电厂机盘车跳闸事件分析报告
电厂机跳盘车事件分析报告

电厂#1机跳盘车事件分析报告1、事件经过(1)9月16日0:50时,运行丁值许可燃2005-09-44工作票开工,内容为1#机空冷气漏水处理,安措内容有停止冷却水泵并断电,断开启动马达电源开关。
停止冷却水泵前滑油母管温度40℃。
之后值班员没有对机组进行仔细检查,并且在三控燃机操纵台上没有仔细确认报警内容情况下复归了MarkV报警。
(2)4:03时,值班员检查发现1#机盘车已停运,查看MarkV有以下报警:2:10时发“顶轴油压力低”报警、2:21时发“零转速”报警。
当时滑油母管温度72℃,滑油压力5.8bar,顶轴油压力#4瓦135MPa、5#瓦58MPa。
(3)运行人员根据上述现象判断是由于滑油温度高导致“顶轴油压力低”报警,由于顶轴油压力低使程序闭锁盘车运行。
立即就地通知检修暂停工作,恢复安措,并启动冷却水泵,降低滑油温度。
(4)4:25时,将L63QB1L强制为0,将TMGV调至58.60、60.20均盘不动转子。
此时TTWS2AO1/2:232/232℃(MAX)。
(5)4:40时,滑油温度降至50℃时,手动停88QB1后再重新启动,顶轴油压力低报警复归,解除强制。
顶轴油压力为#4瓦116bar、#5瓦78bar。
(6)在5:00、5:30、6:00、6:30、7:00时,将TMGV调至62.50,发启动令后均不能盘动转子。
7:30时启动仍不能启动成功。
将滑油温度由54℃调至45℃。
7:45时,再启动,启动成功。
TNH为5.80%时立即发停机令。
(7)在机组惰走时,对压气机缸,透平缸,发电机,励磁机听音均正常。
将盘车改连续运行。
运行按照运行规程规定采取连续低速盘车、高盘及点火等相关措施后,于11:27时机组并网运行。
本次故障历时3.45小时。
2、原因分析(1)检修工作时,将燃机的冷却水系统停运,使得滑油温度上升到72℃,导致顶轴油压力下降,顶轴油压力低开关动作,闭锁盘车运行。
(2)运行值班员在许可检修工作票时,对于工作票中执行安措后所带来相关参数的影响考虑不周,导致滑油温度高。
电厂#2机跳机事件分析报告

As long as you do things with integrity, don't ask about success or failure.模板参考(页眉可删)电厂#2机跳机事件分析报告1、事件经过(1)1月3日2:48时,#2机运行中值班员突然听到机组声音异常,立即查看DCS发现1102开关显示已跳闸,有主开关跳闸、1102事故跳闸报警;高、低旁路自动开启;DCS上部分参数变成紫色,转速信号紫色、且为1995RPM不变;DEH 画面上自动主汽门、调门、补汽主汽门、补汽调门仍为满负荷时的开度状态。
(2)现场查看机头转速表指示2750RPM左右且仍在下降;查看DCS滑油画面应急油泵已自启;DCS上交流滑油泵及调速油泵已由自动状态变为手动后,立即在DCS上启动交流滑油泵及调速油泵。
(3)在观察到现场机组转速继续下降的情况下,运行人员当时认为主汽门已关闭,但发现发电机仍有励磁电流、电压,即在DCS上执行逆变(未解除灭磁开关联跳压板),DCS即发出分闸故障报警,到现场检查灭磁保护屏有QF后备分闸灯亮,复位灭磁开关后,QF后备分闸灯灭,QF合闸灯亮。
(4)事发第一时间运行人员即通知了在现场的热控检修检查处理:检查电子间有烧焦味;#7PCU模件柜MFP卡件中的LED灯指示红色,停止工作;子模件也出现POWER FALT指示灯报警;工程师站、SERVER11、#7模件柜的通讯卡件均停止工作;各电源卡件IPSYS01面板上LED故障灯亮;电源监视模件IPMON01中有PFI故障报警。
(5)热控人员在经值长同意,重新对#7PCU模件柜电源模件部分进行了断送电操作后,PFI故障消失,各MFP卡件、通讯模件自检成功,运行正常;操作员站的数据也逐渐恢复。
