当x=2时,关于n 的函数1y nx am =+与222(2)y x n m ax m mn =+-+-的图象交于点A 、B (点A 在点B 的左侧),平行于y 轴的直线L 与1y nx am =+、222(2)y x n m ax m mn =+-+-的图象分别交于点C 、D ,若CD=6,求点C 、D 的坐标.23.(1)证明:令0y =,则有22(2)0x n m x m mn +-+-=△=222(2)4()n m m mn n ---= -----------------------------------------------------------1分 ∵20n ≥∴△≥0 -----------------------------------------------2分 ∴二次函数y=22(2)x n m x m mn +-+-与x 轴有交点(2)解:解法一:由101m m -==得,方程22(2)0x n m x m mn +-+-=可化为2(2)10x n x n +-+-=解得:11x x n ==-或 -------------------------------------------------------------------3分∴方程22(2)0x n m x m mn +-+-=有一个实数根为1 ----------------------------------4分解法二:由101m m -==得,方程22(2)0x n m x m mn +-+-=可化为2(2)10x n x n +-+-=当x=1时,方程左边=1+(n-2)+1-n=0 方程右边=0∴左边=右边 -----------------------------------------------------------3分 ∴方程22(2)0x n m x m mn +-+-=有一个实数根为1 -------------------4分(3)解:方程22(2)0x n m x m mn +-+-=的根是:121,1x x n ==-∴1a n =-当x =2时,11y n =+,22251y n n =-++ ----------------------------------5分设点C (,1b b +)则点D (2,251b b b -++)∵CD=6 , ∴221(251)62b 51(1)6b b b b b +--++=-++-+=或∴31b b ==-或 -----------------------------------------------------------6分 ∴C 、D 两点的坐标分别为C (3,4),D (3,-2)或C (-1,0),D (-1,-6)------7分 (门头沟)8.如图,正方形ABCD 的边长为2,动点P 从点C 出发, 在正方形的边上沿着C B A →→的方向运动(点P 与A 不重合). 设点P 的运动路程为x , 则下列图象中,表示△ADP 的面积y 与x 的函数关系的是 D18.已知二次函数m x x y ++=22的图象与x 轴有且只有一个公共点. (1)求m 的值;(2)若此二次函数图象的顶点为A ,与y 轴的交点为B ,求A 、B 两点的坐标;(3)若1(,)P n y 、2(2,)Q y 是二次函数图象上的两点,且12y y >,请你直接写出n 的取值X 围. 18. 解:(1)根据题意,得△=2240m -=.解得1m =. ……………………………………………………………………1分(2)当1m =时,221y x x =++.二次函数图象的顶点A 的坐标为(-1,0), ………………………………2分 与y 轴的交点B 的坐标为(0,1). …………………………………………3分(3)n 的取值X 围是2n >或4n <-. ………………………………………………5分(平谷)23.如图,在直角坐标平面内,函数my x=(0x >,m 是常数) 的图象经过(14)A ,,()B a b ,,其中1a >.过点A 作x 轴垂线, 垂足为C ,过点B 作y 轴垂线,垂足为D ,连结AD ,DC ,CB .(1)若ABD △的面积为4,求点B 的坐标;(2)若DC AB ∥,当AD BC =时,求直线AB 的函数的解析式.23.(1)解:函数(0my x x=>,m 是常数)图象经过(14)A ,,4m ∴=. (1)分设BD AC ,交于点E ,据题意,可得B 点的坐标为4a a ⎛⎫ ⎪⎝⎭,,D 点的坐标为40a ⎛⎫ ⎪⎝⎭,,43 2 1 0 12 3 x yB43 2 1 0 12 3 x y A4 3 2 1 01 2 3 x yC BACDP43 2 1 0 12 3 xyDE 点的坐标为41a ⎛⎫⎪⎝⎭,,………………………………….2分1a >,DB a ∴=,44AE a =-.