数值方法 matlab求解微分方程

合集下载

Matlab中常用的数值计算方法

Matlab中常用的数值计算方法

Matlab中常用的数值计算方法数值计算是现代科学和工程领域中的一个重要问题。

Matlab是一种用于数值计算和科学计算的高级编程语言和环境,具有强大的数值计算功能。

本文将介绍Matlab中常用的数值计算方法,包括数值积分、数值解微分方程、非线性方程求解和线性方程组求解等。

一、数值积分数值积分是通过数值方法来近似计算函数的定积分。

在Matlab中,常用的数值积分函数是'quad'和'quadl'。

'quad'函数可以用于计算定积分,而'quadl'函数可以用于计算无穷积分。

下面是一个使用'quad'函数计算定积分的例子。

假设我们想计算函数f(x) = x^2在区间[0, 1]上的定积分。

我们可以使用如下的Matlab代码:```f = @(x) x^2;integral = quad(f, 0, 1);disp(integral);```运行这段代码后,我们可以得到定积分的近似值,即1/3。

二、数值解微分方程微分方程是描述自然界各种变化规律的数学方程。

在科学研究和工程应用中,常常需要求解微分方程的数值解。

在Matlab中,可以使用'ode45'函数来求解常微分方程的数值解。

'ode45'函数是采用基于Runge-Kutta方法的一种数值解法。

下面是一个使用'ode45'函数求解常微分方程的例子。

假设我们想求解一阶常微分方程dy/dx = 2*x,初始条件为y(0) = 1。

我们可以使用如下的Matlab代码:```fun = @(x, y) 2*x;[x, y] = ode45(fun, [0, 1], 1);plot(x, y);```运行这段代码后,我们可以得到微分方程的数值解,并绘制其图像。

三、非线性方程求解非线性方程是指方程中包含非线性项的方程。

在很多实际问题中,我们需要求解非线性方程的根。

重要:MATLAB常微分方程(组)数值解法

重要:MATLAB常微分方程(组)数值解法

Matlab常微分方程求解问题分类
边值问题:
初值问题:
• 定解附加条件在自变量 的一端
• 一般形式为: y' f (x, y)
y(a)
y0
• 初值问题的数值解法一 般采用步进法,如 Runge-Kutta法
➢ 在自变量两端均给定附加 条件
y' f (x, y)
➢ 一般形式:y(a)y1, y(b)y2
1.根据常微分方程要求的求解精度与速度要求
求解初值问题:
y
'
y
2x y
y ( 0 ) 1
(0x1)
比较ode45和ode23的求解精度和速度
ode45和ode23的比较-1
function xODE clear all clc
format long
y0 = 1; [x1,y1] = ode45(@f,[0,1],y0); [x2,y2] = ode23(@f,[0,1],y0); plot(x1,y1,'k-',x2,y2,'b--') xlabel('x') ylabel('y')
rD = k(3)*C(2)-k(5)*C(4);
rE = k(4)*C(3)+k(5)*C(4);
% Mass balances dCdt = [rA; rB; rC; rD; rE];
三个串联的CSTR等温反应器(例4-3)
function IsothermCSTRs clear all clc CA0 = 1.8; % kmol/m^3 CA10 = 0.4; % kmol/m^3 CA20 = 0.2; % kmol/m^3 CA30 = 0.1; % kmol/m^3 k = 0.5; % 1/min tau = 2; stoptime = 2.9; % min [t,y] = ode45(@Equations,[0 stoptime],[CA10 CA20 CA30],[],k,CA0,tau); disp(' Results:') disp(' t CA1 CA2 CA3') disp([t,y]) plot(t,y(:,1),'k--',t,y(:,2),'b:',t,y(:,3),'r-') legend('CA_1','CA_2','CA_3') xlabel('Time (min)') ylabel('Concentration') % -----------------------------------------------------------------function dydt = Equations(t,y,k,CA0,tau) CA1 = y(1); CA2 = y(2); CA3 = y(3); dCA1dt = (CA0-CA1)/tau - k*CA1; dCA2dt = (CA1-CA2)/tau - k*CA2; dCA3dt = (CA2-CA3)/tau - k*CA3; dydt = [dCA1dt; dCA2dt; dCA3dt];

