如何使用MATLAB求解微分方程(组)

合集下载

使用Matlab进行微分方程求解的方法

使用Matlab进行微分方程求解的方法

使用Matlab进行微分方程求解的方法引言微分方程是数学中非常重要的一部分,广泛应用于物理、经济、工程等领域。

对于大部分微分方程的解析解往往难以求得,而数值解法则成为了一种常用的解决手段。

Matlab作为一种强大的科学计算软件,也提供了丰富的工具和函数用于求解微分方程,本文将介绍一些常见的使用Matlab进行微分方程求解的方法。

一、数值求解方法1. 欧拉方法欧拉方法是最简单的一种数值求解微分方程的方法,它将微分方程的微分项用差分的方式进行近似。

具体的公式为:y(n+1) = y(n) + hf(x(n), y(n))其中,y(n)表示近似解在第n个点的值,h为步长,f(x, y)为微分方程的右端项。

在Matlab中使用欧拉方法进行求解可以使用ode113函数,通过设定不同的步长,可以得到不同精度的数值解。

2. 中点法中点法是较为精确的一种数值求解微分方程的方法,它的计算公式为:k1 = hf(x(n), y(n))k2 = hf(x(n) + h/2, y(n) + k1/2)y(n+1) = y(n) + k2中点法通过计算两个斜率的平均值来得到下一个点的值,相较于欧拉方法,中点法能提供更精确的数值解。

3. 4阶龙格库塔法龙格库塔法是一类高阶数值求解微分方程的方法,其中4阶龙格库塔法是最常用的一种。

它的计算公式为:k1 = hf(x(n), y(n))k2 = hf(x(n) + h/2, y(n) + k1/2)k3 = hf(x(n) + h/2, y(n) + k2/2)k4 = hf(x(n) + h, y(n) + k3)y(n+1) = y(n) + (k1 + 2k2 + 2k3 + k4)/64阶龙格库塔法通过计算多个斜率的加权平均值来得到下一个点的值,相较于欧拉方法和中点法,它的精度更高。

二、Matlab函数和工具除了可以使用以上的数值方法进行微分方程求解之外,Matlab还提供了一些相关的函数和工具,方便用户进行微分方程的建模和求解。

matlab dsolve 微分方程组

matlab dsolve 微分方程组

在MATLAB中,可以使用`dsolve`函数来求解微分方程组。

`dsolve`函数可以求解常微分方程(Ordinary Differential Equations,ODE)和偏微分方程(Partial Differential Equations,PDE)。

下面是一个示例,演示如何使用`dsolve`函数来求解一个简单的微分方程组:
```matlab
syms t x(t) y(t)
eq1 = @(t,x) x(t)/x(t-1) - 2; 第一个方程
eq2 = @(t,x) x(t-1)/x(t) - 3; 第二个方程
sol = dsolve({eq1, eq2}, x(t), t); 求解微分方程组
disp(sol); 显示解
```
在这个示例中,我们定义了两个方程`eq1`和`eq2`,然后使用`dsolve`函数来求解这两个方程组成的微分方程组。

