23.三角形中的线段计算,几何证明以及面积计算

合集下载

《三角形的面积》数学ppt课件

《三角形的面积》数学ppt课件

平行四边形的面积是其相邻两边之积,而三角形的面积是平行四边形面
积的一半,因为三角形占据了平行四边形的一半空间。
03
推导公式
同样设三角形底边长为a,高为h,则三角形面积S = 1/2 * a * h。
两者方法比较与联系
比较
矩形法和平行四边形法都是通过构造一个与三角形 相邻且等高的图形来推导三角形面积公式。两种方 法在构造图形和分析关系上略有不同,但最终得出 的公式是一致的。
直角三角形性质
有一个角为90°;勾股定 理(直角三角形的两条直 角边的平方和等于斜边的 平方)。
等边三角形性质
三边相等,三个角都是 60°;三线合一(每条边 上的中线、高线和所对角 的平分线互相重合)。
02
三角形面积计算公式推导
Chapter
矩形法推导三角形面积公式
构造矩形
推导公式
在三角形的一边上作一个与之相邻且 等高的矩形。
实例演示:如何减小误差
实例一
01
通过多次测量取平均值的方法,减小测量误差对三角形边长和
角度的影响。
实例二
02
针对已知三边长的三角形,采用海伦公式进行精确计算,避免
使用其他近似公式带来的误差。
实例三
03
在进行数值计算时,增加有效数字位数,例如使用双精度浮点
数进行计算,以减小舍入误差对计算结果的影响。
联系
两种方法都利用了“等底等高”的原理,即两个图 形如果底边相等且高相等,则它们的面积之比等于 其对应的高之比。这也是三角形面积公式推导的关 键所在。
03
具体应用:求解不同类型三角 形面积
Chapter
已知两边及夹角求面积
公式介绍
S = 1/2 * a * b * sinC,其中a、 b为已知两边长度,C为两边夹角

三角形面积公式的八种形式,坐标面积公式、向量面积公式推导证明

三角形面积公式的八种形式,坐标面积公式、向量面积公式推导证明

三角形面积公式的八种形式,坐标面积公式、向量面积公式推导证明摘要:1.三角形面积公式概述2.坐标面积公式的推导证明3.向量面积公式的推导证明4.其他六种三角形面积公式的推导证明5.总结与实用技巧正文:【提纲】1.三角形面积公式概述三角形面积公式是几何学中的基本公式之一,它可以用于计算任意三角形的面积。

常见的三角形面积公式有三种:底边高的一半、海伦公式和三角形分割面积公式。

这三种公式在不同的应用场景中具有不同的优势,下面我们将分别进行介绍。

2.坐标面积公式的推导证明坐标面积公式是根据向量叉乘得到的。

设三角形ABC的顶点坐标分别为A(x1, y1),B(x2, y2),C(x3, y3),则三角形的坐标面积S可以表示为:S = 1/2 * |(AB × AC)|其中,AB和AC分别为向量AB和向量AC,×表示向量叉乘。

通过坐标面积公式,我们可以直接计算出三角形的面积,从而避免使用复杂数学计算。

3.向量面积公式的推导证明向量面积公式是基于向量的模长和夹角得到的。

设三角形ABC的边长分别为a、b、c,夹角A、B、C分别为θ、φ、ψ,则三角形的面积S可以表示为:S = 1/2 * absin(θ + φ + ψ)其中,absin表示绝对值sin,θ、φ、ψ分别为三角形ABC的夹角。

通过向量面积公式,我们可以方便地计算出三角形的面积,尤其是在已知三角形的三边长度和夹角的情况下。

4.其他六种三角形面积公式的推导证明除了上述两种常见的三角形面积公式外,还有六种常见的三角形面积公式,分别为:(1)Heron公式(海伦公式):S = √(p(p-a)(p-b)(p-c))其中,p表示半周长,a、b、c分别为三角形ABC的边长。

