《解直角三角形》典型例题

合集下载

解直角三角形练习题及答案经典

解直角三角形练习题及答案经典

28.2 解直角三角形 一、选择题 1、如图,已知正方形ABCD 的边长为2,如果将线段BD 绕着点B 旋转后,点D 落在CB 的延长线上的D ′处,那么tan ∠BAD ′等于( )(A).1(B).2 (C).22 (D).22 2、如果α是锐角,且54cos =α,那么αsin 的值是( ). (A )259 (B ) 54 (C )53 (D )2516 3、等腰三角形底边长为10㎝,周长为36cm ,那么底角的余弦等于( ). (A )513 (B )1213 (C )1013 (D )512 4、. 以下不能构成三角形三边长的数组是 ( )(A )(1,3,2) (B )(3,4,5) (C )(3,4,5) (D )(32,42,52)5、在Rt △ABC 中,∠C =90°,下列式子中正确的是( ).(A )B A sin sin = (B )B A cos sin =(C )B A tan tan = (D )B A cot cot =6、在矩形ABCD 中,DE ⊥AC 于E ,设∠ADE=α,且53cos =α, AB = 4, 则AD 的长为( ).(A )3 (B )316 (C )320 (D )516 7、某市在“旧城改造”中计划在一块如图所示的三角形空地上种植某种草皮以美 化环境,已知这种草皮每平方米a 元,则购买这种草皮至少要( ).(A )450a 元 (B )225a 元 (C )150a 元 (D )300a 元8、已知α为锐角,tan (90°-α)=3,则α的度数为( )(A )30° (B )45° (C )60° (D )75°9、在△ABC 中,∠C =90°,BC =5,AB =13,则sin A 的值是( )(A )135 (B )1312 (C )125 (D )512 10、如果∠a 是等边三角形的一个内角,那么cos a 的值等于( ). A B CDE ︒15020米30米(A )21 (B )22 (C )23 (D )1 二、填空题 11、如图,在△ABC 中,若∠A =30°,∠B =45°,AC =22, 则BC = w12、如图,沿倾斜角为30︒的山坡植树,要求相邻两棵树的水平距离AC 为2m ,那么相邻两棵树的斜坡距离AB 为 m 。