使用Matlab进行微分方程求解的方法

使用Matlab进行微分方程求解的方法

使用Matlab进行微分方程求解的方法引言微分方程是数学中非常重要的一部分,广泛应用于物理、经济、工程等领域。

对于大部分微分方程的解析解往往难以求得,而数值解法则成为了一种常用的解决手段。

Matlab作为一种强大的科学计算软件,也提供了丰富的工具和函数用于求解微分方程,本文将介绍一些常见的使用Matlab进行微分方程求解的方法。

一、数值求解方法1. 欧拉方法欧拉方法是最简单的一种数值求解微分方程的方法,它将微分方程的微分项用差分的方式进行近似。

具体的公式为:y(n+1) = y(n) + hf(x(n), y(n))其中,y(n)表示近似解在第n个点的值,h为步长,f(x, y)为微分方程的右端项。

在Matlab中使用欧拉方法进行求解可以使用ode113函数,通过设定不同的步长,可以得到不同精度的数值解。

2. 中点法中点法是较为精确的一种数值求解微分方程的方法,它的计算公式为:k1 = hf(x(n), y(n))k2 = hf(x(n) + h/2, y(n) + k1/2)y(n+1) = y(n) + k2中点法通过计算两个斜率的平均值来得到下一个点的值,相较于欧拉方法,中点法能提供更精确的数值解。

3. 4阶龙格库塔法龙格库塔法是一类高阶数值求解微分方程的方法,其中4阶龙格库塔法是最常用的一种。

它的计算公式为:k1 = hf(x(n), y(n))k2 = hf(x(n) + h/2, y(n) + k1/2)k3 = hf(x(n) + h/2, y(n) + k2/2)k4 = hf(x(n) + h, y(n) + k3)y(n+1) = y(n) + (k1 + 2k2 + 2k3 + k4)/64阶龙格库塔法通过计算多个斜率的加权平均值来得到下一个点的值,相较于欧拉方法和中点法,它的精度更高。

二、Matlab函数和工具除了可以使用以上的数值方法进行微分方程求解之外,Matlab还提供了一些相关的函数和工具,方便用户进行微分方程的建模和求解。

MATLAB实验四_求微分方程的解

MATLAB实验四_求微分方程的解

参数说明
[T,Y] = solver(odefun,tspan,y0)
odefun 为显式常微分方程,可以用命令 inline 定义,或 在函数文件中定义,然后通过函数句柄调用。
dy 2 2 y 2 x 2x 求初值问题 的数值解,求解范 例: dx 围为 [0,0.5] y( 0 ) 1
dsolve的输出个数只能为一个 或 与方程个数相等。
只有很少一部分微分方程(组)能求出解析解。 大部分微分方程(组)只能利用数值方法求数值解。
Matlab函数数值求解
[T,Y] = solver(odefun,tspan,y0)
其中 y0 为初值条件,tspan为求解区间;Matlab在数值求解 时自动对求解区间进行分割,T (列向量) 中返回的是分割点 的值(自变量),Y (数组) 中返回的是这些分割点上的近似解, 其列数等于因变量的个数。
数学实验
实验四
求微分方程的解
问题背景和实验目的
自牛顿发明微积分以来,微分方程在描述事物运 动规律上已发挥了重要的作用。实际应用问题通过 数学建模所得到的方程,绝大多数是微分方程。 由于实际应用的需要,人们必须求解微分方程。 然而能够求得解析解的微分方程十分有限,绝大多 数微分方程需要利用数值方法来近似求解。 本实验主要研究如何用 Matlab 来计算微分方程 (组)的数值解,并重点介绍一个求解微分方程的 基本数值解法--Euler折线法。
Runge-Kutta 方法
Euler 法与 R-K法误差比较
Matlab 解初值问题
用 Maltab自带函数 解初值问题 求解析解:dsolve 求数值解:
ode45、ode23、 ode113、ode23t、ode15s、 ode23s、ode23tb