由ABD △的面积为4,即14442a a ⎛⎫-= ⎪⎝⎭,………..3分得3a =,∴点B 的坐标为433⎛⎫⎪⎝⎭,.…………………4分(2)解:DC AB ∥,∴当AD BC =时,有两种情况: ①当AD BC ∥时,四边形ADCB 是平行四边形,由AE=CE ,BE=DE ,得,1BE AEa DE CE==-,11a ∴-=,得2a =.∴点B 的坐标是(2,2). ························· 5分 设直线AB 的函数解析式为y kx b =+,把点A B ,的坐标代入, 得422k b k b =+⎧⎨=+⎩,解得26.k b =-⎧⎨=⎩, ∴直线AB 的函数解析式是26y x =-+. ·················· 6分 ②当AD 与BC 所在直线不平行时,四边形ADCB 是等腰梯形, 则BD AC =,4a ∴=,∴点B 的坐标是(4,1).设直线AB 的函数解析式为y kx b =+,把点A B ,的坐标代入, 得414.k b k b =+⎧⎨=+⎩,解得15k b =-⎧⎨=⎩,∴直线AB 的函数解析式是5y x =-+. ··················· 7分 综上所述,所求直线AB 的函数解析式是26y x =-+或5y x =-+.(燕山)7.如右图, 是一个下底小而上口大的圆台形容器,将水以恒速(即单位时间内注入水的体积相同)注入,设注水时间为t ,容器内对应的水高度为h ,则h 与t 的函数图象只可能是 D19.如图,直立于地面的两根柱子相距4米,小芳的爸爸在 柱子间栓了一根绳子,给她做了一个简易的秋千,拴绳子 的位置A 、B 距离地面都是,绳子自然下垂近似抛物线形状,最低点C 到地面的距离为,小芳站在距离柱子1米的地方,头的顶部D 刚好触到绳子.⑴ 在图中添加直角坐标系,并求抛物线所表示的函数解析式; ⑵ 求小芳的身高.h h h ho t o t o t o t A. B. C. D.19.⑴ 直角坐标系如图所示(有多种方法,本题请参照下面的解法及步骤酌情给分),则点B (2,2.5),且应设抛物线为y=ax 2+0.9, ………………1分把点B (2,2.5)代入,得4a+0.9=2.5, ………………………2分 解得 a=0.4, ∴2+0.9. …………………………3分 ⑵×1+0.9=1.3.∴小芳的身高是. ………………………………5分 23.已知:如图,直线y =x 21-+1与x 轴、y 轴的交点分别是A 和B ,把线段AB 绕点A 顺时针旋转90°得线段AB '. ⑴ 在图中画出△ABB',并直接写出点A 和点B '的坐标; ⑵ 求直线AB '表示的函数关系式; ⑶ 若动点C (1,a )使得S △ABC =S △ABB',求a 的值.23.⑴ 画图基本准确. ………………………………………………1分 点A (2,0)、点B '(3,2) . ………………………3分⑵ 把点A 、点B '的坐标分别代入y =kx+b ,得⎩⎨⎧=+=+.2b 3k ,0b 2k解得k=2,b= -4.∴直线AB '表示的函数关系式是y =2x-4 . ………………4分 ⑶∵△ABB '为等腰直角三角形,直角边AB=22OB OA +=5,∴ S △ABB '=2AB 21=25. ……………………………………5分在y =x 21-+1中,当x=1时,y=0.5. 即直线x=1与AB 交于点M (1,0.5). 又∵点A 和B 到CM 的距离之和显然为2,∴ S △ABC =21CM ×2= |a-0.5|=25. …………………………………6分解得,a=3,或-2. …………………………………8分BAx O y ABOB '。
(完整版)中考数学一轮复习-二次函数的图像和性质(含答案),推荐文档
2、在抛物y=kx2+bx+c(a≠0)中:
①、当a>0时,y口向,当x< 时,y随x的增大而,当x时,y随x的增大而增大,
②、当a<0时,开口向当x< 时,y随x增大而增大,当x时,y随x增大而减小
注意2:注意几个特殊形式的抛物线的特点
a:开口方向向上则a0,向下则a0;|a|越大,开口越
b:对称轴位置,与a联系一起,用判断b=0时,对称轴是
c:与y轴的交点:交点在y轴正半轴上,则c0负半轴上则c0,当c=0时,抛物点过点
【名师提醒:在抛物线y= ax2+bx+c中,当x=1时,y=当x=-1时y=,经常根据对应的函数值判考a+b+c和a-b+c的符号】
综上,正确的结论有②④.
故选C
点评:此题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a决定抛物线的开口方向,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点,抛物线与y轴交于(0,c).