解直角三角形的应用经典题型

解直角三角形的应用经典题型

解直角三角形应用经典1.如图1,一架飞机在空中P 处探测到某高山山顶D 处的俯角为60°,此后飞机以300米/秒的速度沿平行于地面AB 的方向匀速飞行,飞行10秒到山顶D 的正上方C 处,此时测得飞机距地平面的垂直高度为122.如图,水坝的横断面是梯形,背水坡AB 的坡角∠BAD=60,坡长AB=m 320,为加强水坝强度, 将坝底从A 处向后水平延伸到F 处,使新的背水坡 的坡角∠F= 45,求AF 的长度(结果精确到1米, 参考数据: 414.12≈,732.13≈).3.施工队准备在一段斜坡上铺上台阶方便通行.现测得斜坡上铅垂的两棵树间水平距离AB =4米,斜面距离BC =4.25米,斜坡总长DE =85米. (1)求坡角∠D 的度数(结果精确到1°);(2)若这段斜坡用厚度为17c m 的长方体台阶来铺,需要铺几级台阶?(2题图)17cm(第3题)ABCF参考数据cos20°≈0.94, sin20°≈0.34, sin18°≈0.31, cos18°≈0.95AB12千P C D G 60图1ABE F QP 4. 在东西方向的海岸线l 上有一长为1km 的码头MN (如图),在码头西端M 的正西19.5 km 处有一观察站A .某时刻测得一艘匀速直线航行的轮船位于 A 的北偏西30°,且与A 相距40km 的B 处;经过1小时20分钟,又测得该轮船位于A 的北偏东60°,且与A 相距83的C 处.(1)求该轮船航行的速度(保留精确结果);(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN 靠岸?请说明理由.5. 如图是某货站传送货物的平面示意图. 为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°. 已知原传送带AB 长为4米. (1)求新传送带AC 的长度; (2)如果需要在货物着地点C 的左侧留出2米的通道,试判断距离B 点4米的货物MNQP 是否需要挪走,并说明理由.(说明:⑴⑵的计算结果精确到0.1米,参考数据:2≈1.41,3≈1.73,5≈2.24,6≈2.45)第5题 6. 如图,大海中有A 和B 两个岛屿,为测量它们之间的距离,在海岸线PQ 上点E 处测得∠AEP =74°,∠BEQ =30°;在点F 处测得∠AFP =60°,∠BF Q =60°,EF =1km . (1)判断ABAE 的数量关系,并说明理由;(2)求两个岛屿A 和B 之间的距离.NM 东北BCAl7.图1为已建设封顶的16层楼房和其塔吊图,图2为其示意图,吊臂AB 与地面EH 平行,测得A 点到楼顶D 点的距离为5m,每层楼高3.5m,AE 、BF 、CH 都垂直于地面,EF=16m,求塔吊的高CH 的长.8.在一个阳光明媚、清风徐来的周末,小明和小强一起到郊外放风筝﹒他们把风筝放飞后,将两个风筝的引线一端都固定在地面上的C 处(如图).现已知风筝A 的引线(线段AC )长20m ,风筝B 的引线(线段BC )长24m ,在C 处测得风筝A 的仰角为60°,风筝B 的仰角为45°. (1)试通过计算,比较风筝A 与风筝B 谁离地面更高? (2)求风筝A 与风筝B 的水平距离.(精确到0.01 m ;参考数据:sin45°≈0.707,cos45°≈0.707, tan45°=1,sin 60°≈0.866,cos60°=0.5,tan 60°≈1.732)9. 为了缓解酒泉市区内一些主要路段交通拥挤的现状,交警队在一些主要路口设立了交通路况显示牌(如图).已知立杆AB 高度是3m ,从侧面D 点测得显示牌顶端C 点和底端B 点的仰角分别是60°和45°.求路况显示牌BC 的高度.第19题图AB45° 60°CED (第19题10.如图所示,小明在家里楼顶上的点A 处,测量建在与小明家楼房同一水平线上相邻的电梯楼的高,在点A 处看电梯楼顶部点B 处的仰角为60°,在点A 处看这栋电梯楼底部点C 处的俯角为45°,两栋楼之间的距离为30m ,则电梯楼的高BC为______米(精确到0.1).(参考数据:414.12≈732.13≈)82.011. 2009年首届中国国际航空体育节在莱芜举办,期间在市政府广场进行了热气球飞行表演.如图,有一热气球到达离地面高度为36米的A 处时,仪器显示正前方一高楼顶部B 的仰角是37°,底部C 的俯角是60°.为了安全飞越高楼,气球应至少再上升多少米?(结果精确到0.1米)(参考数据:,75.037tan ,80.037cos ,60.037sin ≈︒≈︒≈︒73.13≈)12. 摩天轮是嘉峪关市的标志性景观之一.某校数学兴趣小组要测量摩天轮的高度.如图,他们在C 处测得摩天轮的最高点A 的仰角为45︒,再往摩天轮的方向前进50 m 至D 处,测得最高点A 的仰角为60︒. 求该兴趣小组测得的摩天轮的高度AB (3 1.732≈, 结果保留整数).A45°60° 第(12)题BAC(第11题图)13.小明想知道西汉胜迹中心湖中两个小亭A 、B 之间的距离,他在与小亭A 、B 位于同一水平面且东西走向的湖边小道l 上某一观测点M 处,测得亭A 在点M 的北偏东30°, 亭B 在点M 的北偏东60°,当小明由点M 沿小道l 向东走60米时,到达点N 处,此时测得亭A 恰好位于点N 的正北方向,继续向东走30米时到达点Q 处,此时亭B 恰好位于点Q 的正北方向,根据以上测量数据,请你帮助小明计算湖中两个小亭A 、B 之间的距离.14. 小明家所在居民楼的对面有一座大厦AB ,AB =80米.为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C 处测得大厦顶部A 的仰角为37°,大厦底部B 的俯角为48°.求小明家所在居民楼与大厦的距离CD 的长度.(结果保留整数)(参考数据:o o o o 33711sin37tan37sin 48tan48541010≈≈≈≈,,,)B37° 48°DC A15.如图,某天然气公司的主输气管道从A市的东偏北30°方向直线延伸,测绘员在A处测得要安装天然气的M小区在A市东偏北60°方向,测绘员沿主输气管道步行2000米到达C处,测得小区M位于C的北偏西60°方向,请你在主输气管道上寻找支管道连接点N,使到该小区铺设的管道最短,并求AN的长.第15题图。

