解直角三角形题型归纳-2023年中考数学拉分专题(教师版含解析)

合集下载

2023年九年级中考数学一轮复习:解直角三角形及其应用(含解析)

2023年九年级中考数学一轮复习:解直角三角形及其应用(含解析)

2023年中考数学一轮复习:解直角三角形及其应用一、单选题1.如图,在平面直角坐标系中,直线AB与x轴交于点A(﹣2,0),与x轴夹角为30°,将△ABO沿直线AB翻折,点O的对应点C恰好落在双曲线kyx=(k≠0)上,则k的值为()A.4B.﹣2C D.2.如图,平行四边形ABCD中,对角线AC、BD相交于点O,AE平分△BAD,分别交BC,BD于点E,P,连接OE,△ADC=60°,122AB BC==,则下列结论:①△CAD=30°;②14OE AD=;③S平行四边形ABCD=AB·AC;④27BD=⑤S△BEP=S△APO;其中正确的个数是()A.2B.3C.4D.5 3.如图,为了保证道路交通安全,某段高速公路在A处设立观测点,与高速公路的距离AC为20米.现测得一辆小轿车从B处行驶到C处所用的时间为4秒。

若△BAC=α,则此车的速度为()A.5tanα米/秒B.80tanα米/秒C.5tanα米/秒D.80tanα米/秒二、填空题4.如图,在 ABC 中,AD 是BC 上的高, cos tanB DAC =∠ ,若 1213sinC =, 12BC = ,则AD 的长 .5.某人沿着坡角为α的斜坡前进80m ,则他上升的最大高度是 m . 6.如图,建筑物BC 上有一旗杆AB ,点D 到BC 的距离为20m ,在点D 处观察旗杆顶部A 的仰角为52°,观察底部B 的仰角为45°,则旗杆的高度为 m .(精确到0.1m ,参考数据:520.79sin ︒≈,52 1.28tan ︒≈ 1.41≈ 1.73≈.)三、综合题7.在Rt△ACB 中,△C=90°,点O 在AB 上,以O 为圆心,OA 长为半径的圆与AB 、AC 分别交于点D 、E ,且△CBE=△A.(1)求证:BE 是△O 的切线; (2)连接DE ,求证:△AEB△△EDB ;(3)若点F 为 AE 的中点,连接OF 交AD 于点G ,若AO=5,3sin 5CBE ∠= ,求OG 的长.8.如图(1)放置两个全等的含有30°角的直角三角板 ABC 与(30)DEF B E ∠=∠=︒ ,若将三角板 ABC 向右以每秒1个单位长度的速度移动(点C 与点E 重合时移动终止),移动过程中始终保持点B 、F 、C 、E 在同一条直线上,如图(2), AB 与 DF 、 DE 分别交于点P 、M , AC 与 DE 交于点Q ,其中 AC DF ==,设三角板 ABC 移动时间为x 秒.(1)在移动过程中,试用含x 的代数式表示AMQ 的面积;(2)计算x 等于多少时,两个三角板重叠部分的面积有最大值?最大值是多少?9.已知AB 是△O 的切线,切点为B 点,AO 交△O 于点C ,点D 在AB 上且DB=DC .(1)求证:DC 为△O 的切线;(2)当AD=2BD ,CD=2时,求AO 的长.10.脱贫攻坚工作让老百姓过上了幸福的生活.如图①是政府给贫困户新建的房屋,如图②是房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高 AB 所在的直线.为了测量房屋的高度,在地面上C 点测得屋顶 A 的仰角为 35︒ ,此时地面上C 点、屋檐上 E 点、屋顶上A 点三点恰好共线,继续向房屋方向走 8m 到达点D 时,又测得屋檐 E 点的仰角为 60︒ ,房屋的顶层横梁 12EF m = ,//EF CB , AB 交 EF 于点G (点C ,D , B 在同一水平线上).(参考数据:sin350.6︒≈ , cos350.8︒≈ , tan350.7︒≈ ,1.7≈ )(1)求屋顶到横梁的距离 AG ;(2)求房屋的高 AB (结果精确到 1m ).11.如图,直线 (0)y mx n m =+≠ 与双曲线 (0)ky k x=≠ 交于 A B 、 两点,直线AB 与坐标轴分别交于 C D 、 两点,连接 OA ,若 OA = ,1tan 3AOC ∠= ,点 (3,)B b - .(1)分别求出直线 AB 与双曲线的解析式; (2)连接 OB ,求 AOBS.12.如图,某港口O 位于东西方向的海岸线上,“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.(1)若它们离开港口一个半小时后分别位于A 、B 处,且相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?说明理由.(2)若“远航”号沿北偏东60︒方向航行,经过两个小时后位于F 处,此时船上有一名乘客需要紧急回到PE 海岸线上,若他从F 处出发,乘坐的快艇的速度是每小时80海里.他能在半小时内回到海岸线吗?说明理由.13.如图,某人在山坡坡脚A 处测得电视塔尖点 C 的仰角为 60︒ ,沿山坡向上走到p 处再测得点C 的仰角为 45︒ ,已知 100OA = 米,山坡坡度 1:2i = ,且O A B 、、 在同一条直线上,其中测倾器高度忽略不计.(1)求电视塔OC 的高度;(计算结果保留根号形式)(2)求此人所在位置点 P 的铅直高度.(结果精确到0.1米,参考数据:1.41= , 1.73= )14.我国于2019年6月5日首次完成运载火箭海上发射,达到了发射技术的新高度.如图,运载火箭海面发射站点M 与岸边雷达站N 处在同一水平高度。

第20讲 解直角三角形 2025年中考一轮数学专题复习课件(湖南)(共24张PPT)

第20讲  解直角三角形 2025年中考一轮数学专题复习课件(湖南)(共24张PPT)

的长为 1 .
5. 在△ ABC 中, AB =3 6 , AC =6,∠ B =45°,则 BC
= 3 +3或3 -3 .


第4题图
易错点·综合点
6. (2024·浙江)如下图,在△ ABC 中, AD ⊥ BC , AE 是 BC 边上
的中线, AB =10, AD =6,tan∠ ACB =1.
例2 (2023·长沙) 如下图,神舟十六号载人飞船在发射的过程
中,飞船从地面 O 处发射,当飞船到达 A 点时,从位于地面 C
处的雷达站测得 AC 的距离是 8 km,仰角为30°;10s 后飞船到
达 B 处,此时测得仰角为 45°.
(1) 求点 A 离地面的高度 AO ;
解:在Rt△ AOC 中,
(2)求飞船从 A 处到 B 处的平均速度.(结果保留根号)
OA = 4 km

V平均速度=
S AB = OB - OA
( 10 )
OB = OC
解:在Rt△ AOC 中,
∵∠ AOC =90°,∠ ACO =30°, AC =8km,
OC = AC cos30°

∴ OC = AC =4 km.

∴ OE =
= =4 .


∴ OB = OE + BE =(4 +4)海里.
∴观测站与灯塔 B 之间的距离为(4 +4)海里.
易错点·综合点
4. 如下图,在△ ABC 中,∠ B =45°,∠ C =60°, AD ⊥ BC
于点 D , BD = 3 .若点 E , F 分别为 AB , BC 的中点,则 EF

在Rt△ BOC 中,∵∠ BOC =90°,∠ BCO =45°,

2023年安徽中考数学总复习专题:解直角三角形的实际应用(PDF版,有答案)

2023年安徽中考数学总复习专题:解直角三角形的实际应用(PDF版,有答案)