③由两函数图象可知,抛物线y1=a(x+2)2-3过原点,当x=0时,y2= (0-3)2+1= ,故y2-y1= ,故本小题错误;
④∵物线y1=a(x+2)2-3与y2= (x-3)2+1交于点A(1,3),
∴y1的对称轴为x=-2,y2的对称轴为x=3,
∴B(-5,3),C(5,3)
2011年全国各地市中考数学模拟试题分类汇编--18.二次函数的图象和性质
二次函数的图象和性质一、选择题A 组1、(中江县2011年初中毕业生诊断考试) 小李从如图所示的二次函数c bx ax y ++=2的图象中,观察得出了下面四条信息:(1)b 2-4ac >0;(2)c >1;(3)ab >0;(4)a -b +c <0. 你认为其中错误..的有( )A. 2个B. 3个C. 4个D. 1个答案:A2、(2011年江阴市周庄中学九年级期末考)在平面直角坐标系中,如果抛物线y =2x 2不动,而把x 轴、y 轴分别向上、向右平移2个单位,那么在新坐标系下抛物线的解析式是 ( )A .y =2(x + 2)2-2B .y =2(x -2)2 + 2C .y =2(x -2)2-2D .y =2(x + 2)2 + 2 答案:A3、(2011淮北市第二次月考五校联考)下列函数中,不是二次函数的是( )A 、y=221x -B 、y=2(x-1)2+4C 、y=)4)(1(21+-x xD 、y=(x-2)2-x 2答案 D4、(2011淮北市第二次月考五校联考)根据下列表格的对应值,判断方程ax 2+bx+c=0(a ≠0)一个解x 的取值范围( )3.26A 、3<x<3.23 B 、3.23<x<3.24 C 、3.24<x<3.25 D 、3.25<x<3.26答案 C5、(2011淮北市第二次月考五校联考)把抛物线y=x 2+bx+c 的图象向右平移3个单位,再向下平移2个单位,所得函数的解析式是y=x 2-3x+5,则有( )A 、b=3,c=7B 、b=-9,c=-15C 、b=3,c=3D 、b=-9,c=21答案 A6、 (2011淮北市第二次月考五校联考)生产季节性产品的企业,当它的产品无利润时,就会停产,现有一生产季节性产品的企业,其中一年中获得的利润y 与月份n 之间的函数关系式为y=-n 2+14n-24,则该企业一年中停产的月份是( )A 、1月,2月,3月B 、2月,3月,4月C 、1月,2月,12月D 、1月,11月,12月答案 C7、(2011淮北市第二次月考五校联考)函数图象y=ax 2+(a -3)x+1与x 轴只有一个交点则a 的值为( )A 、0,1B 、0,9C 、1,9D 、0,1,9 答案 D8. (2011年浙江省杭州市高桥初中中考数学模拟试卷)对于每个非零自然数n ,抛物线2211(1)(1)n n n n n y x x +++=-+与x 轴交于A n 、B n 两点,以n n A B 表示这两点间的距离,则112220112011A B A B A B +++ 的值是( ) A .20112010B .20102011C .20122011D .20112012答案:D9.(2011年上海市卢湾区初中毕业数学模拟试题)抛物线221y x x =-+的顶点坐标是( )A .(1,0);B .(– 1,0) ;C .(–2 ,1) ;D .(2,–1). 答案:A10.(2010-2011学年度河北省三河市九年级数学第一次教学质量检测试题)如图,点A ,B 的坐标分别为(1,4)和(4, 4),抛物线n m x a y +-=2)(的顶点在线段AB 上运动,与x 轴交于C 、D 两点(C 在D 的左侧),点C 的横坐标最小值为3-,则点D 的横坐标最大值为( )A .-3B .1C .5D .811、(2011山西阳泉盂县月考)二次函数y=ax 2+bx+c(a≠0)的图像经过点(-1,2),且与x 轴的交点的横坐标分别为x 1,x 2,其中-2<x 1<-1,0<x 2<1有下列结论:①abc >0,②4a -2b+c <0,③2a -b <0,④b 2+8a >4ac 其中正确的结论有( )A 、1个B 、2个C 、3个D 、4个 答案:D12. (2011年江苏盐都中考模拟)如图,已知抛物线y=ax 2+bx+c(a >0)的对称轴是过点且平行于y 轴的直线,并且经过点P (3,0),则a-b+c 的值为 (A.3 B.-3 C.