解直角三角形经典练习附答案

解直角三角形经典练习附答案

秒题一1、如图,△ABC中,AD⊥BC,垂足是D,若BC=14,AD=12,tan∠BAD=,求sinC的值.2如图,在四边形ABCD中,∠BCD是钝角,AB=AD,BD平分∠ABC,若CD=3,BD=,sin∠DBC=,求对角线AC的长.答案:AC=21、sinC==3如图,在Rt△ABC中,∠ACB=90°,AC=BC=3,点D在边AC上,且AD=2CD,DE⊥AB,垂足为点E,联结CE,求:(2)∠ECB的余切值.(1)线段BE的长;BE=AB﹣AE=3﹣=2,cot∠ECB==,4、如图,△ABC中,∠ACB=90°,sinA=,BC=8,D是AB中点,过点B作直线CD的垂线,垂足为点E.(1)求线段CD的长;CD=AB=5 cos∠DBE===(2)求cos∠ABE的值.5、如图,某办公楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,办公楼在建筑物的墙上留下高2米的影子CE,而当光线与地面夹角是45°时,办公楼顶A在地面上的影子F与墙角C有25米的距离(B,F,C在一条直线上).(1)求办公楼AB的高度;20m(2)若要在A,E之间挂一些彩旗,请你求出A,E之间的距离.(参考数据:sin22°≈,cos22°,tan22)48m秒题二1、如图,已知四边形ABCD中,∠ABC=90°,∠ADC=90°,AB=6,CD=4,BC的延长线与AD的延长线交于点E.(1)若∠A=60°,求BC的长;BC=BE﹣CE=6﹣8(2)若sinA=,求AD的长.AD=AE﹣DE=10﹣=2、如图,在Rt△ABC和Rt△CDE中,AB与CE相交于点F,∠ACB=∠E=90°,∠A=30°,∠D=45°,BC=6,求CF的长.CF=18﹣63、如图,已知在△ABC中,AB=AC,tan∠B=2,BC=4,D为BC边的中点,点E在BC边的延长线上,且CE=BC,连接AE,F为线段AE的中点(1)求线段CF的长;CF=AB=(2)求∠CAE的正弦值.4、如图,在Rt△ABC中,∠C=90°,点D是AC边上一点,,且BC=6,AD=4.求cosA的值.cosA=5、如图,“中国海监50”正在南海海域A处巡逻,岛礁B上的中国海军发现点A在点B的正西方向上,岛礁C上的中国海军发现点A在点C的南偏东30°方向上,已知点C在点B的北偏西60°方向上,且B、C两地相距120海里.(1)求出此时点A到岛礁C的距离;40海里(2)若“中海监50”从A处沿AC方向向岛礁C驶去,当到达点A′时,测得点B在A′的南偏东75°的方向上,求此时“中国海监50”的航行距离.(注:结果保留根号)(60﹣20)海里练习一1、如图,在锐角三角形ABC中,AB=10,AC=2,sinB=.(1)求tanC;tanC===(2)求线段BC的长.BC=BD+CD=122、如图,已知∠B=90°,AB=2cm,BC=2cm,CD=3cm,AD=5cm,求四边形ABCD的面积.2+6(cm2)3、如图,AD是△ABC的中线,tanB=,cosC=,AC=.求:(1)BC的长;BC=BE+CE=4(2)sin∠ADC的值.sin∠ADC=4、某国发生8.1级强烈地震,我国积极组织抢险队赴地震灾区参与抢险工作,如图,某探测对在地面A、B两处均探测出建筑物下方C处由生命迹象,已知探测线与地面的夹角分别是25°和60°,且AB=4米,求该生命迹象所在位置C的深度.(结果精确到1米,参考数据:sin25°≈0.4,cos25°≈0,9,tan25°≈0.5,≈1.7)约为3米5、据调查,超速行驶是引发交通事故的主要原因之一,所以规定以下情境中的速度不得超过15m/s,在一条笔直公路BD的上方A处有一探测仪,如平面几何图,AD=24m,∠D=90°,第一次探测到一辆轿车从B点匀速向D点行驶,测得∠ABD=31°,2秒后到达C点,测得∠ACD=50°(tan31°≈0.6,tan50°≈1.2,结果精确到1m)(1)求B,C的距离.BC=BD﹣CD=40﹣20=20m(2)通过计算,判断此轿车是否超速.20÷2=10m/s<15m/s练习二1、如图,在Rt△ABC中,已知∠C=90°,,AC=8,D为线段BC上一点,并且CD=2.(1)求BD的值;BD=6﹣2=4(2)求cos∠DAC的值.cos∠DAC===2、如图,矩形ABCD的对角线AC、BD相交于点O,过点O作OE⊥AC交AD于E,若AB=6,AD=8,求sin∠OEA的值.sin∠OEA==3、已知:如图,在△ABC中,AB=AC=6,BC=4,AB的垂直平分线交AB于点E,交BC的延长线于点D.(1)求∠D的正弦值;sin∠D=sin∠BAH=(2)求点C到直线DE的距离.CM=CD=4、如图,大海中某灯塔P周围10海里范围内有暗礁,一艘海轮在点A处观察灯塔P在北偏东60°方向,该海轮向正东方向航行8海里到达点B处,这时观察灯塔P恰好在北偏东45°方向.如果海轮继续向正东方向航行,会有触礁的危险吗?试说明理由.(参考数据:≈1.73)AC≈10.92,∵10.92>10,∴海轮继续向正东方向航行,没有触礁的危险.5、号飞机的机翼形状如图,根据图示尺寸计算AC和AB的长度(精确到0.1米,≈1.41,≈1.73 ).AF=1.6m,则AB=2.89﹣1.6=1.29≈1.3(m),答:AC约为7.1米,BA约为1.3米.。