(2)底边高的一半公式:S = 1/2 * b * h其中,b表示三角形的底边长,h表示底边上的高。

(3)三角形分割面积公式:S = 1/2 * (a + b + c) * h其中,a、b、c分别为三角形ABC的边长,h表示三角形的高。

人教新课标A版必修5第一章解三角形1.2第2课时 三角形中的几何计算课件

人教新课标A版必修5第一章解三角形1.2第2课时 三角形中的几何计算课件


3sinA+π6≤

30<A<
3
.
当A=π3时,即△ABC为等边三角形时取等号,
所以sin A+sin B的最大值为 3.
题点四:多边形面积问题 4.已知圆内接四边形ABCD的边长AB=2,BC=6,CD=DA
=4,求四边形ABCD的面积S. 解:如图,连接BD,则S=S△ABD+S△CBD =12AB·ADsin A+12BC·CDsin C. ∵A+C=180°,∴sin A=sin C, ∴S=12sin A(AB·AD+BC·CD)=16sin A. 在△ABD中,由余弦定理得
(2)求sin A+sin B的最大值. 解:(1)由题意可知
1 2absin
C=
43×2abcos
C.
所以tan C= 3.
因为0<C<π,所以C=π3.
(2)由(1)知sin A+sin B=sin A+sinπ-A-π3
=sin A+sin23π-A
=sin
A+
ห้องสมุดไป่ตู้
3 2 cos
A+12sin
A
(√ )
(2)三角形中已知三边无法求其面积
(×)
(3)在三角形中已知两边和一角就能求三角形的面积 ( √ ) 解析:(1)正确,S=12absin C适合求任意三角形的面积.
(2)错误.已知三边可利用余弦定理求角的余弦值,再求得正
弦值,进而求面积.
(3)正确.已知两边和两边的夹角可直接求得面积,已知两边
=a2-c2 b2
=左边,
所以a2-c2 b2=sinsiAn-CB.
与三角形有关的综合问题 题点一:与三角形面积有关的综合问题 1.在△ABC 中,角 A,B,C 的对边分别为 a,b,c.

三角形的计算与证明

三角形的计算与证明

三角形的计算与证明三角形是几何学中最基本的图形之一,在数学和工程领域中有着广泛的应用。

本文将探讨三角形的计算和证明,包括周长、面积、角度以及一些相关定理和性质。

一、周长的计算一个三角形的周长是指其三条边的长度之和。

假设三角形的三条边分别为a、b和c,则周长P可以表示为P = a + b + c。

在实际计算中,如果我们已知三角形的三个顶点的坐标,可以使用距离公式来计算两点之间的距离。

例如,设三角形的顶点分别为A(x1,y1)、B(x2, y2)和C(x3, y3),则边a的长度为AB的距离,边b的长度为BC的距离,边c的长度为AC的距离。

根据距离公式,我们可以计算出边a、b和c的长度,并将其求和得到周长P。

二、面积的计算三角形的面积是指三角形所围成的空间大小。

若三角形的底边为a,高为h,则其面积S可以表示为S = (1/2) * a * h。

在实际计算中,如果我们已知三角形的底边长度和对应的高,可以直接使用上述公式计算面积。

同时,如果我们知道三角形的三个顶点的坐标,可以使用行列式来计算面积。

设三角形的顶点分别为A(x1,y1)、B(x2, y2)和C(x3, y3),则三角形的面积S可以表示为S = (1/2) *|x1(y2-y3) + x2(y3-y1) + x3(y1-y2)|。