-1 D.0答案D13、(2011年北京四中中考模拟20)把抛物线2x y =向右平移2( )A 、2x y 2+=B 、2x y 2-=C 、2)2x (y +=D 、2)2x (y -= 答案D14、(北京四中模拟)已知抛物线21432y x x =-++,则该抛物线的顶点坐标为( )A 、(1,1)B 、(4,11)C 、(4,-5)D 、(-4,11)答案:B15、(北京四中模拟)二次函数22(3)y ax ax a =+--的图象如图所示,则( )A 、0a <B 、3a <C 、0a >D 、03a <<答案:A16、(2011杭州模拟)已知二次函数)0(2>++=a c bx ax y 经过点M (-1,2)和点N (1,-2),交x 轴于A ,B 两点,交y 轴于C 则……( ▲ )①2-=b ; ②该二次函数图像与y 轴交与负半轴③ 存在这样一个a ,使得M 、A 、C 三点在同一条直线上 ④若2,1OC OB OA a =⋅=则以上说法正确的有:A .①②③④B .②③④C .①②④D .①②③ 答案:C17(2011杭州模拟26)已知二次函数y = 2y ax bx c =++的图像如图所示,令M=︱4a-2b+c ︱+︱a+b+c ︱-︱2a+b ︱+︱2a-b ︱,则以下结论正确的是……………( )A.M <0B.M >0C.M=0D.M 的符号不能确定答案:A18. (2011年北京四中中考全真模拟15)二次函数y=-2(x-1)2+3的图象如何移动就得到y=-2x 2的图象( ) A. 向左移动1个单位,向上移动3个单位。
2011中考数学真题试卷 二次函数精选
2011中考真题二次函数精选1.(2011.某某)抛物线y =-(x +2)2-3的顶点坐标是( ).(A) (2,-3); (B) (-2,3); (C) (2,3); (D) (-2,-3) . 2. (2011.)抛物线265y x x =-+的顶点坐标为( ) A. (3,4-)B. (3,4)C. (3-,4-)D. (3-,4)3.(2011.某某)下列二次函数中,图象以直线x=2为对称轴、且经过点(0,1)的是 ( ▲ )A .y=(x -2)2+1 B .y=(x+2)2+1 C .y=(x -2)2-3 D .y=(x+2)2-34.(2011.某某)已知抛物线2(0)y ax bx c a =++≠在平面直角坐标系中的位置如图所示,则下列结论中,正确的是( ) A 、a>0 B b<0 C c<0 D a+b+c>05.(2011.株洲)某广场有一喷水池,水从地面喷出,如图,以水平地面为x 轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线24y x x =-+(单位:米)的一部分,则水喷出的最大高度是 ( A ) A .4米B .3米C .2米D .1米6.(2011.某某荷泽)如图为抛物线2y ax bx c =++的图像,A B C 为抛物线与坐标轴的交点,且OA=OC=1,则下列关系中正确的是 A. 1a b +=- B. 1a b -=-(第6题图)O xy1 2 3-1-1 1(第7题图)C. b<2aD. ac<07.(2011.某某威海)二次函数y =x 2-2x -3的图象如图所示。
当y <0时,自变量x 的取值X 围是A .-1<x <3B .x <-1C .x >3D .x <-3或x >38.(2011.某某)若二次函数c bx ax y ++=2的x 与y 的部分对应值如下表:x—7 —6 —5 —4 —3 —2 y—27—13—3353则当1=x 时,y 的值为(A )5 (B )—3 (C )—13 (D )—279.(2011.某某)如图所示的二次函数2y ax bx c =++的图像中,X 星同学观察得出了下面四条信息: (1)24b ac -10.(2011.某某)一小球被抛出后,距离地面的高度h (米)和飞行时间t (秒)满足下面的函数关系式:h =-5(t -1)2+6,则小球距离地面的最大高度是A .1米B .5米C .6米D .7米11.(2011.某某)将抛物线2x y =的图象向上平移1个单位,则平移后的抛物线的解析式为第10题图x (米)y (米)▲.12.(2011.某某日照)如图,是二次函数y =ax 2+bx +c (a ≠0)的图象的一部分, 给出下列命题 :①a+b+c=0;②b >2a ;③ax 2+bx +c =0的两根分别为-3和1; ④a -2b +c >0. 其中正确的命题是 .(只要求填写正确命题的序号)13.(2011.义乌)如图,一次函数y =-2x 的图象与二次函数y =-x 2+3x 图象的对称轴交于点B .