解直角三角形 试题及答案

解直角三角形  试题及答案

向东航行 30 分钟后到达 C处,发现灯塔 B在它的南偏东 15°方向,则此时货轮与灯塔 B的距离为
km.
图 K23-8
10、 如图 K23-9,在一笔直的沿湖道路上有 A,B两个游船码头,观光岛屿 C在码头 A北偏东 60°的方向,在码头 B北偏 西
45°的方向,AC=4 km.游客小张准备从观光岛屿 C乘船沿 CA回到码头 A或沿 CB回到码头 B,设开往码头 A,B的游船
∵∠CNP=46°,∴∠PNA=44°,
∴PA=PN·sin∠PNA=60×0.6947≈41.68(海里).
6【答案】25
如图,过点 B作 BE⊥AE于点 E,
∵坡度 i=1∶ 3,
∴tanA=1∶ 3= 3,∴3∠A=30°,
∵AB=50 m,∴BE=1AB=25(m)
.
2
∴他升高了 25 m.
∴BD=CD·tan37°≈27.2×0.75=20.4(海里).
�� 3
答:还需航行的距离 BD的长为 20.4 海里.
12【答案】解:如图,过点 C作 CD⊥AB于点 D,
设 BD为 x海里,
在 Rt△ACD中,∠DAC=45°,
∴AD=DC=(x+5)海里,
4
在 Rt△BCD中,由 tan53°=����
126
米.
5【答案】B
如图,过点 P作 PA⊥MN于点 A,
MN=30×2=60(海里),
∵∠MNC=90°,∠CNP=46°,
∴∠MNP=∠MNC+∠CNP=136°,
∵∠BMP=68°,
∴∠PMN=90°-∠BMP=22°,
∴∠MPN=180°-∠PMN-∠PNM=22°,

解直角三角形的典型例题十二

解直角三角形的典型例题十二

解直角三角形的典型例题十二
例 如图所示,华昌房地产投资集团准备在该市筹建一住宅小区,居民楼均为平顶条式,南北朝向,楼高统一为16m (16=AC m ),已知该地冬至正午时分太阳高度最低,影子最长,此时看太阳的仰角(ABC ∠)为32°.若设计时要求前后楼每层居民冬天都能在室内惬意地享受阳光,请问,你怎样设计?(已知6003.132cot ,6249.032tan =︒=︒,结果精确到0.1m )
解析 要使前后楼每层居民冬天都能在室内惬意地享受阳光,则以南楼的影子刚好落在北楼跟为合适,
故在直角三角形ABC 中,6.256003.11632cot ≈⨯=︒⨯=AC BC 米,
即要使两楼之间相距25.6米.
如果再告诉你一楼的窗户高2米,你还有更好的方案吗?。