2023年安徽中考数学总复习专题:解直角三角形的实际应用1.超速行驶是引发交通事故的主要原因.上周末,小明和三位同学尝试用自己所学的知识检测车速,如图,观测点设在到万丰路的距离为100米的点P处.这时,一辆小轿车由西向东匀速行驶,测得此车从A处行驶到B处所用的时间为4秒且∠APO=60°,∠BPO =45°.(1)求A、B之间的路程;(2)请判断此车是否超过了万丰路每小时70千米的限制速度?(参考数据:2≈1.41,3≈1.73).2.小丽与爸妈在公园里荡秋千.如图,小丽坐在秋千的起始位置A处,OA与地面垂直,两脚在地面上用力一蹬,妈妈在距地面1.2m高的B处接住她后用力一推,爸爸在C处接住她.若妈妈与爸爸到OA的水平距离BD、CE分别为1.8m和2.4m,∠BOC=90°.(1)△CEO与△ODB全等吗?请说明理由.(2)爸爸在距离地面多高的地方接住小丽的?(3)秋千的起始位置A处与距地面的高是 m.3.投影仪,又称投影机,是一种可以将图象或视频投射到幕布上的设备.如图①是屏幕投影仪投屏情景图,如图②是其侧面示意图,已知支撑杆AD与地面FC垂直,且AD的长为12cm,脚杆CD的长为50cm,AD距墙面EF的水平距离为240cm,投影仪光源散发器与支撑杆的夹角∠EAD=120°,脚杆CD与地面的夹角∠DCB=42°,求光源投屏最高点与地面间的距离EF.(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,3≈1.73)4.如图,某校教学楼后面紧邻着一个山坡,坡上面是一块平地.BC∥AD,BE⊥AD,斜坡AB长26m,斜坡AB的坡比为12:5.为了减缓坡面,防止山体滑坡,学校决定对该斜坡进行改造.经地质人员勘测,当坡角不超过50°时,可确保山体不滑坡.如果改造时保持坡脚A不动,则坡顶B沿BC至少向右移多少m时,才能确保山体不滑坡.(取tan50°≈1.2)5.小华在网上看到一个如图(1)的躺椅,他决定自己动手用木条制作一个简易的躺椅,如图(2)是简易躺椅的侧面,其中∠B=44°,∠ACB=17°,∠DEC=∠DCE=48°,AE=13AC,若木条AB=5dm,请你计算木条AC,DE,DC的长.(相关数据:sin44°=0.69,cos44°=0.72,tan44°=0.97,sin17°=0.29,cos17°=0.96,tan17°=0.31,sin48°=0.74,cos48°=0.67,tan48°=1.11,结果保留一位小数)6.“蛟龙号”载人潜水器是中国探索深蓝的利器.如图,在某次任务中,当蛟龙号下潜到点B处时,科研人员在海面的观察点A测得点B的俯角为60°,当蛟龙号继续垂直下潜2千米到达海底C处时,在观察点A测得点C的俯角为75.97°,求点C到海面的深度.(结果精确到0.1千米)参考数据:3≈1.73,sin75.97°=0.97,cos75.97°≈0.24,tan75.97°≈4.007.图1是重庆欢乐谷的一个大型娱乐设施——“重庆之眼”摩天轮,它是全球第六、西南最高的观光摩天轮.如图2,小嘉从摩天轮最低处B出发先沿水平方向向左行走37米到达点C,再经过一段坡度(坡面的垂直高度与水平方向的距离的比)为i=1:2.4,坡长为26米的斜坡CD到达点D,然后再沿水平方向向左行走50米到达点E.在E处小嘉操作一架无人勘测机,当无人勘测机飞行至点E的正上方点F时,测得点D处的俯角为58°,摩天轮最高处A的仰角为24°.AB所在的直线垂直于地面,垂足为O,点A、B、C、D、E、F、O在同一平面内,求AB的高度.(结果精确到1米,参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60,sin24°≈0.40,cos24°≈0.91,tan24°≈0.45)8.一艘渔船在海中自西向东航行,速度为28海里/小时,船在A处测得灯塔C在北偏东60°方向,半小时后渔船到达B点,测得灯塔C在北偏东15°方向,求船与灯塔间的最近距离.9.海洋安全预警系统为海洋安全管理起到了巨大作用,某天海洋监控中心收到信息,在A 的北偏西60°方向的120海里的C处,疑似有海盗船在沿CB方向行驶,C在B的北偏西30°方向上,监控中心向A正西方向的B处海警船发出指令,海警船立即从B出发沿BC方向行驶,在距离A为602海里的D处拦截到该可疑船只.(1)求点A到直线CB的距离;(2)若海警船的速度是30海里/小时,那么海警船能否在1小时内拦截到可疑船只?请说明理由.(结果保留一位小数,参考数据:3≈1.73)10.如图1,图2分别是某款篮球架的实物图与侧面示意图,已知底座矩形BCLK的高BK=19cm,宽BC=40cm,底座BC与支架AC所成的角∠ACB=76°,支架AF的长为240cm,篮板顶端F到篮筐D的距离FD=90cm(FE与地面LK垂直,支架AK与地面LK 垂直,支架HE与FE垂直),篮板底部支架HE与支架AF所成的角∠FHE=66°,求篮筐D到地面的距离(精确到1cm).(参考数据:sin66°≈910,cos66°≈25,tan66°≈94,sin76°≈0.96,cos76°≈0.24,tan76°≈4.0)参考答案1.解:(1)在Rt△BOP中,∠BOP=90°,∵∠BPO=45°,OP=100,∴OB=OP=100.在Rt△AOP中,∠AOP=90°,∵∠APO=60°,∴AO=OP•tan∠APO.∴AO=1003(米),∴AB=100(3―1)(米);(2)∵此车的速度=100(3―1)4=25(3―1)≈25×0.73=18.25米/秒,70千米/小时=700003600米/秒≈19.4米/秒,18.25米/秒<19.4米/秒,∴此车没有超过了万丰路每小时70千米的限制速度.2.解:(1)△OBD与△COE全等.理由如下:由题意可知∠CEO=∠BDO=90°,OB=OC,∵∠BOC=90°,∴∠COE+∠BOD=∠BOD+∠OBD=90°.∴∠COE=∠OBD,在△COE和△OBD中,∠COE=∠OBD∠CEO∠ODBOC=OB,∴△COE≌△OBD(AAS);(2)∵△COE≌△OBD,∴CE=OD,OE=BD,∵BD、CE分别为1.8m和2.4m,∴OD=2.4m,OE=1.8m,∴DE=OD﹣OE=CE﹣BD=2.4﹣1.8=0.6(m),∵妈妈在距地面1.2m高的B处,即DM=1.2m,∴EM=DM+DE=1.8(m),答:爸爸是在距离地面1.8m的地方接住小丽的;(3)∵OA=OB=OD2+BD2=2.42+1.82=3(m),∴AM=OD+DM﹣OA=2.4+1.2﹣3=0.6(m).∴秋千的起始位置A处与距地面的高0.6m.故答案为:0.6.3.解:过点A作AG⊥EF,垂足为G,过点D作DH⊥EF,垂足为H,则AB=GF,AG=BF=240cm,∠GAB=90°,在Rt△DBC中,∠DCB=42°,CD=50cm,∴DB=CD•sin42°≈50×0.67=33.5(cm),∵AD=12cm,∴GF=AB=AD+DB=45.5(cm),∵∠EAD=120°,∴∠EAG=∠EAD﹣∠GAB=30°,在Rt△EAG中,EG=AG•tan30°=240×33=803(cm),∴EF=EG+GF=803+45.5≈183.9(cm),∴光源投屏最高点与地面间的距离EF约为183.9cm.4.解:作∠DAG=50°,AG交BC于G,过点G作GH⊥AD于H,则BEGH为矩形,∴GH=BE,BG=EH,设BE=12xm,∵斜坡AB的坡比为12:5,∴AE=5xm,由勾股定理得:(5x)2+(12x)2=262,解得:x=2(负值舍去),∴BE=24m,AE=12m,∴GH=BE=24m,在Rt△GAH中,tan∠GAH=GH AH,则24AH≈1.2,解得:AH=20,∴EH=AH﹣AE=10(m),∴BG=EH=10m,答:坡顶B沿BC至少向右移10m时,才能确保山体不滑坡.5.解:过点A作AM⊥BC于点M,过点D作DN⊥FC于点N,如图,在Rt△ABM中,AB=5dm,∠ABC=44°,∵sin∠ABM=AM AB,∴AM=AB•sin∠ABM=5•sin44°=5×0.69=3.45dm,在Rt△ACM中,∠ACM=17°,∵sin∠ACM=AM AC∴AC=AMsin∠ACM=AMsin17°=3.450.29≈11.9dm;∵AE=13 AC,∴EC=AC―AE=23AC=23×11.9≈7.93dm,∵∠DEC=∠DCE=48°,∴DE=DC,∵DN⊥FC∴FN=CN=12EC≈3.97dm,在Rt△DEN中,EN=3,97dm,∠DEN=48°,∵cos∠DEN=EN DE,∴DE=ENcos∠DEN=3.97cos48°=3.970.67≈5.9dm答:AC的长为11.9dm,DE的长为5.9dm,DC的长为5.9dm.6.解:延长CB,交AE于点D,由题意得,∠DAB=60°,∠DAC=75.97°,∠ADC=90°,BC=2千米,设BD=x千米,则CD=(x+2)千米,在Rt△ABD中,tan60°=BDAD=xAD=3,解得AD=33 x,在Rt△ACD中,tan75.97°=CDAD=x+233x≈4.00,解得x≈1.5,经检验,x≈1.5是原方程的解且符合题意,∴CD≈3.5千米.∴点C到海面的深度约为3.5千米.7.解:过C作CM⊥OD于M,过F作FN⊥AB于N,如图所示:则FN=EO,ON=EF,OM=BC=37米,BO=CM,FN∥EO,∴∠EDF=∠DFN=58°,∵斜坡CD的坡度为i=1:2.4,CD=26米,∴BO=CM=10(米),MD=24(米),∵DE=50米,∴FN=EO=DE+MD+OM=50+24+37=111(米),在Rt△DEF中,tan∠EDF=EFDE=tan58°≈1.60,∴EF≈1.60DE=1.60×50=80(米),∴ON=EF≈80米,∴BN=ON﹣BO≈70(米),在Rt△AFN中,∠AFN=24°,∵tan∠AFN=ANFN=tan24°≈0.45,∴AN≈0.45FN=0.45×111=49.95(米),∴AB=AN+BN=49.95+70≈120(米),即AB的高度约为120米.8.解:过点C作CD⊥AB,交AB的延长线于点D,过点B作BE⊥AC于点E,由题意得,∠CAB=90°﹣60°=30°,∠CBD=90°﹣15°=75°,AB=28×0.5=14(海里),∴∠ACB=∠CBD﹣∠CAB=45°,在Rt△ABE中,sin30°=BEAB=BE14=12,cos30°=AEAB=AE14=32,解得BE=7,AE=73,在Rt△BCE中,∠BCE=45°,∴BE=CE=7海里,∴AC=AE+CE=(7+73)海里,在Rt△ACD中,sin30°=CDAC=CD7+73=12,解得CD=72+732.∴船与灯塔间的最近距离为(72+732)海里.9.解:(1)过点A作AH⊥CB于点H,如图.由题意得:∠CAB=90°﹣60°=30°,∠ABC=180°﹣60°=120°,∴∠C=180°﹣30°﹣120°=30°,∴AH=12AC=12×120=60(海里).答:点A到直线CB的距离是60海里;(2)海警船能否在1小时内拦截到可疑船只,理由:在Rt△ADH中,AD=602海里,AH=60海里,∴DH=AD2―AH2=60(海里),∵∠ABH=∠BAC+∠C=60°,在Rt△ABH中,∠BAH=90°﹣∠ABH=30°,∴BH=12 AB,∴AB=2BH,∵BH2+AH2=AB2,∴BH2+602=(2BH)2,∴BH=203,∴BD=DH﹣BH=(60﹣203)海里,∵海警船的速度是30海里/小时,∴(60﹣203)÷30≈0.9<1,答:海警船能否在1小时内拦截到可疑船只.10.解:延长FE交地面LK于点M,过点A作AG⊥FM,垂足为G,则∠FML=90°,AK=GM,HE∥AG,∴∠FHE=∠FAG=66°,在Rt△ACB中,∠ACB=76°,BC=40cm,∴AB=BC•tan76°≈40×4=160(cm),∵BK=19cm,∴GM=AK=AB+BK=179(cm),在Rt△AFG中,AF=240cm,∴FG=AF•sin66°≈240×910=216(cm),∵FD=90cm,∴DM=FG+GM﹣FD=216+179﹣90=305(cm),∴篮筐D到地面的距离约为305cm.。