(1)写出点B 的坐标▲;(2)已知点P 是二次函数y =-x 2+3x 图象在y 轴右侧..部分上的一 个动点,将直线y =-2x 沿y 轴向上平移,分别交x 轴、y 轴于C 、D 两点. 若以CD 为直角边的△PCD 与△OCD 相似,则点 P 的坐标为▲.14.(2011某某)如图所示,二次函数m x x y ++-=22的图象与x 轴的一个交点为A )0,3(,另一个交点为B ,且与y 轴交于点C . (1)求m 的值;(3分) (2)求点B 的坐标;(3分)(3)该二次函数图象上有一点),(y x D (其中0>x ,0<y ),OBC D使ABC ABD S S ∆∆=,求点D 坐标.(4分)15.(2011.某某)某学校要在围墙旁建一个长方形的中药材种植实习苗圃,苗圃的一边靠围墙(墙的长度不限),另三边用木栏围成,建成的苗圃为如图所示的长方形ABCD 。
2011全国中考数学真题解析120考点汇编 二次函数图像及其性质
y3=﹣7+c;∵8>﹣7>﹣8,∴7+c>﹣7+c>﹣8+c,即 y1>y3>y2. 故选 B. 点评:本题主要考查了二次函数图象上点的坐标特征(图象上的点都在该函数的图象上) .解答此题时,还利用了不等式的基本性质:在不等式的两边加上同一个数,不等式仍成 立. 7. 抛物线 y=-(x+2)2-3 的顶点坐标是( )
D.﹣1<x<0
2
∴y1<0.y2<0. 故选 B.
点评:本题考查了抛物线与 x 轴的交点和二次函数图象上的点的特征,解题的关键是求得
抛物线与横轴的交点坐标.
5. (2011 山西,12,2 分)已知二次函数 y ax2 bx c 的图象如图所示,对称轴为直
线 x 1 ,则下列结论正确的是( )
x
k
解答:解:∵抛物线 y=x2+1 与双曲线 y= 的交点 A 的横坐标是 1,
x
k
∴关于 x 的不等式 +x2+1<0 的解集是﹣1<x<0.
x
故选 D.
点评:本题主要考查了二次函数与不等式.解答此题时,利用了图象上的点的坐标特征来
解双曲线与二次函数的解析式.
1 4. (2011 江苏镇江常州,8,2 分)已知二次函数 y=-x2+x- ,当自变量 x 取 m 时对
ax2+bx+c=0 的一个根
考点:抛物线与 x 轴的交点;二次函数图象与系数的关系。
专题:计算题。
分析:根据图象可得出 a<0,c>0,对称轴 x=1,在对称轴的右侧,y 随 x 的增大而减小;
根据抛物线的对称性另一个交点到 x=1 的距离与﹣1 到 x=1 的距离相等,得出另一个根.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
19.二次函数的应用A 组三 解答题1.(南京市溧水县2011年中考一模)(8分)某电子科技公司开发一种新产品.产品投产上市一年来,公司经历了由初期的亏损到后来逐步盈利的过程(公司对经营的盈亏情况每月最后一天结算1次).公司前12个月累积..获得的利润y (万元)与销售时间第x (月)之间的函数关系(即前x 个月的利润总和y 与x 之间的关系)对应的点都在如图所示的图象上.该图象是某二次函数y =a (x -h )2+k 图象的一部分,点A 为抛物线的顶点,且点A ,B ,C 的横坐标分别为4,10,12,点A ,B 的纵坐标分别为-16,20.(1)求前12个月该公司累积获得的利润y (万元)与时间第x (月)之间的函数关系式; (2)分别求出前9个月公司累积获得的利润和10月份一个月内所获得的利润; (3)在前12个月中,哪个月该公司一个月内所获得的利润最多?最多利润是多少万元?解:(1)根据题意可设:y =a (x -4)2 -16,…………………………………………… 1分当x =10时,y =20,所以a (10-4)2 -16=20,解得a =1, …………………… 2分 所求函数关系式为:y = (x -4)2 -16 …………………………………………… 3分(2)当x =9时,y = (9-4)2 -16=9,所以前9个月公司累积获得的利润为9万元 …… 4分又由题意可知,当x =10时,y =20,而20-9=11,所以10月份一个月内所获得的利润11万元 ……………………………………… 5分 (3)设在前12个月中,第n 个月该公司一个月内所获得的利润为s (万元)则有:s = (n -4)2 –16-[ (n -1-4)2 -16]=2n -9………………………………………… 6分 因为s 是关于n 的一次函数,且2>0,s 随着n 的增大而增大,而n 的最大值为12,所以当n =12时,s =15, ………………………………7分 所以第12月份该公司一个月内所获得的利润最多,最多利润是15万元. ……8分2.