解直角三角形的典型例题十

解直角三角形的典型例题十

解直角三角形的典型例题十
例 为了测量一个球的直径,今有若干根木棒可供使用,通过实验发现,若将球放在桌面上,再将一根长6厘米的木棒垂桌面而立,某一时刻,在斜射阳光的照射下,球与木棒的影长都是8厘米(如图所示),求球的直径.
分析 可以把光线看成是平行线束,AB FC //,球的影长8=CB cm ,木棒长6=AC cm ,显然球的直径CD EG =,根据勾股定理可求出AB ,这样又可求出B ∠的正弦值,故在Rt BCD ∆中可求出CD .
解 由题意可知cm 6,cm 8,===AC BC CD EG .
在Rt ABC ∆中,根据勾股定理,得
10862222=+=+=BC AC AB (cm ), 所以5
3106sin ===
AB AC B . 在Rt BCD ∆中,BC CD B =sin ,所以8.45
38sin =⨯=⋅=B BC CD (cm ). 所以球的直径8.4==CD EG cm . 说明 解决此类问题时,要注意观察、实践与想象.。

解直角三角形的典型例题

解直角三角形的典型例题

一、知识概述1、仰角、俯角仰角、俯角:视线与水平线所成的角中,视线在水平线上方的叫做仰角,在水平线下方的叫做俯角.如图所示.说明:仰角、俯角一定是水平线与视线的夹角,即从观察点引出的水平线与视线所夹的锐角.2、坡角和坡度坡角:坡面与水平面的夹角叫做坡角,用字母α表示.坡度(坡比):坡面的铅直高度h和水平宽度l的比叫做坡度,用字母i表示.则.如图所示说明:(1)坡角的正切等于坡度,坡角越大,坡度也越大,坡面越陡.(2)在解决实际问题时,遇到坡度、坡角的问题,常构造如图所示的直角三角形.3、象限角象限角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫象限角,如图中的目标方向线OA、OB、OC、OD的方向角分别表示北偏东30°,南偏东45°,北偏西60°,南偏西80°,如:东南方向,指的是南偏东45°角的方向上.如图所示.二、重点难点疑点突破1、怎样运用解直角三角形的方法解决实际问题在解决实际问题时,解直角三角形有着广泛的应用.我们要学会将千变万化的实际问题转化为数学问题来解决,具体地说,要求我们善于将某些实际问题中的数量关系归结为直角三角形中的元素(边、角)之间的关系,这样就可运用解直角三角形的方法了.一般有以下三个步骤:(1)审题,通过图形(题目没画出图形的,可自己画出示意图),弄清已知和未知;(2)找出有关的直角三角形,或通过作辅助线产生有关的直角三角形,把问题转化为解直角三角形的问题;(3)根据直角三角形元素(边、角)之间关系解有关的直角三角形.其中,找出有关的直角三角形是关键,具体方法是:(1)将实际问题转化为直角三角形中的数学问题;(2)作辅助线产生直角三角形,再把条件和问题转化到这个直角三角形中,使问题解决.2、在学习中应注意两个转化(1)把实际问题转化成数学问题这个转化分两个方面:一是将实际问题的图形转化为几何图形,画出正确的平面或截面示意图,并赋予字母;二是将已知条件转化成示意图中的边或角.(2)把数学问题转化成解直角三角形问题.如果示意图形不是直角三角形,可添加适当的辅助线,把它们分割成一些直角三角形和矩形,把实际问题转化为解直角三角形问题,把可解的直角三角形纳入基本类型,确定合适的边角关系,细心推理,按要求精确度作近似计算,最后写出答案并注明单位.三、典型例题讲解1、测量河宽例1、如图,河边有一条笔直的公路l,公路两侧是平坦的草地.在数学活动课上,老师要求测量河对岸B点到公路的距离,请你设计一个测量方案.要求:(1)列出你测量所使用的测量工具;(2)画出测量的示意图,写出测量的步骤;(3)用字母表示测得的数据,求出B点到公路的距离.