用Matlab求解微分方程

用Matlab求解微分方程

解微分⽅程有两种解,⼀种是解析解,⼀种是数值解,这两种分别对应不同的解法利⽤dsolve 函数进⾏求解syms x;s = dsolve('eq1,eq2,...', ’cond1,cond2,...', 'v');%eq :微分⽅程%cond :条件%v :独⽴变量%形如:⽅程:y'= f(t,y),初值:y(t0) = y0dsolve('Du = 1+ u^2','t')ans =tan(C2 + t)1i-1i求的解析解s = dsolve('D2y=3*y+2*x','x');% D2y ⽤以表⽰y 的⼆阶导数,默认是以t 为⾃变量的,所以最好指明⾃变量为x.syms y(x);s = dsolve([diff(y,x,2) == 3*y+2*x], [y(0) == 5])% diff 内依次是函数、⾃变量、微分阶数,⽅程⽤==表⽰相等⽽不是赋值求初值问题s = dsolve('Dy = y - 2*t / y','y(0) =1');求边界问题s = dsolve('x*D2y - 3*Dy =x^2','y(1)=0','y(5) = 0','x');求解⽅程s=dsolve('D2y =cos(2*x) - y','y(0) =1','Dy(0) = 0','x');simplify(s);(eqn,cond,‘IgnoreAnalyticConstraints’,false) %设置不化简结果求解⽅程组[f,g]= dsolve('Df = f + g','Dg = -f + g','f(0)=1','g(0) = 2','x');⽤Matlab 求解微分⽅程⽤Matlab 求解微分⽅程解析解1.求解析解2.初值问题3.边界问题4.⾼阶⽅程5.⽅程组问题⼀些例⼦dsolve('D2y+4*Dy+29*y = 0','y(0) = 0','Dy(0)= 15 ','x')ans =3*sin(5*x)*exp(-2*x)[x y z] = dsolve('Dx = 2*x-3*y+3*z','Dy = 4*x-5*y+3*z','Dz = 4*x-4*y+2*z')x =C7*exp(2*t) + C8*exp(-t)y =C7*exp(2*t) + C8*exp(-t) + C9*exp(-2*t)z =C7*exp(2*t) + C9*exp(-2*t)%可以对其进⾏简化操作x = simplify(x)x = C7*exp(2*t) + C8*exp(-t)y = simplify(y)y =exp(-2*t)*(C9 + C8*exp(t) + C7*exp(4*t))%龙格库塔法(Runge-Kutta 法)xfun=@(t,x)0.3.*x.*(1-x/8); %定义赋值函数r=0.3,k=8[tout,xout]=ode45(fun,[0,40],0.1) %⽅程数值解,四五阶RK 法[tout,xout]=ode23(xfun,[t0,tfinal],x0) %⼆三阶RK 法%%ode 系列数值求解形如 / = ( , )的微分⽅程组, 并绘图。

matlab_常微分方程数值解法

matlab_常微分方程数值解法
d2x 2x2 0
dt 2
简朴问题可以求得解析解,多数实际问题靠数值求解 。
第4页
一阶常微分方程(ODE )初值问题 : ODE :Ordinary Differential Equation
dy
f
(x,
y)
dx
x0 x xn
y(x0 ) y0
数值解法就是求y(x)在某些分立旳节点 xn 上旳近似值 yn,用以近似y(xn)
x0
y0
x1 f y(x), x dx
x0
x2 f y(x), x dx
x1
y(x1) f y(x1), x1 h
第17页
同样,在[x0,xn+1] ,积分采用矩形近似,得:
y(xn1) y0
f xn1
x0
y(x), x dx
y(xn ) f y(xn ), xn h
yn y(xn )
第5页
2、欧拉近似办法
2.1 简朴欧拉(L.Euler, 1707-1783)办法。
dy
dx
f
(y, x)
y(x0 ) y0
欧拉数值算法就是由初值通过递推求解,递推求解
就是从初值开始,后一种函数值由前一种函数值得到。核 心是构造递推公式。
y0 y1 y2 yn
第6页
i 1,2,...
第36页
没有一种算法可以有效地解决所有旳 ODE 问题,因此 MATLAB 提供了多种ODE函数。
函数 ODE类
特点
阐明

ode45
非刚性 单步法;4,5 阶 R-K 措施;合计 大部分场合旳首选措施
截断误差为 (△x)3
ode23
非刚性 单步法;2,3 阶 R-K 措施;合计 使用于精度较低旳情形