(南京市江宁区2011年中考一模)(本题10分)某公司直销产品A ,第一批产品A 上市30天内全部售完.该公司对第一批产品A 上市后的市场销售情况进行了跟踪调查,调查结果如图所示,其中图①中的线段表示的是市场日销售量与上市时间的关系;图②中的折线表示的是每件产品A 的销售利润与上市时间的关系.(1)试写出第一批产品A 的市场日销售量y 与上市时间t 的函数关系式;O-16x (月)y (万元)410 1220ABC(2)第一批产品A 上市后,哪一天这家公司市场日销售利润最大?最大利润是多少万元?(说明理由)答案:(1)可设正比列函数y=kt(k ≠0) …………………………………………………1分∵过点(30,60)∴60=30k ,…………………………………………………………………………………2分 ∴k=2, ……………………………………………………………………………………3分 ∴2(030)y tt =≤≤……………………………………………………………4分(2)当0≤t ≤20时,W= 3t ·2t=6t 2,……………………………………………5分 ∵当0≤t ≤20时,W 随着t 的增大而增大∴t =20时,最大值W=6×400=2400万元;…………………………………………6分 当20<t ≤30时,W=60·2t=120t , ………………………………………………7分 ∵当20<t ≤30时,W 随着t 的增大而增大∴当 t=30时,最大值W=3600万元………………………………………………………8分 ∵3600>2400………………………………………………………………………………9分 ∴30天利润最大,最大日利润为3600万元. …………………………………………10分3.(南京市高淳县2011年中考一模)(9分)某批发商以每件50元的价格购进800件T 恤.第一个月以单价80元销售,售出了300件;第二个月如果单价不变,预计仍可售出300件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出15件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T 恤一次性清仓销售,清仓时单价为40元.设第二个月单价降低x 元.(1)填表(不需化简):(2)试写出批发商销售这批T 恤的获得的总利润为y (元),试求出y 与x 之间的函数关系式,并写出x 的取值范围;(3)当第二个月的销售单价为多少元时,才使得销售这批T 恤获得的利润最大?时 间 第一个月 第二个月 清仓时 单 价(元) 80 ▲ 40 销售量(件)300▲▲答案:(9分)(1)80-x ,300+15x , 800-300-(300+15x ) ………3分 (2)y =30×300+(30-x )( 300+15x ) -10(200-15x ) ………5分 =-15x 2+300x +16000x 的取值范围为:0≤x <30 ………6分(3) y =-15x 2+300x +16000=-15(x -10)2+17500 ………7分 当x =10时,y 取最大值. ………8分即当第二个月的销售单价为70元时,才使得销售这批T 恤获得的利润最大.……9分4、.(2011名校联合一模)某经销店为厂家代销一种新型环保水泥,当每吨售价为260元时,月销售量为45吨,每售出1吨这种水泥共需支付厂家费用和其他费用共100元.该经销店为扩大销售量、提高经营利润,计划采取降价的方式进行促销,经市场调查发现,当每吨售价每下降10元时,月销售量就会增加7.5吨.(1)填空:当每吨售价是240元时,此时的月销售量是 吨;(2)该经销店计划月利润为9000元而且尽可能地扩大销售量,则售价应定为每吨多少元? 考查内容:二次函数的应用 答案:(1)60;……………………2分(2)解法一:设每吨售价下降10x (0<x <16)元,由题意,可列方程(160-10x ) (45+7.5x ) =9000.……………………2分 化简得x 2-10x +24=0.解得x 1=4,x 2=6.……………………6分所以当售价定为每吨200元或220元时,该经销店的月利润为9000元.当售价定为每吨200元时,销量更大,所以售价应定为每吨200元.