分析:这是一个实际问题,要求B到CD的距离,可转化为直角三角形,然后在两个直角三角形中,可分别用含有AB的式子表示AC和AD,而AC+AD=m,可运用解方程的方法求出AB即可.解:(1)测角器、尺子;(2)测量示意图如下图所示;测量步骤:①在公路上取两点C,D,使∠BCD,∠BDC为锐角;②用测角器测出∠BCD=α,∠BDC=β;③用尺子测得CD的长,记为m米;④计算求值.(3)解:设B到CD的距离为x米,作BA⊥CD于点A,在△CAB中,x=CAtanα,点评:运用所学的解直角三角形的知识解决实际生活中的问题,要求我们要具备数学建模能力(即将实际问题转化为数学问题).2、仰角、俯角问题例2、为申办2010年冬奥会,须改变哈尔滨市的交通状况.在大直街拓宽工程中,要伐掉一棵树AB.在地面上事先划定以B为圆心、半径与AB等长的圆形危险区.现在某工人站在离B点3米远的D处测得树的顶端A点的仰角为60°,树的底部B的俯角为30°(如图).问距离B点8米远的保护物是否在危险区内?分析:解决测量问题要明确仰角、俯角、视角、坡度、坡角等名词术语.要考查距离B点8米远的保护物是否在危险区内,关键的一点是要测算树AB的高度.解:过点C作CE⊥AB,垂足为E.在Rt△CBE中,在Rt△CAE中,故AB=AE+BE=≈4×1.73=6.92(米)<8(米).因此可判断该保护物不在危险区内.3、坡角、坡度(坡比)例3、如图,一水坝横断面为等腰梯形ABCD,斜坡AB的坡度为,坡面AB的水平宽度为上底宽AD为4m,求坡角B,坝高AE和坝底宽BC各是多少?分析:首先将实际问题转化为数学问题,如图所示,实际上已知求∠B、AE、BC.此题实质转化为解直角三角形的问题.点评:(1)解应用题时,解题过程中可以不写各数量的单位,但最后作答时务必写清单位名称.(2)应用问题尽管题型千变万化,但关键是设法化归为解直角三角形问题,必要时应添加辅助线,构造出直角三角形,梯形也是通过作底边的高线来构造直角三角形.(3)本题主要应用坡度是坡角的正切函数而求出坡角,运用坡度的概念求出梯形高,运用等腰梯形性质求出底边.4、象限角例4、如图,一轮船自西向东航行,在A处测得某岛C,在北偏东60°的方向上,船前进8海里后到达B,再测C岛,在北偏东30°的方向上,问船再前进多少海里与C岛最近?最近距离是多少?分析:将实际问题转化为数学问题,并构造出与实际问题有关的直角三角形,如图所示.船沿AB方向继续前进至D处与C岛最近,此问题实质就是已知∠CAB=90°-60°=30°,∠ABC=90°+30°=120°,AB=8海里,求BD和CD的解直角三角形问题.解:根据题设可知△ABC中,∠CAB=30°,∠ABC=120°,∴∠ACB=180°-30°-120°=30°,AB=BC=8,作CD⊥AB于D.∴最近距离即为C到AB所在直线的垂线段CD的长度.在Rt△CBD中,BC=8,∠CBD=60°,点评:根据题意准确画出示意图是解这类题的前提和保障.5、开放探究题例5、(荆州市)某海滨浴场的沿岸可以看作直线,如图,1号救生员在岸边A点看到海中的B点有人求救,便立即向前跑300米到离B点最近的D点,再跳入海中游到B点救助;若每位救生员在岸上跑步的速度都是6米/秒,在水中游泳的速度都是2米/秒,∠BAD=45°.(1)请问1号救生员的做法是否合理?(2)若2号救生员从A跑到C,再跳入海中游到B点救助,且∠BCD=65°,请问谁先到达点B?(所有数据精确到0.1,sin65°≈0.9,cos65°≈0.4,)分析:(1)比较1号救生员从点A直接游到点B所用时间与从点A跑到点D再游到点B的时间即可作出判断.(2)分别计算出1号救生员、2号救生员所用时间,再作判断.点评:掌握探究题的探究方法非常重要,本题中救生员赶到点B的时间是我们探究的核心问题,如何准确求出救生员赶到点B所用时间是解决本题的关键.。