matlab数值求解常微分方程快速方法

matlab数值求解常微分方程快速方法

MATLAB是一种用于科学计算和工程应用的高级编程语言和交互式环境。

它在数学建模、模拟和分析等方面有着广泛的应用。

在MATLAB 中,常微分方程的数值求解是一个常见的应用场景。

在实际工程问题中,通常需要对常微分方程进行数值求解来模拟系统的动态行为。

本文将介绍MATLAB中对常微分方程进行数值求解的快速方法。

1. 基本概念在MATLAB中,可以使用ode45函数来对常微分方程进行数值求解。

ode45是一种常用的Runge-Kutta法,它可以自适应地选取步长,并且具有较高的数值精度。

使用ode45函数可以方便地对各种类型的常微分方程进行求解,包括一阶、高阶、常系数和变系数的微分方程。

2. 函数调用要使用ode45函数进行常微分方程的数值求解,需要按照以下格式进行函数调用:[t, y] = ode45(odefun, tspan, y0)其中,odefun表示用于描述微分方程的函数,tspan表示求解的时间跨度,y0表示初值条件,t和y分别表示求解得到的时间序列和对应的解向量。

3. 示例演示为了更好地理解如何使用ode45函数进行常微分方程的数值求解,下面我们以一个具体的例子来进行演示。

考虑如下的一阶常微分方程:dy/dt = -2*y其中,y(0) = 1。

我们可以编写一个描述微分方程的函数odefun:function dydt = odefun(t, y)dydt = -2*y;按照上述的函数调用格式,使用ode45函数进行求解:tspan = [0 10];y0 = 1;[t, y] = ode45(odefun, tspan, y0);绘制出解曲线:plot(t, y);4. 高级用法除了基本的函数调用方式外,MATLAB中还提供了更多高级的方法来对常微分方程进行数值求解。

可以通过设定选项参数来控制数值求解的精度和稳定性,并且还可以对刚性微分方程进行求解。

5. 性能优化在实际工程应用中,常常需要对大规模的常微分方程进行数值求解。

matlab解带参数的微分方程

matlab解带参数的微分方程

matlab解带参数的微分方程要在MATLAB中解带参数的微分方程,你可以使用MATLAB的内置函数`dsolve`。

`dsolve`函数可以用于解析解或数值解微分方程。

首先,你需要定义微分方程,然后使用`dsolve`函数来解方程。

下面我将详细介绍一下这个过程。

首先,假设我们有一个带参数的一阶微分方程,例如:syms y(t) a.eqn = diff(y,t) == ay;这里的`y(t)`是未知函数,`a`是参数,`eqn`是微分方程。

接下来,我们可以使用`dsolve`函数来解这个微分方程。

如果我们要求解的是初值问题,可以通过指定初始条件来解微分方程。

例如,如果我们有初始条件`y(0) = 1`,我们可以这样使用`dsolve`函数:cond = y(0) == 1;ySol(t) = dsolve(eqn,cond);这将给出微分方程的解`ySol(t)`,其中包含参数`a`。

如果你想要数值解而不是解析解,你可以使用`ode45`或其他数值求解器。

例如,如果我们有一个带参数的二阶微分方程:syms y(t) a.eqn = diff(y,t,2) == -ay;我们可以使用`ode45`来求解微分方程:tspan = [0 10];y0 = 1;params = 2;[t,y] = ode45(@(t,y) -paramsy, tspan, y0);在这个例子中,`@(t,y) -paramsy`定义了微分方程的右侧。