三、角度的计算三角形的角度是指三条边之间的夹角。

常见的角度包括内角(指三角形内部的角度)和外角(指三角形外部与之相对的角度)。

(1)内角的计算:对于任意一个三角形ABC,其三个内角A、B和C满足A + B + C = 180°。

因此,可以通过已知两个内角来计算第三个内角。

例如,如果已知角A为60°,角B为70°,则角C = 180° - 60°- 70° = 50°。

(2)外角的计算:对于任意一个三角形ABC,其三个内角的每个外角都等于其相邻两个内角之和。

八年级数学竞赛例题专题讲解23:面积的计算 含答案

八年级数学竞赛例题专题讲解23:面积的计算 含答案

专题23 面积的计算○阅 ○读 ○与 ○思 ○考计算图形的面积是几何问题中一种重要题型,计算图形的面积必须掌握如下与面积有关的重要知识: 1.常见图形的面积公式;2.等积定理:等底等高的两个三角形面积相等; 3.等比定理:(1) 同底(或等底)的两个三角形面积之比等于等于对应高之比;同高(或等高)的两个三角形面积之比等于等于对应底之比.(2) 相似三角形的面积之比等于对应线段之比的平方. 熟悉下列基本图形、基本结论:例 题 与 求 解【例1】如图,△ABC 内三个三角形的面积分别为5,8,10,四边形AEFD 的面积为x ,则x =________.(黄冈市竞赛试题)解题思路:图中有多对小三角形共高,所以可将面积比转化为线段之比作为解题突破口.【例2】如图,在△ABC 中,已知BD 和CE 分别是两边上的中线,并且BD ⊥CE ,BD =4,CE =6,那么△ABC 的面积等于 ( ) (全国初中数学联赛)A .12B .14C .16D .18解题思路:由中点想到三角形中位线,这样△ABC 与四边形BCDE 面积存在一定的关系.例1图C【例3】如图,依次延长四边形ABCD 的边AB ,BC ,CD ,DA 至E ,F ,G ,H ,使BE AB =CF BC =DG CD =AHDA =m ,若S 四边形EFGH =2S 四边形ABCD ,求m 的值.解题思路:添加辅助线将四边形分割成三角形,充分找出图形面积比与线段比之间的关系,建立关于m 的方程.【例4】如图,P ,Q 是矩形ABCD 的边BC 和CD 延长线上的两点,P A 与CQ 相交于点E ,且∠P AD =∠QAD ,求证:S 矩形ABCD =S △APQ .解题思路:图形含全等三角形、相似三角形,能得到相等的线段、等积式,将它们与相应图形联系起来,促使问题的转化.【例5】如图,在Rt △ABC 中,∠A =90°,AB =8,AC =6,若动点D 从点B 出发,沿线段BA 运动到点A 为止,移动速度为每秒2个单位长度. 过点D 作DE ∥BC 交AC 于点E ,设动点D 运动的时间为x 秒,AE 的长为y .(1) 求出y 关于x 的函数关系式,并写出自变量x 的取值范围;(2) 当x 为何值时,△BDE 的面积S 有最大值,最大值为多少? (江西省中考试题) 解题思路:对于(1)利用△ADE ∽△ABC 可得y 与x 的关系式;对于(2)先写出S 关于x 的函数关系式,再求最大值.例2图C例3图例4图C【例6】如图,设P 为△ABC 内任意一点,直线AP ,BP ,CP 交BC ,CA ,AB 于点D ,E ,F . 求证:(1)PD AD +PE BE +PFCF=1; (2)P A AD +PB BE +PC CF=2 解题思路:过点A ,P 分别作BC 的垂线,这样既可得到平行线,产生比例线段,又可以与面积联系起来,把P AAD转化为面积比,利用面积法证明.○能 ○力 ○训 ○练A 级1.如图, ABCD 中,AE ∶BE =1∶2,S △AEF =6cm 2,则S △CDF 的值为________. (济南市中考试题) 2.如图,正六边形ABCDEF 的边长为23cm ,P 为正六边形内任一点,则点P 到各边距离之和为_______.例5图C例6图D3.如图,P 是边长为8的正方形ABCD 外一点,PB =PC ,△PBD 的面积等于48,则△PBC 的面积为_____________. (北京市竞赛试题)4.如图,已知△BOF ,△AOF ,△BOD ,△COE 的面积分别为30,40,35,84,则△ABC 的面积为________.(浙江省竞赛试题)5.如图,已知AD 是Rt △ABC 斜边BC 上的高,DE 是Rt △ADC 斜边上的高,如果DC ∶AD =1∶2, S △DCE =a ,那么S △ABC 等于 ( ) (金华市中考试题)A .4aB .9aC .16aD .25a6.如图,已知M 是 ABCD 边AB 的中点,CM 交BD 于点E ,则图中阴影部分面积与 ABCD 的面积之比为( ) (山西省中考试题)A .16B .14C .13D .5127.如图,在△ABC 中,DE ∥BC ,DE 分别交AB ,AC 于点D ,E ,若S △ADE =2S △DCE ,则S △ADES △ABC等于( )(浙江省宁波市中考试题) A .14 B .12 C .23 D .498.如图,△ABC 是边长为6cm 的等边三角形,被一平行于BC 的矩形所截,AB 被截成三等分,则图中阴影部分面积面积为( )cm 2. (广东省竞赛试题)A .4B .2 3C .3 3D .4 3第5题图C第2题图CF第1题图第3题图P第4题图D第6题图C9.如图,平面上有两个边长相等的正方形ABCD 和 A ′B ′C ′D ′,且正方形A ′B ′C ′D ′的顶点A ′在正方形ABCD 的中心,当正方形A ′B ′C ′D ′绕A ′ 转动时,两个正方形重合部分的面积必然是一个定值. 这个结论对吗?证明你的判断. (“希望杯”邀请赛试题)10.如图,设凸四边形ABCD 的一组对边AB ,CD 的中点分别为K ,M .求证:S 四边形ABCD =S △ABM +S △DCK..11.如图1,AB ,CD 是两条线段,M 是AB 的中点,S △DMC ,S △DAC ,S △DBC 分别表示△DMC ,△DAC ,△DBC 的面积,当AB ∥CD 时,有S △DMC =S △DAC +S △DBC2………..