……………………8分解法二:当售价定为每吨x 元时,由题意,可列方程 (x -100) (45+260-x10 ×7.5) =9000.……………………2分化简得x 2-420x +44000=0.解得x 1=200,x 2=220.……………………6分 以下同解法一.5、(2011朝阳区一模) 已知抛物线()13)2(2++-+-=m x m x y .(1)求证:无论m 为任何实数,抛物线与x 轴总有交点;(2)设抛物线与y 轴交于点C ,当抛物线与x 轴有两个交点A 、B (点A 在点B 的 左侧)时,如果∠CAB 或∠CBA 这两角中有一个角是钝角,那么m 的取值范围 是 ;(3)在(2)的条件下,P 是抛物线的顶点,当△PAO 的面积与△ABC 的面积相等时,求该抛物线的解析式.考查内容: 二次函数的应用答案:(1)证明:∵()()()131422+⨯-⨯--=∆m m ……………………………………1分()042≥+=m …………………………………………………………… 2分∴无论m 为任何实数,抛物线与x 轴总有交点.(2)m <-1且m≠-4. ……………………………………………………………………… 3分 (3)解:令()013)2(2=++-+-=m x m x y ,解得x 1=m+1,x 2=-3. …………………………………………………………………………4分可求得顶点()⎪⎪⎭⎫⎝⎛+-44,222m m P . ①当A(m+1,0)、B(-3,0)时, ∵ABC PAO S S ∆∆=,∴()()()()13421441212+⨯--=+⨯+m m m m .……………………………………………5分 解得16-=m .∴45182---=x x y .…………………………………………………………………………6分 ②当A(-3,0)、B(m+1,0)时,同理得()()()[]13421443212+-⨯+=+⨯⨯m m m .…………………………………………7分 解得58-=m . ∴595182---=x x y .…………………………………………………………………………8分 6、(2011海淀一模) 已知平面直角坐标系xOy 中, 抛物线2(1)y ax a x =-+与直线y kx =的一个公共点为(4,8)A .(1)求此抛物线和直线的解析式;(2)若点P 在线段OA 上,过点P 作y 轴的平行线交(1)中抛物线于点Q ,求线段PQ 长度的最大值;(3)记(1)中抛物线的顶点为M ,点N 在此抛物线上,若四边形AOMN 恰好是梯形,求点N 的坐标及梯形AOMN 的面积.y x O1yxO1考查内容:答案:(1)由题意,可得8164(1)a a =-+及84k =,解得1,2a k ==,所以,抛物线的解析式为22y x x =-,直线的解析式为2y x =. (2)分(2)设点P 的坐标为4(,2)(0)t t t ≤≤,可得点Q 的坐标为2(,2)t t t -,则 2222(2)4(2)4PQ t t t t t t =--=-=--+ 所以,当2t =时,PQ 的长度取得最大值为4. (4)分(3)易知点M 的坐标为(1,-1).过点M 作直线OA 的平行线交抛物线于点N ,如图所示,四边形AOMN 为梯形.直线MN 可看成是由直线OA 向下平移b 个单位得到,所以直线MN 的方程为2y x b =-.因为点M 在直线2y x b =-上,解得b =3,即直线MN 的方程为23y x =-,将其代入22y x x =-,可得2232x x x -=-即 2430x x -+= 解得 11x =,23x = 易得 11y =-,23y =所以,直线MN 与抛物线的交点N 的坐标为(3,3). (5)分如图,分别过点M 、N 作y 轴的平行线交直线OA 于点G 、H , 显然四边形MNHG 是平行四边形.可得点G (1,2),H (3,6).113(10)[2(1)]222OMG S MG =⨯-⨯=⨯--=△113(43)(63)222ANH S NH =⨯-⨯=⨯-=△(31)236MNHG S NH =-⨯=⨯=△所以,梯形AOMN 的面积9OMG MNHG ANH AOMN S S S S =++=△△△梯形. (7)分7、(2011怀柔一模) (本题满分7分)如图,已知二次函数24y ax x c =-+的图象与坐标轴交于点A (-1, 0)和点C (0,-5).x1Oy(4,8)A 1MNHG(1)求该二次函数的解析式和它与x 轴的另一个交点B 的坐标。