(6)检查保护动作及报警记录(重新引导#7PCU柜后记录):发变组保护柜有主汽门关闭、灭磁开关联跳、PT断线、逆功率T1、逆功率T2等报警;DCS报警有1102事故跳闸、发电机逆功率信号(t1);发电机逆功率保护(全停)、汽机主汽门关闭、OPC动作等报警。
年度故障跳闸事件总结(3篇)

第1篇一、前言随着我国电力工业的快速发展,电力系统的规模和复杂程度日益增加,故障跳闸事件也随之增多。
为了提高电力系统的安全稳定运行,降低故障跳闸对电力供应的影响,本总结对2023年度发生的故障跳闸事件进行了梳理和分析,旨在总结经验教训,为今后的电力系统运行和故障处理提供参考。
二、2023年度故障跳闸事件概述2023年度,我国电力系统共发生各类故障跳闸事件X起,其中主变压器故障跳闸X 起,线路故障跳闸X起,继电保护装置故障跳闸X起,其他故障跳闸X起。
以下将对部分典型故障跳闸事件进行详细分析。
三、典型故障跳闸事件分析1. 某热电厂2号主变冷却器全停机组跳闸事件(1)事件经过:2023年10月8日,某热电厂2号主变冷却器两路电源同时发生接地故障,导致2号主变冷却器全停,机组跳闸。
(2)原因分析:直接原因在于2号主变冷却器两路电源同时发生接地故障,间接原因包括:1)热网加热器等涉水系统检修时未采取有效措施,导致2号机2C热网循环水泵出口电动门电气部分进水,使B相发生接地故障;2)2号炉渣浆池搅拌器电源冗余配置,双电源切换装置闭锁机构被违规拆除,两路电源处于同时送电状态,导致2号机厂用380V系统A、B段电源合环;3)运行人员未在保护规定的60分钟内恢复2号主变冷却器运行。
(3)教训:加强设备检修管理,严格执行操作规程;加强人员培训,提高运行人员对主变冷却器保护动作逻辑的掌握程度。
2. 某电厂1号机组运行凝泵故障、备用凝泵联启后汽化导致机组跳闸事件(1)事件经过:2017年2月7日,某电厂1号机组因A凝泵机械密封损坏,B凝泵入口吸入空气,造成凝泵出力降低,除氧器水位低保护动作跳二台给水泵,触发锅炉MFT保护,机组跳闸。
(2)原因分析:A凝泵机械密封损坏导致凝泵出力降低,B凝泵入口吸入空气导致凝泵联启后汽化,最终触发除氧器水位低保护动作,导致机组跳闸。
(3)教训:加强设备巡检和维护,及时发现并处理设备缺陷;提高运行人员对设备异常情况的判断和处理能力。
跳闸分析报告

跳闸分析报告引言本文将对跳闸事件进行详细分析,并提供一个逐步思考的方法来解决该问题。
通过分析跳闸事件的原因和影响,我们将能够制定出相应的解决方案,以确保电力系统的稳定运行。
事件概述跳闸是指电力系统突然中断供电的情况,可能导致停电、设备损坏或人员伤亡等不良后果。
跳闸事件通常由多种因素引起,包括设备故障、过载、短路等。
分析步骤步骤一:事件回顾首先,我们需要回顾跳闸事件的具体情况。
收集相关数据和记录,包括跳闸时间、地点、影响范围等。
这些信息将有助于我们更好地了解事件的背景和整体情况。
步骤二:数据分析在这一步骤中,我们需要分析跳闸事件发生时的数据。
这包括电力系统的负载情况、电流、电压、频率等。
通过对这些数据的分析,我们可以找出事件发生的可能原因和故障点。
步骤三:设备检查在这一步中,我们需要对可能存在故障的设备进行检查和测试。
这包括变压器、开关、保护装置等。
通过仔细检查设备的状态和性能,我们可以找出可能存在的问题,并确定是否需要进行维修或更换。
步骤四:电力系统拓扑分析电力系统拓扑分析可以帮助我们更好地理解整个电力系统的结构和运行方式。
通过分析电力系统的复杂网络关系,我们可以确定可能的故障路径,找出可能存在的漏洞,并采取相应的措施来加强电力系统的稳定性。
步骤五:故障模拟和测试在这一步中,我们可以使用故障模拟和测试的方法来模拟跳闸事件,并验证我们的解决方案。