2023年中考数学--解直角三角形-课件

2023年中考数学--解直角三角形-课件
(3)、求解:解直角三角形。
(Байду номын сангаас)、作答:回答实际问题。
真题详例讲解
母子型
(2018 广元)如图,某煤矿因不按规定操作发生瓦斯爆炸,救援队立即赶赴现场进行救援,救援队
利用生命探测仪在地面 A,B 两个探测点探测到地下 C 处有生命迹象.已知 A,B 两点相距 8 米,探测
线与地面的夹角分别是 30°和 45°,试确定生命所在点 C 的深度(结果保留根号)
(3)、求解直角三角形(找边角);
①:(母子型)设公共边、公共部分,运用方程思想解题;
②:(背靠背型)运用三角函数求公共边、公共部分。
(4)、作答:回答实际问题。
课后真题再练
母子型
(2021 成都)越来越多太阳能路灯的使用,既点亮了城市的风景,也是我市积极落实节能环保的举
措.某校学生开展综合实践活动,测量太阳能路灯电池板离地面的高度.如图,已知测倾器的高度为
课后真题再练
母子型
(2020 眉山)某数学兴趣小组去测量一座小山的高度,
在小山顶上有一高度为 20 米的发射塔 AB,
如图所示.在山脚平地上的 D 处测得塔底 B 的仰角为 30°,向小山前进 80 米到达点 E 处,测得塔顶 A
的仰角为 60°,求小山 BC 的高度.
课后真题再练
背靠背型
(2020 青岛)如图,在东西方向的海岸上有两个相距 6 海里的码头 B,D,某海岛上的观测塔 A 距
α
三角函数值
2、特殊的
三角函数值:
sin α
cos α
tan α
30°
∠的邻边
斜边
∠的对边
∠的邻边
a
=c
b

备战2023年重庆数学中考二轮复习知识点精练10 解直角三角形(解析版)

备战2023年重庆数学中考二轮复习知识点精练10 解直角三角形(解析版)