参数`params`在这里是带参数微分方程中的参数。

总之,在MATLAB中解带参数的微分方程,你可以使用`dsolve`函数来获得解析解,或者使用数值求解器如`ode45`来获得数值解。

希望这些信息对你有所帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

.
.
.
.
.
.
Differential Equations (OP459/P246)
. Numerical Methods 何军辉 Section 6.1
I.V.P
Section 6.2
Euler’s Method Step Size versus Error euler.m
A differential equation is a mathematical equation for an unknown function of one or several variables that relates the values of the function itself and of its derivatives of various orders. 含有未知函数的导数 Differential equations play a prominent role in engineering, physics, economics and other disciplines. Integration may be used to find the explicit formula for the differential equations. 显式解 dy = 1 − e−t dt y(t) = t + e−t + C
.
Numerical Methods
. Chaper 6 – Solution of Differential Equations 何军辉
School of Computer Science and Engineering South China University of Technology
Autumn 2010
. Numerical Methods 何军辉 Section 6.1
I.V.P
Suppose that f(t, y) is defined on the region R. If there exists a constant L > 0 so that |fy (t, y)| ≤ L for all (t, y) ∈ R
Substitute y′ (t0 ) = f(t0 , y(t0 )) and h = t1 − t0 y(t1 ) = y(t0 ) + hf(t0 , y(t0 )) + y′′ (c1 )
8 .
. . .
h2 2
. . .
Euler’s Method (OP466/P252)
. Numerical Methods 何军辉 Section 6.1
Euler’s Method Step Size versus Error euler.m
Section 6.3
Heun’s Method Step Size versus Error heun.m
Assume that y(t), y′ (t) and y′′ (t) are continuous and use Taylor’s theorem to expand y(t) about t = t0 . 泰勒展开 y(t) = y(t0 ) + y′ (t0 )(t − t0 ) + y′′ (c1 )(t − t0 )2 2
I.V.P
欧拉近似: If the step size h is chosen small enough, then we may neglect the second-order term and obtain the Euler’s approximation y1 = y0 + hf(t0 , y0 ) The general step for Euler’s method is 求解一般步骤 tk+1 = tk +h, yk+1 = yk +hf(tk , yk ) for k = 0, 1, . . . , M−1
Section 6.2
Euler’s Method Step Size versus Error euler.m
Section 6.3
Heun’s Method Step Size versus Error heun.m
Example: Use Euler’s method to solve approximately the initial value problem y′ = Ry over [0, 1] with y(0) = y0 and R is a constant.
I.V.P
Subdivided the interval [a, b] into M equal subintervals and select the mesh points 划分等距子区间 tk = a + kh for k = 0, 1, . . . , M where h= b−a M
Section 6.2
Geometric Interpretation The slope of a solution curve y = f(t) can be found using the implicit formula m = f(t, y(t)). A slope filed 斜率场 or direction field 方向场 is a graph that indicated the slopes {mi,j } over the region R = {(t, y) : a ≤ t ≤ b, c ≤ y ≤ d}.
Section 6.2
Euler’s Method Step Size versus Error euler.m
Section 6.3
Heun’s Method Step Size versus Error heun.m
on an interval [t0 , b] is a differentiable function y = y(t) such that .
Section 6.3
Heun’s Method Step Size versus Error heun.m
2 .
.
.
.
.
.
.
Differential Equations (OP460/P247)
. Numerical Methods 何军辉 Section 6.1
I.V.P
初值问题: Initial Value Problem . Definition .. A solution to the initial value problem (I.V.P) y′ = f(t, y) with y(t0 ) = y0
Section 6.3
Heun’s Method Step Size versus Error heun.m
4 .
.
.

.
.
.
Differential Equations (OP461/P248)
. Numerical Methods 何军辉 Section 6.1
I.V.P
利普希茨条件: . Definition .. Given the rectangle R = {(t, y) : a ≤ t ≤ b, c ≤ y ≤ d}, assume that f(t, y) is continuous on R. The function f is said to satisfy a Lipschitz condition in the variable y on R provided that a constant L > 0 exists with the property that |f(t, y1 ) − f(t, y2 )| ≤ L|y1 − y2 | whenever (t, y1 ), (t, y2 ) ∈ R. . The constant L is called a Lipschitz constant for f.
Section 6.2
Euler’s Method Step Size versus Error euler.m
Section 6.3
Heun’s Method Step Size versus Error heun.m
5 .
.
.
.
.
.
.
Differential Equations (OP462/P248)
. . . . . .
Section 6.3
Heun’s Method Step Size versus Error heun.m
6 .
Euler’s Method (OP465/P251)
. Numerical Methods 何军辉 Section 6.1
I.V.P
欧拉方法: Not all initial value problem can be solved explicitly, and often it is impossible to find a formula for the solution y(t). For example: y′ = t3 + y2 with y(0) = 0. 无显式解 Euler’s method has limited use because of the larger error that is accumulated as the process proceeds. 累积误差大 But Euler’s method serves to illustrate the concepts involved in other advanced methods, so it is important. Problem description 点集作为近似解
3 .
y(t0 ) = y0
and
相关文档
最新文档