①.(1) 如图2,若图1中AB 与CD 不平行时,①式是否成立?请说明理由.(2) 如图3,若图1中AB 与CD 相交于点O 时, 问S △DMC 与S △DAC 和S △DBC 有何相等关系?试证明第10题图第8题图第7题图C第9题图C'(1) 如图2,若图1中AB 与CD 不平行时,①式是否成立?请说明理由.(2) 如图3,若图1中AB 与CD 相交于点O 时, 问S △DMC 与S △DAC 和S △DBC 有何相等关系?试证明你的结论. (安徽省中考试题)图2图1图312.如图,在△ABC 中,∠ACB =90°,∠ABC =30°,将△ABC 绕顶点C 顺时针旋转,旋转角为θ(0°<θ<180°),得到△A ′B ′C ′.(1) 如图1,当AB ∥CB ′时,设A ′B ′与CB 相交于点D ,证明:△A ′CD 是等边三角形;(2) 如图2,连接A ′A ,B ′B ,设△ACA ′和△BCB ′的面积分别为S △ACA ′和S △BCB ′.求证:S △ACA ′∶S △BCB ′=1∶3. (3) 如图3,设AC 的中点为E ,A ′B ′的中点为P ,AC =a ,连接EP ,当θ=_____时,EP 长度最大,最大值是____________. (安徽省中考试题)图2图1图3B 级1.如图,A 在线段BG 上,ABCD 和DEFG 都是正方形,面积分别为7cm 2和11cm 2,则△CDE 的面积等于___________cm 2. (武汉市竞赛试题)2.如图,P 为正方形ABCD 内一点,P A =PB =10,并且P 到CD 边的距离也等于10,那么正方形ABCD 的面积是_______________. (北京市竞赛试题)3.如图,四边形ABCD 中,点E ,F 分别在BC ,DC 上,DF FC =1,CEBE =2,若△ADF 的面积为m ,四边形AECF 的面积为n (n >m ),则四边形ABCD 的面积为___________. (全国初中数学联赛试题)4.如图,图形ABCD 中,AB ∥CD ,AC 和BD 相交于点O ,若AC =5,BD =12,中位线长为132,△AOB的面积为S 1,△OCD 的面积为S 2,则S 1+S 2=_________. (山东省竞赛试题)5.如图,分别延长△ABC 的三边AB ,BC ,CA 至A ′,B ′,C ′,使得AA ′=3AB ,BB ′=3BC ,CC ′=3AC ,若S △ABC =1,则S △A ′B ′C ′等于 ( ).A .18B .19C .24D .27(山东省竞赛试题) 6.如图,若ABCD 是2×2的正方形,E 是AB 的中点,F 是BC 的中点,AF 与DE 相交于点I ,BD 和AF 相交于点H ,那么四边形BEIH 的面积是 ( )A .13B .52 C .715 D .815(江苏省竞赛试题)7.如图,矩形ABCD 中,E 是BC 上的一点,F 是CD 上的点,已知S △ABE =S △ADF =13S ABCD ,则S △AEF S △CEF 的值等于 ( ) (北京市竞赛试题)A .2B .3C .4D .58.(1) 探究:如图1,在 ABCD 的形外分别作等腰直角三角形ABF 和等腰直角三角形ADE ,∠F AB =∠EAD =90°,连接AC ,EF. 在图中找一个与△F AE 全等的三角形,并加以证明.第6题图第4题图第3题图B第2题图第1题图F第5题图第7题图A BEF(2) 应用:以 ABCD 的四条边为边,在其形外分别作正方形,如图2,连接EF ,GH ,IJ ,KL ,若 ABCD 的面积为5,则图中阴影部分四个三角形的面积之和为____________. (长春市中考试题)图1图2J9.如图,在梯形ABCD 中,AD ∥BC ,AB =AD =DC =2cm ,BC =4cm ,在等腰△PQR 中,∠QPR =120°,底边QR =6cm , 点B ,C ,Q ,R 在同一条直线l 上,且C ,Q 两点重合,如果等腰△PQR 以1cm/s 的速度沿直线l 箭头所示方向匀速运动,t 秒时梯形ABCD 与等腰△PQR 重合部分的面积记为S cm 2.(1) 当t =4时,求S 的值;(2) 当4≤t ≤10时,求S 与t 的函数关系式,并求出S 的最大值. (广州市中考试题)10.有一根直尺的短边长为2cm ,长边长为10cm ,还有一块锐角为45°的直角三角纸板,它的斜边长为12cm ,如图1将直尺的短边DE 放置与直角三角纸板的斜边AB 重合,且点D 与点A 重合 将直尺沿AB 方向平移,如图2,设平移的长为x cm(0≤x ≤10),直尺与三角形纸板重叠部分(图中阴影部分)的面积S cm 2.(1) 当x =0时,S =________,当10=x 时,S =________; (2) 当0<x ≤4时,求S 关于x 的函数关系式;(3) 当4<x <10时,求S 关于x 的函数关系式,并求出S 的最大值. (徐州市中考试题)图1图2E11.如图,设H 是等腰三角形ABC 的三边上的高线的交点,在底边BC 保持不变的情况下,让顶点A 至底边BC 的距离变小(仍保持三角形为等腰三角形),这时HBC ABC S S ∆∆⋅的值变大、变小、还是不变?证第9题图B C(Q)R明你的结论. (全国初中数学联赛试题)12.(1) 请你在图1中作一条直线,使它将矩形ABCD 分成面积相等的两部分;(2) 如图2,点M 是矩形ABCD 内一定点,请你在图2中过点M 作一条直线,使它将矩形ABCD 分成面积相等的两部分;(3) 如图3,在平面直角坐标系中,直角梯形OBCD 是某市将要筹建的高新技术开发区用地示意图,其中DC ∥OB ,OB =6,BC =4,CD =4. 开发区综合服务管理委员会(其占地面积不计)设在点P (4,2)处. 为了方便驻区单位,准备过点P 修一条笔直的道路(路的宽不计),并且使这条路所在的直线l 将直角梯形OBCD 分成面积相等的两部分. 你认为直线l 是否存在?若存在,求出直线l 的表达式;若不存在,请说明理由. (陕西省中考试题)图1图2图3第11题图D。