精练10--解直角三角形1.如图,某辆自行车放在水平的地面上,车把头下方A处与坐垫下方B处在平行于地面的水平线上,测得AB=54cm,AC、BC与AB的夹角分别为45°与60°.(1)求点C到AB的距离(结果保留一位小数).(2)若点C到地面的距离CD为30cm,坐垫中轴E与点B的距离BE为4cm(坐垫E 可按轴线BC上下伸缩调节).茜茜根据自己身高比例,坐垫E到地面的距离为70cm 时,乘坐该自行车最舒适.茜茜坐上该自行车,感觉不是很舒适,问:如果要达到最佳舒适高度,茜茜应该如何调节坐垫E的位置?(结果保留一位小数)(参考数据:≈1.4,≈1.7)【解答】解:过点C 作CM⊥AB于点M,则∠CMA=∠CMB=90°,∵∠CAM=45°,∠CBM=60°,∴AM=CM,BM=,∵AB=54(cm),∴CM+=54,∴CM=27(3﹣)≈35.1(cm),∴点C到AB的距离为35.1cm;(2)∵坐垫E到地面的距离为70cm时,乘坐该自行车最舒适,∴点E到AB的距离为70﹣30﹣35.1=4.9(cm),过点E作EN⊥AB于点N,则EN=4.9(cm),∠ENB=90°,∵∠EBN=∠CBM=60°,∴BE==≈5.8(cm)∵原BE为4cm,∴需将BE调长5.8﹣4=1.8(cm).2.某小区拟建设地下停车库入口,将原步行楼梯入口AC改造为斜坡AD.已知入口高AB =3m,坡面AC的坡度i=1:1,新坡面坡角∠ADB=30°.(1)求斜坡底部增加的长度CD为多少米?(保留根号)(2)入口处水平线AE=5m,地下停车库坡道入口上方点E处有悬挂广告牌EF,EF⊥BD,EF=0.5m.若一辆高度为2米的货车沿斜坡AD驶入车库,行进中是否会碰到广告牌的下端F?请说明理由.(参考数据:≈1.4,≈1.7)【解答】解:(1)∵坡面AC的坡度i=1:1,∴AB:BC=1:1,∴BC=AB=3m,∵∠ADB=30°,∴tan∠ADB==tan30°=,∴BD=AB=3m),∴CD=BD﹣BC=(3﹣3)(m),答:斜坡底部增加的长度CD为(3﹣3)米;(2)若一辆高度为2米的货车沿斜坡AD驶入车库,行进中不会碰到广告牌的下端F,理由如下:如图,延长EF交AD于G,过F作FH⊥AD于H,由题意得:∠AEG=90°,AE∥BD,∴∠EAG=∠ADB=30°,∵tan∠EAG==tan30°=,AE=5m,∴EG=AE=(m),∴FG=EG﹣EF=﹣0.5=(﹣)(m),在Rt△FGH中,∠FGH=90°﹣∠EAG=90°﹣30°=60°,∵sin∠FGH==sin60°=,∴FH=FG=×(﹣)=﹣≈2.075(m)>2m,∴若一辆高度为2米的货车沿斜坡AD驶入车库,行进中不会碰到广告牌的下端F.3.如图,在同一剖面内,小明在点A处用测角仪测得居民楼的顶端F的仰角为27°,他水平向右前进了30米来到斜坡的坡脚B处,沿着斜坡BC上行25米到达C点,用测角仪测得点F的仰角为54°,然后,水平向右前进一段路程来到了居民楼的楼底E处,若斜坡BC的坡度为3:4,请你求出居民楼EF 的高度.(测角仪的高度忽略不计,计算结果精确到0.1米.)参考数据:sin27°≈0.45,tan27°≈0.51,sin54°≈0.81,tan54°≈1.38)【解答】解:如图,过点C作CG⊥AD于点G,EH⊥AD于点H,得矩形CGHE,∴CE=GH,CG=EH,在Rt△BCG中,BC=25米,CG:BG=3:4,∴CG=EH=15米,BG=20米,在Rt△AFH中,AH=AB+BC+GH =30+20+GH=50+CE,∵∠F AG=27°,∴FH=AH•tan27°,∴EF+15≈(50+CE)×0.51,在Rt△FCE中,∵∠FCE=54°,∴EF=CE×tan54°≈1.38CE,∴1.38CE+15≈(50+CE)×0.51,解得CE=,∴EF≈1.38CE≈16.7(米),∴居民楼EF的高度约为16.7米.4.如图,在某海域内有一小岛P,在以P为圆心,半径r为6海里的圆形海域内有暗礁,一轮船自东向西航行,它在A处测得小岛P位于北偏西45°的方向上,当这艘轮船行驶4海里后到达B地,此时观测小岛P位于B地北偏西30°的方向上.(1)求A、P之间的距离;(结果精确到0.1海里,参考数据:≈1.41,≈2.45)(2)该轮船由B地继续向西行驶(4﹣4)海里到达C地,此时观测小岛P位于C地北偏西15°的方向上,同时接到总部通知,由于突发状况,该轮船必须驶离东西航线并沿北偏西某航向行驶,那么该轮船由C处开始沿北偏西至少多少度的方向航行才能避开小岛P周围的暗礁安全通过这一海域?【解答】解:(1)过点P作PD⊥AB,交AB的延长线于点D,由题意得,∠BPD=30°,∠P AD=45°,AB=4海里,设PD=x海里,则AD=x海里,∴BD=AD﹣AB=(x﹣4)海里,在Rt△PBD中,∵BD=PD tan30°,∴x﹣4=x,∴x=2(3+),∴P A=PD=x=6+2≈13.4(海里),答:A,P之间的距离约为13.4海里;(2)因为r﹣PD=6﹣2(3+)=6﹣6﹣2≈﹣1<0,所以无触礁的危险;设轮船无触礁危险的新航线为射线CH,作PE⊥CH,垂足为E,当P到CH的距离PE=6海里时,有sin∠PCE=,设CD=y海里,∵BC=(4﹣4)海里,在Rt△PBD中,PD=2(3+)海里,∠BPD=30°,∴BD=PD tan30°,∴y+4﹣4=2(3+)×,解得y=6﹣2,∴CD=(6﹣2)海里,∴PC===4,∴sin∠PCE===,∴∠PCE=60°,∴60°+15°=75°,∴该轮船由C处开始沿北偏西至少75度的方向航行才能避开小岛P周围的暗礁安全通过这一海域.5.如图,某渔船向正东方向以14海里/时的速度航行,在A处测得小岛C在北偏东70°方向,2小时后渔船到达B处,测得小岛C在北偏东45°方向,已知该岛周围20海里范围内有暗礁.(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,≈1.41)(1)求B处距离小岛C的距离(精确到0.1海里);(2)为安全起见,渔船在B处向东偏南转了25°继续航行,通过计算说明船是否安全?【解答】解:(1)如图,过点C作CN⊥AD于M,CN ⊥BE于N,由题意得,∠CAD=90°﹣70°=20°,∠CBD=90°﹣45°=45°,AB=14×2=28海里,∵∠CBD=45°,∴CM=BM,在Rt△CAM中,∵tan∠ACM=,∴tan70°=,解得CM≈16,在Rt△BCM中,BC=CM=16≈22.6(海里),答:B处距离小岛C的距离约为22.6海里;(2)在Rt△BCN中,∠CBN=45°+25°=70°,BC=16海里,∴CN=BC•sin∠CBN≈16×0.94≈21.2(海里),∵21.2>20,∴能安全通过,答:能安全通过.6.首钢滑雪大跳台是世界上首个永久性的单板大跳台,其优美的造型,独特的设计给全球观众留下深刻的印象,大跳台场地分为助滑区、起跳台、着陆坡和终点区域4个都分,现将大跳台抽象成如图的简图,FC表示运送运动员上跳台的自动扶梯,CD表示助滑区,Rt△DEH表示起跳台,EB表示着陆坡.已知∠CF A =60°,∠EBF=30°,在助滑区D处观察到顶点C处的仰角是30°,且自动扶梯的速度是2m/s,运送运动员到达跳台顶端C点处需要30秒,BE=24m,DE∥BF,CA、DG、EF都垂直于BF.(1)求大跳台AC的高度是多少米(结果精确到0.1m);(2)首钢滑雪大跳台主体结构采用装配式钢结构体系和预制构件,“助滑区”和“着陆坡”赛道面宽35米,面板采用10mm耐候钢,密度为7850kg/m3,求铺装“助滑区”和“着陆坡”赛道的耐候钢总重量是多少吨(结果精确到1吨).(≈1.41,≈1.73)【解答】解:(1)根据题意可知:AC=2×30=60(m),答:大跳台AC的高度是60米;(2)如图,过点D作DM⊥CA于点M,得矩形AMDG,矩形DGNE,在Rt△ACF中,CF=60m,∠CF A =60°,∴AC=CF•sin60°=60×=30(m),在Rt△EBN中,∠EBN=30°,BE=24m,∴EN=BE=12m,∴AM=DG=EN=12m,∴CM=AC﹣AM=(30﹣12)m,∵DE∥BF,∴∠CDM=∠E=30°,∴CD=2CM=2(30﹣12)=60﹣24≈79.8m,∴耐候钢的体积=79.8×35×10﹣2+24×35×10﹣2=36.33(m3),∴耐候钢总重量=36.33×7850≈285190(吨).