解直角三角形4个例题

解直角三角形4个例题

解:过C 作CD ⊥AB 于D,则∠CDB =∠CDA=900∵∠B =600 ∠BCA =750∴∠A =1800-∠B-∠BCA=450BC = ∴在Rt △ADC中,0sin 45CD CA == ∴CD=2∴在Rt △BDC 中,02sin60CD BC BC==3BC = 方法总结:通过作高将非直角三角形的问题转化成直角三角形的问题。

变式1:如图,已知在△ABC 中,∠B =300,∠C=1350,求BC 的长. 解:过A 作AD ⊥BC,交BC 的延长线于D,则∠D=900∵∠BCA =1350∴∠ACD =1800-∠BCA=450∴ 在Rt △ADC 中,0sin 45AD AC ==∴AD=2 CD=2 在Rt △BDA 中,∠B =30020t =+÷=∴ 02tan 30AD BD BD== ∴BD =∴BC=BD-BC=方法总结:在解直角三角形的问题中,当所给的线段不是直角三角形的边时,通常用方程思想来解答。

如图所示,一天灰太狼在自家城堡顶部A 处用望眼镜观察到懒羊羊在草原B 处睡觉,然后它下到城堡的C 处,测得B 处的俯角为450,并立刻驾着自己新研发的飞行器沿着CB 的方向去抓懒羊羊,已知AC =40米,∠A=300,灰太狼的速度为20米/秒,问几秒后能抓到懒羊羊?解:过B 作BD ⊥AC,交AC 的延长线于D,则∠D=900由题知∠BCD =450∴∠CBD =∠BCD=450∴CD =BD ,设CD =BD =x,则BC =在Rt △BDA 中,∠A =3000tan3040BC x AD x ==+40x x =+∴20x =BC =+=∴20t =÷=+。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《解直角三角形》典型例题
例1 在Rt △ABC 中,∠C=90°,∠B=60°,a=4,解这个三角形. 分析 本题实际上是要求∠A 、b 、c 的值.可根据直角三角形中各元素间的关系解决. 解 (1) ;
(2)由a
b
B =
tan ,知 ;
(3)由c a B =
cos ,知860cos 4cos =︒
==B a c . 说明 此题还可用其他方法求b 和c .
例 2在Rt △ABC 中, ∠C=90°,∠A=30°,3=b ,解这个三角形. 解法一 ∵ ∴
设 ,则
由勾股定理,得
∴ .


解法二 13
3
330tan =⨯
=︒=b a
说明 本题考查含特殊角的直角三角形的解法,它可以用目前所学的解直角三角形的方法,也可以用以前学的性质解题. 例 3 设 中,
于D ,若
,解三
角形ABC .
分析“解三角形ABC”就是求出的全部未知元素.本题CD不是的边,所以应先从Rt入手.
解在Rt中,有:
在Rt中,有
说明(1)应熟练使用三角函数基本关系式的变形,如:
(2)平面几何中有关直角三角形的定理也可以结合使用,本例中
“”就是利用“对30°角的直角边等于斜边的一半”这一定理.事实上,还可以用面积公式求出AB的值:
所以解直角三角形问题,应开阔思路,运用多种工具.
例4在中,,求.
分析(1)求三角形的面积一方面可以根据面积公式求出底和底上的高的长,也可以根据其中规则面积的和或差;
(2)不是直角三角形,可构造直角三角形求解.
解如图所示,作交CB的延长线于H,于是在Rt△ACH中,有,且有

在中,,且

∴;
于是,有

则有
说明还可以这样求:
例5 如图,在电线杆上离地面高度5m 的C 点处引两根拉线固定电线杆,一根拉线AC 和地面成60°角,另一根拉线BC 和地面成45°角.求两根拉线的总长度(结果用带根号的数的形式表示).
分析 分别在两个直角三角形ADC 和BDC 中,利用正弦函数的定义,求出AC 和BC .
解: 在Rt △ADC 中,33
102
3
560sin =
=︒=
DC AC 在Rt △BDC 中,22
102
2
545sin =
=︒=
DC BC
说明 本题考查正弦的定义,对于锐角三角函数的定义,要熟练掌握.。

相关文档
最新文档