三角形中的几何计算

三角形中的几何计算

19
栏目导航
20
【例 3】 在△ABC中,角 A,B,C 的对边分别为 a,b,c,已 知 A=4π,bsin????4π+C????-csin????π4+B????=a.
(1)求证:B-C=π2; (2)若 a= 2,求△ABC 的面积.
思路探究:(1)先由正弦定理化边为角 ,再化简已知三角形即证. (2)结合第(1)问可直接求出 B,C,再利用面积公式求值;也可以 作辅助线导出 b,c 的大小关系 ,再由余弦定理求值 ,最后用面积公 式求解.
栏目导航
8
③ [①中三角形的面积 S=12(a+b+c)r. ②由 S=12bcsin A 可得 sin A= 23, ∴A=60°或 120°. ④在△ABC 中由 sin 2A=sin 2B 得 A=B 或 A+B=π2.]
栏目导航
9
2.在△ABC 中,a=6,B=30°,C=120°,则△ABC 的面积 为________ .
栏目导航
17
解三角形中的综合问题 例 2、如图,在△ABC 中,∠B=π3,AB=8,点 D 在 BC 边上, CD=2,cos∠ADC=17. (1)求 sin∠BAD; (2)求 BD,AC 的长.
栏目导航
[解] (1)在△ADC 中,
因为 cos∠ADC=17,
所以
sin∠ADC=4
7
3 .
栏目导航
7
1.下列说法中正确的是 ________( 填序号). ①已知三角形的三边长为 a,b,c,内切圆的半径为 r,则三角 形的面积 S=(a+b+c)r; ②在△ABC 中,若 c=b=2,S△ABC= 3,则 A=60°; ③在△ABC 中,若 a=6,b=4,C=30°,则 S△ABC的面积是 6; ④在△ABC 中,若 sin 2A=sin 2B,则 A=B.

三角形的面积ppt课件

三角形的面积ppt课件
域大小和距离。
车辆与机械设计
车辆和机械设计中有时会使用三 角形结构来增加强度或减轻重量 ,三角形面积计算可以帮助工程
师评估设计方案的效果。
三角形面积在科学和工程中的应用
物理学
在物理学中,三角形经常被用来描述力、速度、能量等的变化趋势,三角形面积计算可以 帮助科学家更好地理解这些物理现象。
工程学
在水利工程中,三角形用于描述水流速度和方向的变化;在土木工程中,三角形用于描述 建筑物的沉降和变形。在这些情况下,三角形面积计算对于评估工程的安全性和稳定性非 常重要。
三角形的面积
• 三角形面积计算公式 • 三角形面积的推导过程 • 三角形面积的实际应用 • 三角形面积的特殊情况 • 总结与回顾
目录
01
三角形面积计算公式
三角形面积的定义
01
三角形面积是指一个三角形所占 的空间大小或一个三角形的区域 。
02
三角形面积可以用以下公式来定 义:面积 = (底 × 高) / 2
环境科学
在环境科学中,三角形用于描述生态系统中的能量流动和物质循环;在地理学中,三角形 用于描述地形的变化和土壤侵蚀的情况。在这些情况下,三角形面积计算可以帮助科学家 更好地了解自然环境和生态系统的运行规律。
04
三角形面积的ห้องสมุดไป่ตู้殊情况
等腰三角形的面积计算
总结词
等腰三角形是一种两边相等的三角形,其面积可以通过底边长度和高度来计算 。
三角形面积的计算公式及其推导过程
公式回顾
三角形面积 = (底 × 高) / 2
推导过程
通过几何证明,利用相似三角形和平 行四边形的性质,得出三角形面积公 式。
三角形面积的实际应用与特殊情况