注意,我们需要将方程以函数的形式传递给`dsolve`函数。

在`dsolve`函数中,第一个参数是一个包含所有方程的向量,第二个参数是要求解的未知函数。

`dsolve`函数将返回一个包含所有解的表达式。

在本例中,我们将解存储在`sol`变量中,并使用`disp`函数显示解。

请注意,在使用`dsolve`函数时,需要确保输入的方程是正确的,并且与所求解的问题相对应。

此外,还需要注意符号和函数的定义和使用方式。

第六章用MATLAB求解微分方程及微分方程组

第六章用MATLAB求解微分方程及微分方程组

运行结果:u = tan(t-c)
例 2 求微分方程的特解.
d 2 y dy 2 4 29 y 0 dx dx y (0) 0, y ' (0) 15
解 输入命令: y=dsolve('D2y+4*Dy+29*y=0','y(0)=0,Dy(0)=15','x') 运行结果为 : y =3e-2xsin(5x)
不同求解器Solver的特点
求解器 Solver ode23s
OD E类 型
刚 性
特点
说明
刚 ode23tb 性
一步法;2阶 当精度较低时, Rosebrock算法; 计算时间比 低精度 ode15s短 当精度较低时, 梯形算法;低精 计算时间比 度 ode15s短
d 2x dx 2 1000(1 x 2 ) x 0 例 4 dt dt x(0) 2; x' (0) 0 解: 令 y1=x,y2=y1’
y Me k1t 即
模型2:快速饮酒后,体液中酒精含量的变化率
dx k2 x k1Mek1t dt x(0) 0
用Matlab求解模型2:
syms x y k1 k2 M t x=dsolve('Dx+k2*x=k1*M*exp(-k1*t)','x(0)=0','t') 运行结果: M*k1/(-k1+k2)*exp(-k2*t+t*(-k1+k2))-exp(-k2*t)*M*k1/(-k1+k2) 即:
(1)
2. 由于弹头始终对准乙舰,故导弹的速度平行于乙舰与导弹头位置的差向量,

如何使用MATLAB求解微分方程(组)ppt课件

如何使用MATLAB求解微分方程(组)ppt课件

差,输出参数,事件等,可缺省。 9
使用ODE?时如何编 写微分方程 ?
方式一:带额外参数,使用时需对参数进行赋值
function odefun(t,x,flag,R,L,C) %用flag说明R、L、C为变 量
xdot=zeros(2,1);
%表明其为列向量
xdot(1)=-R/L*x(1)-1/L*x(2)+1/L*f(t);
2
Where ?
工程控制
ODE
医学生理
航空航天
金融分析
3
Where ?
算法开发 数据分析
数值计算 MAT LAB
数据可视化
4
When ?
当对问题进行建模后,有常微分方程 需要求解时。
在生物建模中,经常需要求解常微分 方程。如药物动力学的房室模型的建模 仿真。
5
方法 ode23
ode45
数 ode113
当无法藉由微积分技巧求 得解析解时,这时便只能利 用数值分析的方式来求得其 数值解了。实际情况下,常 微分方程往往只能求解出其
数值解。
在数学中,刚性方程是指一 个微分方程,其数值分析的解 只有在时间间隔很小时才会稳 定,只要时间间隔略大,其解 就会不稳定。
目前很难去精确地去定义哪 些微分方程是刚性方程,但是 大体的想法是:这个方程的解
y(1)=x(2);
y1
y2
y(2)= -t*x(1)+exp(t)*x(2)+3*sin(2*t);
end
1000
求解程序ห้องสมุดไป่ตู้键步骤
[t,y]=ode45('odefun',[3.9 4.0],[2 8])
y

matlab求解二元微分方程组

matlab求解二元微分方程组

matlab求解二元微分方程组使用Matlab求解二元微分方程组是一种常见的数学问题求解方法。

二元微分方程组是指含有两个未知函数的微分方程组,通常形式为:dx/dt = f(x, y)dy/dt = g(x, y)其中,x和y是未知函数,t是自变量,f和g是给定的函数。

求解二元微分方程组的目标是找到满足上述方程组的函数x(t)和y(t)。

Matlab是一种功能强大的数值计算软件,它提供了各种数学工具和函数库,可以方便地求解二元微分方程组。

下面将介绍使用Matlab 求解二元微分方程组的步骤和方法。

我们需要定义给定的函数f和g,并确定初始条件。

在Matlab中,可以使用匿名函数来定义f和g。

例如,假设我们要求解的二元微分方程组为:dx/dt = -x + ydy/dt = -2y我们可以定义f和g如下:f = @(x, y) -x + y;g = @(x, y) -2*y;接下来,我们需要确定初始条件。

初始条件是指在某个特定的时间点上,未知函数x和y的值。

在Matlab中,可以使用初值问题来求解二元微分方程组。

初值问题需要给定初始时间点t0和初始条件x0和y0。

假设我们要求解的二元微分方程组的初始条件为:t0 = 0;x0 = 1;y0 = 2;我们可以使用ode45函数来求解二元微分方程组。

ode45函数是Matlab中常用的求解常微分方程的函数,它使用了四阶龙格-库塔方法。

使用ode45函数求解二元微分方程组的语法如下:[t, sol] = ode45(@(t, y) [f(y(1), y(2)); g(y(1), y(2))], [t0, tf], [x0; y0]);其中,t是时间点的向量,sol是解向量。