答:赛道的耐候钢总重量约为285190吨.7.5G时代,万物互联.互联网、大数据、人工智能与各行业应用深度融合,助力数字经济发展,共建智慧生活.网络公司在改造时,把某一5G信号发射塔MN建在了山坡BC 的平台CD上,已知山坡BC的坡度为1:2.4.眼睛距地面1.6米的小明站在A处测得塔顶M的仰角是37°.向前步行6米到达B处,再延斜坡BC步行6.5米至平台点C处,测得塔顶M的仰角是50°.若A.B、C、D、M、N在同一平面内,且A、B和C、D、N分别在同一水平线上.(1)求平台CD距离地面的高度;(2)求发射塔MN的高度.(结果精确到0.1米.参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75,sin50°≈0.77,cos50°≈0.64,tan50°≈1.20)【解答】(1)解:如图,过点Q作QP⊥MN 于P,过点F作FE⊥MN于E,∵山坡BC的坡度为1:2.4,BC=6.5米,设CG=x,则BG=2.4x,∴x2+(2.4x)2=6.52,解得x=,∴CG=HN=米,BG=6米,(2)解:∵CG=HN=米,BG=6米,∴AG=12米,由题意知∠MQP=37°,∠MFE=50°,设EF=a米,则PQ=AH=(a+12)(米),∵tan50°=≈1.20,∴ME=1.2a,∵tan37°=≈0.75,∴MP=(a+12),∵ME+EN+NH=MP+PH,∴1.2a+1.6+=(a+2)+1.6,解得a=米,∴MN=1.2a+1.6≈18.9(米).8.如图,为了测量陶行知纪念馆AB的高度,小李在点C处放置了高度为1.5米的测角仪CD,测得纪念馆顶端A点的仰角∠ADE=51°,然后他沿着坡度i=1:2.4的斜坡CF 走了6.5米到达点F,再沿水平方向走4米就到达了纪念馆底端点B.(结果精确到0.1,参考数据:sin51°≈0.78,cos51°≈0.63,tan51°≈1.23)(1)求点D到纪念馆AB的水平距离;(2)求纪念馆AB的高度约为多少米?【解答】解:(1)延长AB交水平线于点M,过F作FN⊥CM 于N,延长DE交AM于H,则四边形HMCD为矩形,∴HM=CD=1.5米,DH=CM,∵斜坡CF的坡度i=1:2.4,∴=,∴CN=2.4FN,∵CF=6.5米,∴BM=FN=2.5(米),CN=6(米),∵MN=BF=4米,∴DH=CM=6+4=10(米),答:点D到纪念馆AB的水平距离为10米;(2)在Rt△ADH中,tan∠ADE=则AH=DH•tan∠ADE=10×tan51°≈12.3(米),∴AB=AM﹣BM=AH+HM﹣BM=12.3+1.5﹣2.5≈11.3(米),答:纪念馆AB的高度约为11.3米.9.2022北京冬奥会已正式闭幕,但因冬奥燃起的冰雪消费热潮仍在持续中国滑雪场、冰雪产业正在逐步形成.如图,是某度假村兴建的专业滑雪场地,小南在观景台A处向前走15米到达观景点B处,测得滑雪场顶端E的仰角为22°,沿着坡度为1:2.4的斜坡走了26米到达坡底C处,然后往前走93米到达滑雪场底端D处.A、B、C、D、E、M、N在同一平面内,ED⊥MD,BN⊥MD,AM⊥MD,AB∥MD.(参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40)(1)求观景台A 处到坡底C的水平距离CM;(2)求滑雪场顶端E到CD的距离ED的长(结果精确到1米).【解答】解:(1)延长AB 交DE于F,∵ED⊥MD,BN⊥MD,AM⊥MD,AB∥MD,∴AM∥BN∥FD,BF⊥EF,∴四边形AMNB和四边形BNDF是平行四边形,∴▱AMNB和▱BNDF是矩形,在Rt△BCN中,=,BC=26,BN2+CN2=BC2,设BN=x,CN=2.4x,∴x2+(2.4x)2=262,解得:x=10,∴BN=10,CN=24,∵四边形AMNB是矩形,AB=15,∴MN=AB=15,∴CM=MN+CN=15+24=39(米),答:观景台A处到坡底C的水平距离CM为39米;(2)∵四边形BNDF是矩形,BN=10,CD=93,CN=24,∴FD=BN=10,BF=DN=CN+CD=24+93=117,在Rt△BEF中,tan∠EBF==tan22°,∴EF=BF•tan22°≈117×0.40=46.8,∴ED=EF+FD=56.8≈57(米).答:滑雪场顶端E到CD的距离ED的长约为57米.10.如图,梯形ABCD是一个拦河坝的截面图,坝高5米,背水坡AD的坡度为1:1.2.为了提高河坝抗洪能力,防汛指挥部决定加固河坝,若坝顶CD加宽1米,新的背水坡EF 的坡角α为30°,河坝总长400米.(1)求大坝底端AF需加宽多少米?(精确到0.1米,参考数据:≈1.73,≈1.41)(2)某工程队每天加固150立方米,工程队能否在30天内完成河坝加固?(体积=底面积×高)【解答】解:(1)过点D作DG⊥AB于G,过点E作EH⊥AB于H,则四边形EHGD为矩形,∴HG=ED=1米,∵坡AD的坡度为1:1.2,DG=5米,∴AG=5×1.2=6米,∴AH=AG﹣GH=6﹣1=5(米),在Rt△EFH中,∠F=30°,∴FH===5≈8.65(米),∴AF=FH﹣AH=8.65﹣5=3.65≈3.7(米),答:大坝底端AF需加宽约为3.7米;(2)需加固的土方量为:×(1+3.7)×5×400=4700(立方米),工程队每天加固150立方米,工程队30天内完成的土方量为:150×30=4500(立方米),∵4500<4700,∴工程队不能在30天内完成河坝加固,答:工程队不能在30天内完成河坝加固.11.图1是安装在倾斜屋顶上的热水器,图2是安装热水器的侧面示意图.已知屋面AE的倾斜角∠EAD为22°,长为3米的真空管AB与水平线AD的夹角为37°,安装热水器的铁架竖直管CE的长度为0.5米.(1)真空管上端B到水平线AD的距离.(2)求安装热水器的铁架水平横管BC的长度(结果精确到0.1米).(参考数据:sin37°≈,cos37°≈,tan37°≈,sin22°≈,cos22°≈,tan22°≈0.4)【解答】解:(1)过B作BF⊥AD于F.在Rt△ABF中,sin∠BAF=,则BF=AB sin∠BAF=3sin37°≈3×=1.8(米).答:真空管上端B到AD的距离约为1.8米;(2)在Rt△ABF中,cos∠BAF=,则AF=AB cos∠BAF=3×cos37°≈2.25(米),∵BF⊥AD,CD⊥AD,BC∥FD,∴四边形BFDC是矩形.∴BF=CD,BC=FD,∵EC=0.5米,∴DE=CD﹣CE=1.3米,在Rt△EAD中,tan∠EAD=,则AD=≈=3.25(米),∴BC=DF=AD﹣AF=3.25﹣2.25≈1.0(米),答:安装热水器的铁架水平横管BC的长度约为1.0米.12.如图所示,已知BC是水平面,AB、AD、CD是斜坡.AB的坡角为42°,坡长为200米,AD的坡角为60°,坡长为100米,CD的坡比i=1:2.(1)求坡顶A到水平面BC的距离;(2)求斜坡CD的长度.(结果精确到1米,参考数据:sin42°≈0.70,≈1.73)【解答】解:(1)过点A作AE⊥BC于E,在Rt△ABE中,∠B=42°,AB=200米,则AE=AB•sin B≈200×0.70=140(米),答:坡顶A到水平面BC的距离约为140米;(2)过点D作DF⊥BC于F,DG⊥AE于G,则四边形EFDG为矩形,∴GE=DF,在Rt△AGD中,∠ADG=60°,AD=100米,则AG=AD•sin∠ADG=100×≈86.5(米),∴DF=GE=AE﹣AG=53.5(米),∵CD的坡比i=1:2,∴DF:FC=1:2,∴DF:CD=1:3,∴CD=3DF=160.5≈161(米),答:斜坡CD的长度约为161米.13.数学兴趣小组想利用所学的知识了解某广告牌的高度,已知CD=2m.经测量,得到其它数据如图所示.其中∠CAH=37°,∠DBH=67°,AB =10m,请你根据以上数据计算GH的长.(参考数据sin67,cos67°,tan67°,cos37°,sin37°,tan37°)【解答】解:延长CD交AH于点E,则CE⊥AH,如图所示.设DE=xm,则CE=(x+2)m,在Rt△AEC和Rt△BED中,tan37°=,tan67°=,∴AE=,BE=.∵AE﹣BE=AB,∴﹣=10,即﹣=10,解得:x=8,∴DE=8m,∴GH=CE=CD+DE=2m+8m=10m.答:GH的长为10m.。