通过模拟和测试,我们可以确定解决方案的有效性,并进行必要的调整和改进。
步骤六:解决方案制定根据前面的分析和测试结果,我们可以制定出相应的解决方案。
这包括改进设备的维护和保养,更新保护装置,加强电力系统的监控和控制等。
解决方案应该是全面的、可行的,并能够确保电力系统的稳定运行。
结论通过逐步思考的方法,我们可以对跳闸事件进行全面的分析,并制定出相应的解决方案。
这将有助于提高电力系统的可靠性和安全性,保障供电的稳定性。
在未来,我们应该继续加强对电力系统的监测和维护,以应对可能出现的其他问题和故障。
电力故障跳闸事故分析报告

• 引言 • 事故原因分析 • 事故影响 • 事故处理和恢复 • 预防措施和建议 • 结论
01 引言
事故概述
事故类型
电力故障跳闸事故
事故影响范围
整个城市及周边地区
事故原因初步判断
设备老化、恶劣天气、人为操作失误等
事故发生时间和地点
时间
XXXX年XX月XX日晚上XX点至XX点
01
02
03
04
05
加强设备巡检和 维护
定期对电力设备进行全面 检查和维护,确保设备处 于良好状态。
提高操作人员技 能和素质
加强操作人员的培训和考 核,确保其具备专业知识 和技能。
建立应急预案
制定电力故障跳闸事故应 急预案,明确应急处置流 程和责任分工。
加强与相关部门 的沟通与…
提高公众安全意 识
与政府部门、企事业单位 等加强沟通与协作,共同 应对电力故障跳闸事故。
对电力设备进行定期检查,确保设备处于良好状态,及时发现并 处理潜在故障。
及时维修和更换损坏部件
一旦发现设备部件损坏,应及时进行维修或更换,防止故障扩大。
建立设备维护档案
对设备维护和检修过程进行记录,以便对设备状况进行跟踪和管理。
提高人员素质和操作技能
培训操作人员
定期对操作人员进行培 训,提高他们的专业技 能和安全意识,确保他 们能够正确、安全地操 作电力设备。
电网稳定性下降
跳闸可能导致电网负荷转移,使其他 线路或设备过载,进而影响整个电网 的稳定性。
对用户的影响
生产生活受阻
电力故障跳闸可能导致企业生产 停顿、居民生活不便。
经济损失
由于停电导致的生产损失、设备 损坏以及生活不便可能带来一定
电厂因系统故障引发机跳闸事件分析报告

电厂因系统故障引发机跳闸事件分析报告集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-电厂因系统故障引发#3、#4号机跳闸事件分析报告1、事件经过(1)2005年5月19日,天气较恶劣,大雨且雷电频繁。
12:59时,220kV系统冲击,#3、#4机组相继跳闸。
(2)经运行人员检查,#3机组保护动作情况如下:87GSTATORDIFF定子差动动作;TRIPFROMEX2100励磁联跳;52LTRIPPED2203出口开关跳闸;41EXTRIPPED跳励磁;TURIBINETRIPPED跳燃机。
#4机组保护动作情况如下:灭磁联跳,汽机联跳。
线路保护动作情况如下:220kV南逸甲、乙线都发出距离启动、零序启动、纵联差动启动、纵联保护发讯信号。
(3)故障发生后,当值值长立即向调度汇报跳机情况,并询问系统情况,答复为110kV逸中线、仙中线跳闸,且系统多台机组跳闸;同时,值长将事故情况汇报厂领导,厂领导指示#1机水洗完毕后立即向调度申请转备用。
(4)此后,厂部成立事故调查小组,组织有关人员对#3、#4机组和变压器进行了全面细致的外观检查,除#3主变、220kV1M、2M母线PT、220kV南逸甲、乙线B相避雷器全部动作外,未发现其它异常问题。
(5)因#3发电机差动保护动作,电气检修人员将该发电机定子与主变连接线和中性点连接线全部拆开,对发电机定子绕组进行了三相对地、相间绝缘、泄漏电流的测试工作,测试结果正常,说明#3发电机本身没有故障,可以投入运行。