@(t, y) [f(y(1), y(2)); g(y(1), y(2))]表示一个匿名函数,它将t和y作为输入,返回[f(y(1), y(2)); g(y(1), y(2))]。

[t0, tf]是时间范围,[x0; y0]是初始条件。

matlab微分方程组求解代码

matlab微分方程组求解代码

一、概述Matlab是一款功能强大的数学软件,它可以对微分方程组进行求解并得到精确的数值解。

微分方程组是描述自然现象的数学模型,经常出现在物理、化学、生物等领域的科学研究中。

掌握如何使用Matlab 对微分方程组进行求解是非常重要的。

二、微分方程组求解基本原理微分方程组是由多个未知函数及其导数的方程组成。

通常情况下,微分方程组很难直接求解,需要借助数值方法进行近似求解。

Matlab 提供了丰富的工具和函数来解决微分方程组求解的问题,其中最常用的是ode45函数。

三、Matlab微分方程组求解代码示例以下是一个简单的二阶微分方程组的求解代码示例:```function dydt = myODE(t, y)dydt = zeros(2,1);dydt(1) = y(2);dydt(2) = -y(1) - 0.1*y(2);end[t, y] = ode45(myODE, [0 20], [1 0]);plot(t, y(:,1))```在这个示例中,我们首先定义了一个函数myODE来描述微分方程组的右端。

然后使用ode45函数对微分方程组进行求解,得到了微分方程组的数值解,并利用plot函数进行了可视化展示。

四、常见问题及解决方法在使用Matlab进行微分方程组求解时,可能会遇到一些常见问题,以下是一些常见问题及解决方法:1. 参数设置错误:在使用ode45函数时,需要正确设置求解的时间范围和初始条件,否则可能得到错误的结果。

可以通过仔细阅读ode45函数的文档来解决这个问题。

2. 数值稳定性:对于一些复杂的微分方程组,数值求解可能会遇到数值稳定性问题,导致结果不准确。

可以尝试调整ode45函数的参数或者使用其他数值解法来提高数值稳定性。

五、总结通过本文的介绍,我们了解了在Matlab中如何对微分方程组进行求解。

Matlab提供了丰富的工具和函数来解决微分方程组求解的问题,有效提高了微分方程组求解的效率和精度。

用MATLAB求解微分方程

用MATLAB求解微分方程
用MATLAB求解微分方程
1. 微分方程的解析解
求微分方程(组)的解析解命令:
dsolve(‘方程1’, ‘方程2’,…‘方程n’, ‘初始条件’, ‘自变量’)
结 果:u = tan(t-c)
解 输入命令:dsolve('Du=1+u^2','t')
STEP2
STEP1
解 输入命令: y=dsolve('D2y+4*Dy+29*y=0','y(0)=0,Dy(0)=15','x')
导弹追踪问题
设位于坐标原点的甲舰向位于x轴上点A(1, 0)处的乙舰发射导弹,导弹头始终对准乙舰.如果乙舰以最大的速度v0(是常数)沿平行于y轴的直线行驶,导弹的速度是5v0,求导弹运行的曲线方程.又乙舰行驶多远时,导弹将它击中? 解法一(解析法)
由(1),(2)消去t整理得模型:
解法二(数值解)
结 果 为:x = (c1-c2+c3+c2e -3t-c3e-3t)e2t y = -c1e-4t+c2e-4t+c2e-3t-c3e-3t+c1-c2+c3)e2t z = (-c1e-4t+c2e-4t+c1-c2+c3)e2t
2、取t0=0,tf=12,输入命令: [T,Y]=ode45('rigid',[0 12],[0 1 1]); plot(T,Y(:,1),'-',T,Y(:,2),'*',T,Y(:,3),'+')
3、结果如图
图中,y1的图形为实线,y2的图形为“*”线,y3的图形为“+”线.