人教版备考2023中考数学二轮复习 专题20 解直角三角形(教师版)

人教版备考2023中考数学二轮复习 专题20 解直角三角形(教师版)

人教版备考2023中考数学二轮复习 专题20 解直角三角形一、单选题1.(2021九上·莘县期中)河堤横断面如图所示,堤高BC =6米,迎水坡AB 的坡比是1∶√3,则AC的长是( )A .6√2米B .12米C .3√3米D .6√3米【答案】D【知识点】解直角三角形的应用﹣坡度坡角问题 【解析】【解答】解:∵迎水坡AB 的坡比为1∶√3, ∴BC AC =1√3,∵堤高BC=6米,∴AC =√3BC =6√3(米). 故答案为:D.【分析】根据坡度比可得BC AC =√3,再将数据代入求出AC 的长即可。

2.(2021九上·莘县期中)如图,一艘海轮位于灯塔P 的北偏东55°方向的A 处,已知PA =6海里,如果海轮沿正南方向航行到灯塔的正东方向,则海轮航行的距离AB 的长是( )A .6海里B .6cos55°海里C .6sin55°海里D .6tan55°海里【答案】B【知识点】解直角三角形的应用﹣方向角问题【解析】【解答】由题意可知∠NPA =55°,PA =6海里,∠ABP =90°.∵AB ∥NP ,∴∠A =∠NPA =55°.在Rt△ABP中,∵∠ABP=90°,∠A=55°,PA=6海里,∴AB=AP•cosA=6cos55°海里.故答案为:B.【分析】先利用平行线的性质可得∠A=∠NPA=55°,再利用解直角三角形的方法求出AB=AP•cosA =6cos55°海里即可。

3.(2022九上·襄汾期中)一配电房示意图如图所示,它是一个轴对称图形,已知BC=6m,∠ABC=α,则房顶A离地面EF的高度为()A.(4+3sinα)m B.(4+3tanα)m C.(4+3sinα)m D.(4+3tana)m【答案】B【知识点】解直角三角形的应用【解析】【解答】解:过点A作AD⊥BC于D,如图所示:∵它是一个轴对称图形,∴BD=DC=12BC=3m,∴tanα=ADBD=AD3,即AD=3tanα,∴房顶A离地面EF的高度为(4+3tanα)m,故答案为:B.【分析】过点A作AD⊥BC于D,根据tanα=ADBD=AD3,求出AD=3tanα,再求出EF的长即可。

中考数学专题复习_第十九讲__解直角三角形(含详细参考答案)

中考数学专题复习_第十九讲__解直角三角形(含详细参考答案)

第十九讲解直角三角形【基础知识回顾】一、锐角三角函数定义:在Rt△ABC中,∠C=900, ∠A、∠B、∠C的对边分别为a、b、c,则∠A的正弦可表示为:sinA= ,∠A的余弦可表示为cosA= ∠A的正切:tanA= ,它们统称为∠A的锐角三角函数【名师提醒:1、sinA、∠cosA、tanA表示的是一个整体,是两条线段的比,没有单位,这些比值只与有关,与直角三角形的无关2、取值范围<sinA< ,cosA< ,tanA> 】二、特殊角的三角函数值:在理解的基础上结合表格进行记忆2、正弦和正切值随着角度的增大而余弦值随着角度的增大而3、几个特殊关系:⑴sinA+cos2A= ,tanA=sin A()⑵若∠A+∠B=900,则sinA= ,tanA.tanB= 】三、解直角三角形:1、定义:由直角三角形中除直角外的个已知元素,求出另外个未知元素的过程叫解直角三角形2、解直角三角形的依据:Rt∠ABC中,∠C=900 三边分别为a、b、c⑴三边关系:⑵两锐角关系⑶边角之间的关系:sinA cosA tanAsinBcosB tanB【名师提醒:解直角三角形中已知的两个元素应至少有一个是当没有直角三角形时应注意构造直角三角形,再利用相应的边角关系解决】3、解直角三角形应用中的有关概念⑴仰角和俯角:如图:在图上标上仰角和俯角⑵坡度坡角:如图:斜坡AB的垂直度h和水平宽度l的比叫做坡度,用i表示,即i=坡面与水平面得夹角为用字母α表示,则i=tanα=hl。

铅直水平线⑶方位角:是指南北方向线与目标方向所成的小于900的水平角如图:OA表示OB表示OC表示OD表示(也可称东南方向)3、利用解直角三角形知识解决实际问题的一般步骤:⑴把实际问题抓化为数学问题(画出平面图形,转化为解直角三角形的问题)⑵根据条件特点,选取合适的锐角三角函数去解直角三角形⑶解出数学问题答案,从而得到实际问题的答案【名师提醒:在解直角三角形实际应用中,先构造符合题意的三角形,解题的关键是弄清在哪个直角三角形中用多少度角的哪种锐角三角函数解决】【重点考点例析】考点一:锐角三角函数的概念例1 (2013•贵阳)如图,P是∠α的边OA上一点,点P的坐标为(12,5),则tanα等于()A.513B.1213C.512D.1251.(2013•宿迁)如图,将∠AOB 放置在5×5的正方形网格中,则tan ∠AOB 的值是( )A .23B .32C D1.B2.(2013•重庆)计算6tan45°-2cos60°的结果是()A.B.4 C.D.52.D考点三:化斜三角形为直角三角形3.(2013•陕西)如图,四边形ABCD的对角线AC,BD相交于点O,且BD平分AC.若BD=8,AC=6,∠BOC=120°,则四边形ABCD的面积为.(结果保留根号)3.考点四:解直角三角形的应用例4 (2013•舟山)某学校的校门是伸缩门(如图1),伸缩门中的每一行菱形有20个,每个菱形边长为30厘米.校门关闭时,每个菱形的锐角度数为60°(如图2);校门打开时,每个菱形的锐角度数从60°缩小为10°(如图3).问:校门打开了多少米?(结果精确到1米,参考数据:sin5°≈0.0872,cos5°≈0.9962,sin10°≈0.1736,cos10°≈0.9848).思路分析:先求出校门关闭时,20个菱形的宽即大门的宽;再求出校门打开时,20个菱形的宽即伸缩门的宽;然后将它们相减即可.解:如图,校门关闭时,取其中一个菱形ABCD.根据题意,得∠BAD=60°,AB=0.3米.∵在菱形ABCD中,AB=AD,∴△BAD是等边三角形,∴BD=AB=0.3米,∴大门的宽是:0.3×20≈6(米);如图,校门打开时,取其中一个菱形A1B1C1D1.根据题意,得∠B1A1D1=10°,A1B1=0.3米.∵在菱形A1B1C1D1中,A1C1⊥B1D1,∠B1A1O1=5°,∴在Rt△A1B1O1中,B1O1=sin∠B1A1O1•A1B1=sin5°×0.3=0.02616(米),∴B1D1=2B1O1=0.05232米,∴伸缩门的宽是:0.05232×20=1.0464米;∴校门打开的宽度为:6-1.0464=4.9536≈5(米).故校门打开了5米.点评:本题考查了菱形的性质,解直角三角形的应用,难度适中.解题的关键是把实际问题转化为数学问题,只要把实际问题抽象到解直角三角形中,一切将迎刃而解.对应训练【聚焦山东高考】1.2A.12 B.C.米D.米2.A3.(2013•潍坊)一渔船在海岛A南偏东20°方向的B处遇险,测得海岛A与B的距离为20海里,渔船将险情报告给位于A处的救援船后,沿北偏西80°方向向海岛C靠近,同时,从A处出发的救援船沿南偏西10°方向匀速航行,20分钟后,救援船在海岛C处恰好追上渔船,那么救援船航行的速度为()A./小时B.30海里/小时C./小时D.海里/小时3.D4.(2013•东营)某校研究性学习小组测量学校旗杆AB的高度,如图在教学楼一楼C处测得旗杆顶部的仰角为60°,在教学楼三楼D处测得旗杆顶部的仰角为30°,旗杆底部与教学楼一楼在同一水平线上,已知每层楼的高度为3米,则旗杆AB的高度为米.4.9tan11°≈0.19)4【备考真题过关】一、选择题1.(2013•天津)tan60°的值等于()A.1 B C D.21.C2.(2013•温州)如图,在△ABC中,∠C=90°,AB=5,BC=3,则sinA的值是()A.34B.43C.35D.452.CA.12B.13C.3D.133.DA.5B.4C.5D.34.AA.B.0 C.D.25.BA.30°B.45°C.60°D.90°6.D7.(2013•宁夏)如图是某水库大坝横断面示意图.其中AB、CD分别表示水库上下底面的水平线,∠ABC=120°,BC的长是50m,则水库大坝的高度h是()A.B.25m C.m D m7.A8.(2013•山西)如图,某地修建高速公路,要从B地向C地修一座隧道(B、C在同一水平面上).为了测量B、C两地之间的距离,某工程师乘坐热气球从C地出发,垂直上升100m 到达A处,在A处观察B地的俯角为30°,则B、C两地之间的距离为()mA. m B. m C.m D.38.A二、填空题10.(2013•淮安)sin30°的值为.110.11.412.(2013•铜仁地区)如图,在直角三角形ABC中,∠C=90°,AC=12,AB=13,则sinB 的值等于.12.1213.14.215.(2013•荆门)如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,过D点作AB的垂线交AC于点E,BC=6,sinA= 35,则DE= .15.15 416.(2013•成都)如图,某山坡的坡面AB=200米,坡角∠BAC=30°,则该山坡的高BC的长为米.16.10017.(2013•十堰)如图,在小山的东侧A点有一个热气球,由于受西风的影响,以30米/分的速度沿与地面成75°角的方向飞行,25分钟后到达C处,此时热气球上的人测得小山西侧B点的俯角为30°,则小山东西两侧A、B两点间的距离为米.17.18.(2013•荆州)如图,在高度是21米的小山A处没得建筑物CD顶部C处的仰角为30°,底部D处的俯角为何45°,则这个建筑物的高度CD= 米(结果可保留根号)- 21 -。