(6)继电人员对各保护动作情况进行了检查,对发电机差动保护进行了检查测试,结果表明保护装置校验动作正确。
(7)继电人员提取故障录波器录制的波形进了分析,结果是:12:59:056时,系统故障:A、C两相相间接地短路,南逸甲、乙线电流突增,线路保护纵差、零序启动。
12:59:057时,A、C两相断路故障点切除,电网频率增加至大约53Hz,#3、#4机负荷突降至各5MW左右。
电厂发电机失磁保护动作跳闸事件分析报告

电厂发电机失磁保护动作跳闸事件分析报告一、事件背景在电厂的发电机组运行过程中,发生了失磁保护动作跳闸事件。
事件发生时,发电机组处于满负荷状态,而电厂正处于高负荷时段,因此事件对电厂的正常运行产生了较大的影响。
二、事件描述1.事件发生时间:2024年6月20日上午10时30分。
2.事件过程:在发电机组运行过程中,突然发生了失磁现象,发电机输出电压骤降。
失磁保护系统在检测到电压异常后迅速作出保护动作,将发电机组跳闸停机。
3.事件影响:因为发电机组是电厂的主要电源设备之一,事件导致电厂停机,造成了较长时间的停电,给电厂的正常运行带来了严重影响。
三、事件原因分析经过对事件进行分析,得出以下潜在原因:1.发电机励磁系统故障:可能是励磁系统的部件或元器件出现故障,导致失磁现象。
这可能是由于设备老化、过载等原因引起。
2.励磁控制系统故障:可能是励磁控制系统的逻辑错误或信号传输故障,导致失磁保护系统误判电压异常,进而触发了跳闸动作。
3.动磁极接触问题:可能是动磁极与转子之间的接触出现问题,导致励磁电流无法传输到转子,从而导致发电机失磁。
四、事件处理过程1.事件发生后,电厂迅速启动备用电源,恢复了电厂的供电能力。
2.对失磁保护系统进行检查和维修,确认系统功能正常。
3.对发电机励磁系统进行全面检查,查明励磁设备和控制系统的故障原因。
4.对励磁设备进行维修或更换新部件,恢复励磁系统的正常工作。
5.完善励磁控制系统的逻辑设计和信号传输路径,减少误判的可能性。
6.对动磁极和转子接触处进行检查和维修,确保接触良好,保证励磁电流能够正常传输。
五、事件教训和改进措施1.故障预防:加强对发电机的定期检修和维护工作,及时发现并消除潜在故障,降低失磁风险。
2.技术升级:对励磁设备和励磁控制系统进行技术升级,引入可靠性更高的设备和系统。
3.人员培训:加强对操作人员的培训,提高其对电力设备运行和故障处理的技能,提高对异常情况的判断和处理能力。
配电室开关跳闸事件事件分析报告书

配电室开关跳闸事件事件分析报告书配电室开关跳闸事件是企业生产运营中常见的事故之一。
每当发生此类事件,都会对企业的生产秩序和生产安全造成极大的影响,因此需要对事件进行分析并从中总结经验,不断提升企业安全生产的水平。
事件经过:2021年8月15日,某公司生产车间的一台机器突然停机,工人检查后发现是该机器所在的配电室的开关跳闸了。
经过初步排查,工作人员发现该配电室内的两个开关同时跳闸,而其他电器设备仍正常运行,因此怀疑是该配电室电路问题。
随即,负责维修该配电室的电工前来查看,发现两个开关都没有损坏,也没有发现任何短路和漏电的情况。
电工通过检查及时找到了问题所在:原来是组成该配电室环网的两台变压器的其中一台出现了故障,导致了该配电室的两个开关同时跳闸。
事件产生的影响:1. 生产工艺的中断。
该车间的机器停机,生产工艺中断,造成了生产的直接损失;2. 业务数据错乱。
造成了生产数据上的不准确,对数据行业造成了损失;3. 影响公司的声誉。
企业为高度的质量,服务水平,企业信誉和其它方面的要求引起大众的一种认识;分析与总结:1. 企业的安全生产责任没有得到充分落实。
企业要重视安全生产,增强对安全生产责任的认识,落实安全生产责任制,切实加强安全教育。
2. 设备的维护保养问题。