如何使用MATLAB求解微分方程学习资料

如何使用MATLAB求解微分方程学习资料

如何使用MATLAB求解微分方程学习资料MATLAB是一种强大的数值计算和科学编程平台,可以用于求解微分方程和微分方程组。

在使用MATLAB求解微分方程之前,需要掌握一些基础知识,包括MATLAB的基本语法和常用的求解微分方程的技术。

下面是一些学习资料和步骤,帮助您使用MATLAB求解微分方程。

1.学习MATLAB基本语法和操作:首先,您需要学习MATLAB的基本语法和常用操作。

您可以参考MATLAB的官方文档、教程和手册,以及MATLAB的在线资源和视频教程。

这些资源可以帮助您掌握MATLAB的基本操作,建立良好的编程习惯。

2.学习求解微分方程的方法:在使用MATLAB求解微分方程之前,您需要了解一些常用的求解微分方程的方法,例如数值方法和解析方法。

数值方法包括欧拉法、龙格-库塔法、四阶龙格-库塔法等;解析方法包括分离变量法、线性微分方程的常系数齐次法和非齐次法等。

您可以参考微积分的教科书、在线资源和视频教程,掌握这些方法。

3. 使用MATLAB求解一阶微分方程:一阶微分方程是最简单的微分方程形式。

您可以首先尝试使用MATLAB求解一阶微分方程。

MATLAB提供了几个函数来求解一阶微分方程,例如ode45、ode23、ode113等。

您可以使用这些函数来解决特定的一阶微分方程,并观察结果。

可以使用plot 函数绘制微分方程的解,以获得更直观的理解。

4.使用MATLAB求解高阶微分方程:一旦您熟悉了使用MATLAB求解一阶微分方程的方法,您可以尝试使用同样的方法来求解高阶微分方程。

在求解高阶微分方程时,您需要将其转化为一组一阶微分方程。

例如,对于二阶线性微分方程,您可以引入一个新的变量来表示未知函数的导数,然后将其转化为一组一阶微分方程。

然后,您可以使用相同的求解函数来求解这组一阶微分方程。

5. 使用MATLAB求解微分方程组:对于多元微分方程组,MATLAB提供了更多的函数来求解。

例如,ode45s可以用于求解刚体动力学方程,ode23t可以用于求解刚体动力学方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