中考数学专题复习《解直角三角形及其应用》知识点梳理及典例讲解课件

中考数学专题复习《解直角三角形及其应用》知识点梳理及典例讲解课件







一般指以观测者的位置为中心,将正北
或正南方向作为起始方向旋转到目标方
向线所成的角(一般指锐角),通常表
方向角
示成北(南)偏东(西)多少度,方向
角的角度在0°~90°之间.点A,B,C关于
点O的方向角分别是北偏东30°,南偏东
60°,北偏西45°(也称西北方向)


考点一
锐角三角函数的定义
典例1 (2023·芜湖镜湖一模)如图,在Rt△ABC中,∠C=90°,BC=
2,AB=3,则cosB的值为( D )
A.
C.
5
2
3
2
B.
5
3
D.
2
3
典例1图
典例2 (2023·蚌埠蚌山模拟)如图,在由边长为1的小正方形组成的网
格中,点A,B,C,D,E均在格点上,半径为2的☉A与BC交于点F,则
DF⊥CE于点F,则∠AEF=∠DFC=∠DFE=90°.
又∵ ∠DAB=90°,∴ 四边形AEFD是矩形.
∴ ∠ADF=90°,AE=DF.∵ ∠ADC=120°,∴
∠CDF=∠ADC-∠ADF=30°.在Rt△CDF中,