三角形的中线公式

三角形的中线公式

三角形的中线公式我们先来讨论一下什么是中线。

中线是一个连接三角形的顶点与对边中点的线段。

一个三角形有三条中线,它们互相交于一个点,称为三角形的重心。

重心是三角形的一个重要的几何中心。

在三角形ABC中,AD、BE和CF分别是BC、AC和AB的中线。

点D、E 和F分别是BC、AC和AB的中点。

我们要研究的是中线的长度和三角形边长的关系。

首先,我们可以推导出一个辅助结论,即中线一半的长度等于它所对边的一半长度。

即AD=BD/2,BE=CE/2,CF=AF/2、这个结论可以通过使用向量等方法进行证明。

接下来,我们来研究中线的长度和三角形边长的关系。

我们先来看一个具体的例子,假设已知三角形ABC的边长为a、b和c,我们要计算中线AD的长度。

根据前面的辅助结论,中线AD的长度等于它所对边BC长度的一半。

因此,我们有AD=BC/2、接下来,我们要计算BC的长度。

根据三角形ABC的边长,我们可以利用三角形的余弦定理求得BC的长度。

余弦定理的公式是c^2=a^2+b^2-2abcosC。

将其应用到三角形ABC 中,我们有BC^2=a^2+b^2-2abcosB。

现在我们已经得到了中线AD的长度的表达式:AD=BC/2=√(a^2+b^2-2abcosB)/2、类似地,我们可以得到BE和CF的长度的表达式。

更一般地,我们可以得到中线的长度的一般表达式。

在三角形ABC中,我们有AD=√(a^2+b^2-2abcosB)/2,BE=√(b^2+c^2-2bccosA)/2,CF=√(c^2+a^2-2accosC)/2这样,我们就得到了三角形的中线公式。

它描述了三角形中线的长度与三角形边长之间的关系。

三角形的中线公式对于解决一些与三角形有关的几何问题非常有用。

例如,我们可以使用中线公式计算三角形的重心的坐标,或者计算三角形的面积等。

在解决这些问题时,中线公式可以帮助我们简化计算过程,提高解题效率。

总结起来,三角形的中线公式描述了三角形中线的长度与三角形边长之间的关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

DHFEPCBADHFEPCBA线段计算,几何证明1.AD 是⊙O 的直径,且AD=6。

A 、B 、C 、D 、E 、F 为⊙O 的六等分点,P 为劣弧⋂AF 上一动点,连接PA 、PB 、PD 、PE 。

(1)当点P 运动到点F 时,求出PA+PB 的值;(2)当点P 运动到⋂AF 之间时(不与点A 与点F 重合),求出PDPB PEPA ++值.(3)令t= PA+PB+PD+PE ,请直接写出t 的取值范围.2.已知,Rt △ABC 中,∠BAC =900,AH ⊥BC 于H ,P 是AB 上一动点,AD ⊥CP ,BE ⊥CP ,HD 与BE两延长张交于点F 。