y(1)=x(2);
y1
y2
y(2)= -t*x(1)+exp(t)*x(2)+3*sin(2*t);
end
1000
求解程序关键步骤
[t,y]=ode45('odefun',[3.9 4.0],[2 8])
y
500
0
a 3.9
3.92
3.94
3.96
3.98
4
41.022
t
Examples
E.g.3 求解人体中不同形式的碘浓度的三房室模型。已知碘在三房室之间的 转换速率为:k21=0.84/d,k01=1.68/d,k32=0.01/d,k13=0.08/d, k03=0.02/d,f10=150g/d,f30=0g/d。初始条件为:x1(0)=81.2g, x2(0)=6821g,x3(0)=682g,v1=4L, v2=2L, v3=5L。仿真时间为30d。
Topic: 如何使用MATLAB求 解常微分方程(组)
TMU_BME_2013
a
1
a.What ?
微分方程指描述未知函数的导数与自变 量之间的关系的方程。未知函数是一元函 数的微分方程称作常微分方程。未知函数 是多元函数的微分方程称作偏微分方程。
MATLAB(matrix&laboratory)意为矩 阵工厂(矩阵实验室).MATLAB是美国 MathWorks公司出品的商业数学软件,提 供高级技术计算语言和交互式环境,主要 包括MATLAB和Simulink两大部分。
目前很难去精确地去定义哪 些微分方程是刚性方程,但是 大体的想法是:这个方程的解
包含有快速变化的部分。
a
7
如何调用?
y=dsolve('e1,e2,...','c1,c2,...','v')
其中'e1,e2,...'为微分方程或微分方程组; 'c1,c2,...',是初始条件或边界条件; 'v'是独立变量,默认的独立变量是't'; y 返回解析解。如果没有初始条件,则求出通解,如
果有初始条件,则求出特解。 用字符串表示常微分方程,自变量缺省时为t,导数用
D表示微分。y的2阶导数用D2y表示,依此类推。
a
8
如何调用?
[T,Y,TE,YE,IE]=solver('odefun',tspan,y0,options)
其中solver为ode23、ode45、ode113、ode15s、ode23s、
a
2
Where ?
工程控制
ODE
医学生理
航空航天
金融分析
a
3
Where ?
算法开发 数据分析
数值计算
MAT LAB
数据可视化
a
4
When ?
当对问题进行建模后,有常微分方程 需要求解时。
在生物建模中,经常需要求解常微分 方程。如药物动力学的房室模型的建模 仿真。
a
5
How ?
数 值 解
a
6
数值解?刚性方程?
ode23t、ode23tb 函数;
odefun 是函数句柄;
tspan 微分定义区间;
y0
为初值行矩阵;
T
值是t序列(为列向量);
Y
值是微分方程的解Y在各点t的值(为列向量);
TE
表示事件发生时间,可缺省;
YE
表示事件解决时间,可缺省;
IE
表示事件消失时间,可缺省;
options 是求解参数设置,可以用odeset在计算前设定误
通过列写方程组,建立odefun.m文 件即方程组文件 function dC=odefun(t,C)
dC=[0.1*C(3)+37.5-2.52*C(1); 1.68*C(1)-0.01*C(2); 0.004*C(2)-0.1*C(3)];
end 程序关键部分列写如下: [t,C]=ode15s('fun1',[0,30],[20.3,341 0.5,136.4])
输入命令: [x,y,z]=dsolve(‘Dx=2*x-3*y+3*z’,’Dy=4*x-5*y+3*z’,
‘Dz=4*x4*y+2*z’,’t’) x=simple(x); y=simple(y); z=simple(z); %化简结果
运行结果为: x=(c1-c2+c3+c2e -3t-c3e-3t)e2t y= - c1e-4t+c2e-4t+c2e-3t-c3e-3t+c1-c2+c3)e2t z=(-c1 e-4t+c2e-4t+c1-c2+c3)e2t
a
11
Examples
E.g.2 求解y''== - t*y + e^t*y' +3sin(2t)。 已知3.9<t<4.0,y'(0)=2,y''(0)=8
函数文件odefun.m的建立
程序执行结果
function y=odefun(t,x) y=zeros(2,1); %列向量
y' '=-t*y + et*y' +3sin2t 1500
a
13
E.g.3结果
C1(t)/(ug/L)
C2(t)/(ug/L)
20.3 20.295
20.29 20.285
0 3410.6
3410.4
3410.2 0
136.415 136.41
xdot(2)=1/C*x(1);
e方n式d 二:无额外参数
function dC=odefun(t,C)
dC=[ 0.1*C(3)+37.5-2.52*C(1); %直接书写列矩阵
1.68*C(1)-0.01*C(2);
0.004*C(2)-0.1*C(3)];
end
a
10
Examples
E.g.1 求下列微分方程组的通解 x'=2x-3y+3z y'=4x-5y+3z z'=4x-4y+2z
差,输出参数,事件等,可缺省。
a
9
使用ODE?时如何编 写微分方程 ?
方式一:带额外参数,使用时需对参数进行赋值
funቤተ መጻሕፍቲ ባይዱtion odefun(t,x,flag,R,L,C) %用flag说明R、L、C为变

xdot=zeros(2,1);
%表明其为列向量
xdot(1)=-R/L*x(1)-1/L*x(2)+1/L*f(t);
数值解是采用如有限元方 法、 数值逼近方法、插值方 法等计算方法得到的解。只 能利用数值计算的结果, 而 不能随意给出自变量并求出 计算值。
当无法藉由微积分技巧求 得解析解时,这时便只能利 用数值分析的方式来求得其 数值解了。实际情况下,常 微分方程往往只能求解出其
数值解。
在数学中,刚性方程是指一 个微分方程,其数值分析的解 只有在时间间隔很小时才会稳 定,只要时间间隔略大,其解 就会不稳定。
相关文档
最新文档