cos30°= ,CD=100,∴ DF=CD·cos30°=


=50
tan53.3°≈1.34,sin68.2°≈0.93,cos68.2°≈0.37,tan68.2°≈2.50).
解:如图,过点D作DE⊥AB,交AB的延长线于点E,过
点C作CF⊥AB,交AB的延长线于点F.易得四边形CDEF
是矩形,∴ EF=CD=10cm,DE=CF.在Rt△ADE中,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题06 解直角三角形题型归纳1.如图是某小区地下停车场入口处栏杆的示意图,MQ、PQ分别表示地面和墙壁的位置,OM表示垂直于地面的栏杆立柱,OA、AB是两段式栏杆,其中OA段可绕点O旋转,AB 段可绕点A旋转.图1表示栏杆处于关闭状态,此时O、A、B在与地面平行的一直线上,并∥,OA段与竖直方向夹角为且点B接触到墙壁;图2表示栏杆处于打开状态,此时AB MQAB=.OA=,150cm 30︒.已知立柱宽度为30cm,点O在立柱的正中间,120cmOM=,120cm(1)求栏杆打开时,点A到地面的距离;(2)为确保通行安全,要求汽车通过该入口时,车身与墙壁间需至少保留10cm的安全距离,问一辆最宽处为2.1m,最高处为2.1m的货车能否安全通过该入口?(取1.73)【详解】(1)(2)2.如图,株洲市炎陵县某中学在实施“五项管理”中,将学校的“五项管理”做成宣传牌(CD),放置在教学楼A栋的顶部(如图所示)该中学数学活动小组在山坡的坡脚A处测得宣传牌底部D的仰角为60°,沿芙蓉小学围墙边坡AB向上走到B处测得宣传牌顶部C的仰角为45°.已知山坡AB的坡度为i=1:3,AB m,AE=8m.(1)求点B距水平面AE的高度BH.(2)求宣传牌CD的高度.(结果精确到0.1【答案】(1)点B距水平面AE的高度BH是2米【我思故我在】本题考查了解直角三角形的应用-仰角俯角问题,坡度坡角问题,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.3.如图1是疫情期间测温员用“额温枪”对小红测温时的实景图,图2是其侧面示意图,其中枪柄BC 与手臂MC 始终在同一直线上,枪身BA 与额头保持垂直量得胳膊28cm MN =,枪柄与枪身之间的夹角为120°(即120MBA ∠=︒),肘关节M 与枪身端点A 之间的水平宽度为25.3cm(即MP 的长度),枪身8.5cm BA =.(1)求M B 的长;(2)测温时规定枪身端点A 与额头距离范围为3~5cm .在图2中,若测得75BMN ∠=︒,小红与测温员之间距离为50cm 问此时枪身端点A 与小红额头的距离是否在规定范围内?并说明理由.(结果精确到0.1cm 1.4≈ 1.7≈) 【答案】(1)33.6cm ;(2)在规定范围内,理由见详解.【分析】(1)过点B 作BH MP ⊥于点H ,在Rt BMH 中,利用含30°直角三角形三边关系,即可解答;(2)延长PM 交FG 于点I ,45NMI ∠=︒,在Rt NMI 中,利用三角函数的定义即可求出MI 的长,比较即可判断.(1)解:过点B 作BH MP ⊥于点H ,由题可知四边形ABHP 为矩形,如下图:Rt BMH Rt NMI 4.小明利用刚学过的测量知识来测量学校内一棵古树的高度.一天下午,他和学习小组的同学带着测量工具来到这棵古树前,由于有围栏保护,他们无法到达古树的底部B ,如图所示.于是他们先在古树周围的空地上选择一点D ,并在点D 处安装了测量器CD ,测得=135ACD ∠︒;再在BD 的延长线上确定一点G ,使5DG =米,并在G 处的地面上水平放置了一个小平面镜,小明沿着BG 方向移动,当移动到点F 时,他刚好在小平面镜内看到这棵古树的顶端A 的像,此时,测得2FG =米,小明眼睛与地面的距离=1.6EF 米,测量器的高度=0.5CD 米.已知点F 、G 、D 、B 在同一水平直线上,且EF 、CD 、AB 均垂直于FB ,则这棵古树的高度AB 为多少米?(小平面镜的大小忽略不计)ACH ,得出ABG ∽△,因此得出米,ACH 中,5.广场上有一个充满氢气的气球P ,被广告条拽着悬在空中,甲乙二人分别站在E 、F 处,他们看气球的仰角分别是30度、45度,E 点与F 点的高度差AB 为1米,水平距离CD 为5米,FD 的高度为0.5米,请问此气球有多高?(结果保留到0.1米).Rt PEA AE tan30°6.综合与实践小明为自己家设计了一个在水平方向可以伸缩的遮阳蓬,如图所示,已知太原地区在夏至日的正午太阳高度角(即正午太阳光线与地平面的夹角)为75︒ ,冬至日的正午太阳高度角为29.5︒ ,小明家的玻璃窗户()AB 高为190cm ,在A 点上方20cm 的C 处安装与墙垂直的宽为CD 的遮阳蓬,并且该遮阳蓬可伸缩(CD 可变化);为了保证在夏至日正午太阳光不射到屋内,冬至日正午整块玻璃都能受到太阳光照射,求可伸缩的遮阳蓬CD 宽度的范围.(结果精确到0.1,参考数据:sin750.97︒=,cos750.26︒=,tan75 3.73︒=,sin29.50.49︒=,cos29.50.87︒=,tan29.50.57︒=)t R BCD ,求出t R BCD 中,cm 210 ,DBE ∠cm7.如图,在航线l 的两侧分别有两个灯塔A 和B ,灯塔A 到航线l 的距离为3AC =千米,灯塔B 到航线l 的距离为4BD =千米,灯塔B 位于灯塔A 南偏东60︒方向.现有一艘轮船从位于灯塔B 北偏西53︒方向的N (在航线l 上)处,正沿该航线自东向西航行,10分钟后该轮船行至灯塔A 正南方向的点C (在航线l 上)处.( 1.73≈,sin530.80≈︒,cos530.60≈︒,tan53 1.33≈︒ )(1)求两个灯塔A 和B 之间的距离;(2)求该轮船航行的速度(结果精确到0.1千米/小时). Rt ACM 中,3cos60=AM ︒,6AM = ,Rt BDM 中,cos60=BD BM ︒,8BM =,AM BM =+答:两个灯塔Rt ACM 中,tan60=3MC ︒,33=MC ,Rt BDM 中,tan60=4DM ︒,MC DM =+Rt BDN △中,由题意,得DBN ∠8.风能作为一种清洁能源越来越受到世界各国的重视,我市结合自身地理优势架设风力发电机利用风能发电.王芳和李华假期去明月峰游玩,看见风电场的各个山头上布满了大大小小的风力发电机,好奇的想知道风力发电机塔架的高度.如图,王芳站在C 点测得C 点与塔底D 点的距离为25m ,李华站在斜坡BC 的坡顶B 处,已知斜坡BC 的坡度i =,坡面BC 长30m ,李华在坡顶B 处测得轮毂A 点的仰角38α=︒,请根据测量结果帮他们计算:(1)斜坡顶点B 到CD 所在直线的距离;(2)风力发电机塔架AD 的高度.(结果精确到0.1m ,参考数据sin380.62︒≈,cos380.79︒≈,tan380.78︒≈ 1.41 1.73)≈BC︒=153由题意得,四边形BEDF由勾股定理得:EC=,ABF BF=︒≈⨯Rt ABF中,tan38400.7840=+AD AF FD答:塔架高度【我思故我在】本题考查了解直角三角形的实际应用以及勾股定理,根据题意构造直角三角形是解本题的关键.9.小明和小亮利用数学知识测量学校操场边升旗台上的旗杆高度.如图,旗杆AB立在水平的升旗台上,两人测得旗杆底端B到升旗台边沿C的距离为2m,升旗台的台阶所在的斜坡CD长为2m,坡角为30,小明又测得旗杆在太阳光下的影子落在水平地面MN上的部分DE的长为6m,同一时刻,小亮测得长1.6m的标杆直立于水平地面时的影子长为1.2m.请你帮小明和小亮求出旗杆AB 的高度( 1.732)CDG ∠=12CG ∴=HE HG ∴=同一时刻,物高和影长成正比,1.61.2AH HE ∴=握同一时刻,物高和影长成正比是解决本题的关键.10.某项目学习小组用测倾仪、皮尺测量小山的高度MN ,他们设计了如下方案(如图):①在点A 处安置测倾仪,测得小山顶M 的仰角MCE ∠的度数;②在点A 与小山之间的B 处安置测倾仪,测得小山顶M 的仰角MDE ∠的度数(点A ,B 与N 在同一水平直线上);③量出测点A ,B 之间的距离.已知测倾仪的高度 1.5AC BD ==米,为减小误差,他们按方案测量了两次,测量数据如下表(不完整):(1)写出MCE ∠的度数的平均值.(2)根据表中的平均值,求小山的高度.(参考数据:sin 220.37,cos 220.93,tan 220.40︒≈︒≈︒≈) (3)该小组没有利用物体在阳光下的影子来测量小山的高度,你认为原因可能是什么?(写出一条即可)【答案】(1)22°(2)101.5米(3)小山的影子长度无法测量【分析】(1)根据平均数公式,用两次测量得的MCE ∠的度数和除以2即可求解;(2)在Rt △MDE 中,利用仰角⊥MDE 的45°,即可求得ME =DE ,在Rt △MCE 中,利用仰角⊥MCE 的正切值,可得ME =CE ⋅tan⊥MCE ,进而由CE =CD +DE =CD +ME ,易知四边形CANE 、四边形ABDC 是矩形,可得EN =AC =1.5米,CD =AB =150米,代入即可求出ME 的值,然后由MN =ME +NE 求解;11.小红家的阳台上放置了一个晒衣架(如图①),图②是晒衣架的侧面示意图,立杆AB,CD相交于点O,B,D两点立于地面,经测量:AB=CD=136 cm,OA=OC=51 cm,OE=OF =34 cm,现将晒衣架完全稳固张开,扣链EF成一条线段,且EF=32 cm(参考数据:sin 61.9°≈0.882,cos 61.9°≈0.471,tan 28.1°≈0.534).(1)求证:AC⊥BD .(2)求扣链EF 与立杆AB 的夹角⊥OEF 的度数(结果精确到0.1°).(3)小红的连衣裙穿在晒衣架上的总长度达到122 cm ,垂挂在晒衣架上是否会拖落到地面?请通过计算说明理由. 证明:证法一:,AB CDOA OC =1(1802OAC ∴∠==︒﹣同理可证:ODB =∠=OAC ∴∠=.AC BD ∴证法二:AB =85cm OD ==OA OC OB OD ==又,AOC BODAOC BOD ∴∽,OAC OBD ∴∠=∠,.AC BD ∴(2)解:在OEF 中,EF BD ,OEM ,Rt Rt OEM ABH ∽,,OE OM OM AB AH AB AH OE ⋅===所以:小红的连衣裙垂挂在衣架后的总长度解法二:小红的连衣裙会拖落到地面)可证:EF BD ,ABD ∴∠BD ⊥于点, 136ABD =所以:小红的连衣裙垂挂在衣架后的总长度12.开封清明上河园是依照北宋著名画家张择端的《清明上河图》建造的,拂云阁是园内最高的建筑.某数学小组测量拂云阁DC 的高度,如图,在A 处用测角仪测得拂云阁顶端D 的仰角为34°,沿AC 方向前进15m 到达B 处,又测得拂云阁顶端D 的仰角为45°.已知测角仪的高度为1.5m ,测量点A ,B 与拂云阁DC 的底部C 在同一水平线上,求拂云阁DC 的高度(结果精确到1m .参考数据:sin340.56︒≈,cos340.83︒≈,tan340.67︒≈).EG FG -即0.67DG -解得DG ≈DC DG ∴=∴拂云阁13.如图,为测量某建筑物AB 的高度,小刚采用了如下的方法:先从与建筑物底端B 在同一水平线上的C 点出发,沿斜坡CD 行走60米至坡顶D 处,再从D 处沿水平方向继续前行若干米后至E 点处,在E 点测得该建筑物顶端A 的仰角为60︒,建筑物底端B 的俯角为45︒,点AB C D E 、、、、在同一平面内,斜坡CD 的坡度34i =:.请根据小刚的测量数据,计算出建筑物AB 的高度.( 1.73≈)Rt DFC 中,利用勾股定理求出Rt GEB 中,利用锐角三角函数的定义求出Rt AGE 中,利用锐角三角函数的定义求出的长,进行计算即可解答.【详解】解:过点,垂足为F 交AB 于点GRt DFC 中,60DC =,⊥560a =解得12a =,⊥336DF a ==,36GB DF =∴=Rt GEB 中,Rt AGE 中,tan EG =⋅AG GB =+建筑物AB 的高度约为【我思故我在】本题考查了解直角三角形的应用14.如图1,2分别是某款篮球架的实物图与示意图,AB BC ⊥于点B ,底座=1BC 米,底座BC 与支架AC 所成的角60ACB ∠=︒,点H 在支架AF 上,篮板底部支架EH BC .EF EH ⊥于点E ,已知AH HF 3=2HE 米.(1)求篮板底部支架HE 与支架AF 所成的FHE ∠的度数.(2)求篮板底部点E 到地面的距离,(精确到0.1米)( 1.41≈ 1.73≈) 【答案】(1)篮板底部支架HE 与支架AF 所成的角⊥FHE 的度数为45°;(2)篮板底部点E 到地面的距离约为2.2米【分析】(1)在Rt ⊥HEF 中,利用锐角三角函数的定义进行计算即可解答;(2)延长FE 交直线BC 与点M ,过点A 作AG ⊥FM ,垂足为G ,根据题意易证四边形ABMG 是矩形,从而得AB =GM ,然后在Rt ⊥AGF 中求出FG ,从而求出EG ,最后在Rt ⊥ABC 中,求出AB ,进行计算即可解答.(1)⊥EF ⊥EH ,⊥⊥HEF =90°,【我思故我在】本题考查了解直角三角形的应用,勾股定理的应用,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.。

相关文档
最新文档