(1)当AB =AC 时,求∠BFH 的度数。

(2)当∠ABC=30°时,探求BF 与CD 的数量关系,说明理由。

(3)当∠ABC=α时,直接用α的代数式表示CDBF的值。

3.如图1,在直角梯形ABCD 中,AB ⊥BC ,AD ∥BC ,点P 为DC 上一点,且AP=AB ,过点C 作CE ⊥BP 交直线BP 于E .(1)若BC AB =43,求证BP=23CE ;(2)若AB=BC ,①如图2,当点P 与E 重合时,求PCPD 的值:②如图3,设∠DAP 的平分线AF 交直线BP 于F ,当CE=1,PC PD =74时,直接写出线段AF 的长为______.ABC DPE (E )P DC B AFEPDCB A4.已知:如图①,△ABC 中,AI 、BI 分别平分∠BAC 、∠ABC .CE 是△ABC 的外角∠ACD 的平分线,交BI 延长线于E ,联结CI .(1)设∠BAC=2α.如果用α表示∠BIC 和∠E ,那么∠BIC= ,∠E= ;(2)如果AB=1,且△ABC 与△ICE 相似时,求线段AC 的长;(3)如图②,延长AI 交EC 延长线于F ,如果∠α=30°,sin ∠F=,设BC=m ,试用m 的代数式表示BE .5.已知:正方形ABCD的边长为4,点E为BC的中点,点P为AB上一动点,沿PE翻折△BPE 得到△FPE,直线PF交CD边于点Q,交直线AD于点G,联接EQ.(1)如图,当BP=1.5时,求CQ的长;(2)如图,当点G在射线AD上时,BP=x,DG=y,求y关于x的函数关系式,并写出x的取值范围;(3)延长EF交直线AD于点H,若△CQE与△FHG相似,求BP的长.6.如图1,在等腰△ABC中,AB=AC,∠ABC=α,过点A作BC的平行线与∠ABC的平分线交于点D,连接CD.(1)求证:AC=AD;(2)点G为线段CD延长线上一点,将GC绕着点G逆时针旋转β,与射线BD交于点E.①如图1,若β=α,DG=2AD,试判断BC与EG之间的数量关系,并证明你的结论;②若β=2α,DG=kAD,请直接写出的值(用含k的代数式表示).7.如图△ABC 中,AB=AC=10厘米,BC=12厘米,D 是BC 的中点,点P 从B 出发,以a 厘米/秒(a >0)的速度沿BA 匀速向点A 运动,点Q 同时以1厘米/秒的速度从D 出发,沿DB 匀速向点B 运动,其中一个动点到达端点时,另一个动点也随之停止运动,设它们运动的时间为t 秒.(1)若a=2,△BPQ ∽△BDA ,求t 的值;(2)设点M 在AC 上,四边形PQCM 为平行四边形. ①若a=,求PQ 的长;②是否存在实数a ,使得点P 在∠ACB 的平分线上?若存在,请求出a 的值;若不存在,请说明理由.8.在正方形ABCD 中,对角线AC 、BD 交于O 点,BC 上有一动点P ,作12BPE ACB ∠=∠,PE交BO 于点E ,过B 点作BF ⊥PE ,垂足为F ,且BF 交AC 于点G . (1)(3分)当P 点与C 点重合时(如图1),求证:EP =BG . (2)(3分)若P 点与C 点不重合(如图2),求BFPE的值,并证明. (3)(4分)把正方形ABCD 改为菱形,其它条件不变(如图3),若∠ACB =α,求BFPE的值(用含α的式子表示并证明).图1图2图39.已知在四边形ABCD中,AD∥BC,AD=AB=CD,∠BAD=120°,点E是射线CD上的一个动点(与C、D不重合),E'为CB延长线上一点,且DE=BE',连接AE、AE'、EE'.∠的度数;(1)如图1,求AEE'(2)如图2,如果将直线AE绕点A顺时针旋转30°后交直线BC于点F,过点E作EM∥AD交直线AF于点M,写出线段DE、BF、ME之间的数量关系;(3)如图3,在(2)的条件下,如果CE=2,AE=ME的长.10.如图,Rt△ABC中,∠BAC=90°,AB=2,AC=4,D是BC边上一动点,G是BC边上的一动点,GE∥AD分别交AC、BA或其延长线于F、E两点. (1) 如图1,当BC=5BD时,求证:EG⊥BC;(2) 如图2,当BD=CD时,FG+EG是否发生变化?证明你的结论;(3) 当BD=CD,FG=2EF时,DG的值=_________BFB11.已知:如图①,△ABC 中,AI 、BI 分别平分∠BAC 、∠ABC .CE 是△ABC 的外角∠ACD 的平分线,交BI 延长线于E ,联结CI .(1)设∠BAC=2α.如果用α表示∠BIC 和∠E ,那么∠BIC= , ∠E= ;(2)如果AB=1,且△A BC 与△ICE 相似时,求线段AC 的长;(3)如图②,延长AI 交EC 延长线于F ,如果∠α=30°,sin ∠F=35,设BC=m ,试用m 的代数式表示BE .12.如图1,Rt △ABC 中,∠C=90°,tanB=43,点E 、F 、D 分别在三条边上, EF ∥AB ,ED∥AC . (1)求证:;DBADFA CF = (2)如图2,将△FCE 绕点C 逆时针旋转,点P 、G 分别为EF 、AB 的中点,若AF=9,求PG 的长;(3)如图3,将△DEB 绕点B 顺时针旋转,点H 、G 为AB 、DB 的中点,直接写出CEGH的值.(第24题图②)FABCDEI(第24题图①)ABCDEI13.在△ABC 中,∠ACB =90°,经过点B 的直线l (l 不与直线AB 重合)与直线BC 的夹角等于∠ABC ,分别过点C 、点A 作直线l 的垂线,垂足分别为点D 、点E 。