企业应加强设备的维护保养,定期检查设备的安全性能,消除安全隐患,保障生产设备的安全稳定运行。
3. 漏洞问题的解决。
企业要建立完善的事故预警机制,提高识别和排除安全隐患的能力,加强对关键设备的监控和检查,提高解决新问题、新情况的能力。
防范措施:1. 对企业开展全方位的安全宣传,提高企业员工和公众的安全意识,让安全成为企业每个人的生命线。
2. 对于重点设备和电缆线路进行常规检查,保证设备和电线路顺畅运转,防止出现故障。
3. 严格落实生产操作规程,确保生产作业安全可靠。
4. 增强员工安全意识,参与员工安全教育培训并培育员工安全文化。
5. 加强设备诊断、预防与维修工作,及时检查工作,保证设备安全性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电厂机盘车跳闸事件分
析报告
集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-
电厂#1机盘车跳闸事件分析报告1、事件经过
(1)2005年5月31日00:00时,#1燃机盘车正常运行,环境温度33度,转速128RPM,LTTH50.5度,88BT-1、2、88VG-1、2均断电位,
88QA、88QV、88QB-2、88WC-1运行,油箱负压0.7kPa,未发现异常。
(2)01:24时,主控室#1机上发出报警,现场检查88CR转速变0,
88QA、88QB、88QV运行正常,油箱负压0.7KPA,轮机间及辅机间的门均关闭,88BT-1、2及88VG-1、2均断电,轴承金属温度正常,轮机间最高温度253度,TMGV67.7度,QAP5.8BAR,QGP1.17BAR,厂用电电压、电流正常,但是试启高盘未成功。
此后检查发现88BT-2全关,88BT-1的出口挡板未全关,有20度左右的开度。
考虑到轮机间温度较高,有可能产生了刮缸,将88TG拉至检修位,强制L62CD为“1”,将其静置,白班再做处理。
(3)MARKV报警如下:
01:23:47COOLDOWNTROUBLE
01:24:06HPSPEED-ZEROSPEED
01:24:06CRANKINGMOTORSTATUS
01:24:36TURBSHFTFAILURETOBREAKTUBINEAWAY
01:24:36TURBINESHUTDOWN
从报警分析,在燃机转速为0后,88CR自动启动,但大轴未转动,启转失败;另外从前两个报警可以看出,燃机从60rpm到0rpm只用了49秒的时间(盘车故障这个报警是当燃机在盘车状态下,转速降到了2%以下延时30秒才出现,从报警到转速为0rpm是19秒,加上30秒),故分析是主机动静部分产生了摩擦,造成盘车停运。
2、原因分析
经过分析,具体原因为燃机本体由于冷却不均造成动、静部件间隙过小,产生刮缸现象,使盘车停止运行。
3、防范措施
(1)燃机停机后盘车运行时,运行人员必须认真监视各主要参数并及时进行调整。
(2)制定燃机停机盘车投入运行时各重要参数记录表,运行人员必须每30分钟记录一次,记录到缸温180℃;缸温180℃后,每小时记录一次,记到140℃为止。
期间,运行人员要严密监视盘车转速,若燃机就地值班员外出操作或巡视时应通知主控值班员代监视。
(3)在燃机热态情况下(缸温大于140℃),必须把轮机间的门关好,并尽量减少开轮机间门的次数,并随时关好关紧。
(4)请检修人员重新测量大轴顶起高度,确认大轴是否满足要求,并将数据和结果提交运行人员。
(5)请热控人员复检顶轴压力开关,检测各定值是否正常。
(6)检修人员要尽快将#1机88BT-1出口挡板处理好,避免停机后冷空气进入轮机内。
(7)请热控人员要增加盘车转速低到95转/分的报警信号。
(8)尽快配齐钳形电流表,运行人员在停机盘车投入运行后,应立即测盘车电机电流,并进行记录,此后每半小时进行一次测量。