(1)若∠ABC =45°,CD =1(如图1),则AE 的长为__________; (2)写出线段AE 、CD 之间的数量关系,并加以证明; (3)若直线CE 、AB 交于点F ,,4,65==CD EF CF 求BD 的长。

14.如图所示,现有一张正方形纸片ABCD ,点P 为正方形AD 边上的一点(不与点A 、点D 重合)将正方形纸片折叠,使点B 落在P 处,点C 落在G 处,PG 交DC 于H ,折痕为EF ,连接BP 、BH .(1) (本小题2分+3分=5分)如图24-1,① 求证:APB BPH ∠=∠② 若AB=4,当点P 为边AD 的中点时, 求PH 的长;(2)(本小题2分)如图24-2,点P 为边AD 上一点,若将正方形纸片ABCD 沿BP 折叠,如图,点A 的对应点Q 落在正方形ABCD 的内部,且90DQC ∠=︒,请直接写出PAPD=__________.AB C(E) lQPDCBA (图24-1) (图24-2(3)(本小题3分)如图24-3, 点P 为边AD 上一点,连接CP 并延长交BA 的延长线于点E ,连接ED 、OP ,OP 的延长线交ED 于点F ,若60DEA ∠=︒,求DFOF的值;15.如图1,△ABC 中,AB =AC ,点D 在BA 的延长线上,点E 在BC 上,DE =DC ,点F 是DE 与AC 的交点,且DF =FE .(1)图1中是否存在与∠BDE 相等的角?若存在,请找出,并加以证明,若不存在,说明理由;(2)求证:BE =EC ; (3)若将“点D 在BA 的延长线上,点E 在BC 上”和“点F 是DE 与AC 的交点,且DF =FE ”分别改为“点D 在AB 上,点E 在CB 的延长线上”和“点F 是ED 的延长线与AC 的交点,且EF =kDF ,其他条件不变(如图2).当AB =1,∠ABC =a 时,BE 的长(用含k 、a 的式子表示).F EO P D C B A (图24-3)16.已知△ABC 中,∠ABC =90°,点M 为BC 上一点,点E 、N 在AC 上,且EB=EM ,NM=NC , (1)求证:∠EMN=∠BEC ;(2)探究:AE 、EN 、CN 之间的数量关系,并给出证明;(3)如图2,过点B 作BH ∥EM 交NM 的延长线与H ,当n BM CM 时,求MNHM的值17.在△ABC 中,∠A=90°,点D 在线段BC 上,∠EDB=21∠C , BE ⊥DE ,垂足为E ,DE 与AB 相交于点F .(1)当AB=AC 时,(如图1), ①∠EBF=______________②探究线段BE 与FD 的数量关系,并加以证明; (2)当AB=kAC 时(如图2),直接写出 FDBE的值_______________(用含k 的式子表示).18.如图,点P在y轴的正半轴上,⊙P交x轴于B、C两点,以AC为直角边作等腰Rt△ACD,BD分别交y轴和⊙P于E、F两点,交连接AC、FC.(1)求证:∠ACF=∠ADB;若点A到BD的距离为m,BF+CF=n,求线段CD的长;(3)当⊙P 的大小发生变化而其他条件不变时,的值是否发生变化?若不发生变化,请求出其值;若发生变化,请说明理由.19.如图,△ABC中,AD⊥BC ,DE⊥AC于E,AF⊥BE于H,交DE于F,(1)求证:△ADF∽△BCE(2)若AB=AC,求证:DF=EF(3)在(2)的条件下,若∠EAF=300,直接写出cos∠EBC的值BB20.如图,在等腰直角△ABC 中,AC=BC ,D 为边BC 上一动点,过B 作BE ⊥AD 于E ,过D 作DF ⊥AB 于F.①当DC =DB=1时,BE= ;②当∠CAD=∠BAD 时,分别求出tan∠CFD 与tan ∠EFD 的值;③当D 在边BC 上运动时,AD 与CF 交于M, BD 与EF 交于N,求证:tan ∠BAD=MADN NBDM ⋅⋅。

21.已知矩形ABCD ,M 是AD 边上一点.(1) 如图1,AM =MD ,BM 交AC于F 点,BM 的延长线与CD 的延长线交于点E ,连AE . 求证:EBEMBF MF =; (2) 如图2,AM=MD ,过点D任意作直线与BM ,BC 的延长线分别交于点E ,点P . 连AE . 求证:∠EAD =∠PAD ;(3) 如图3,E 是CD 延长线上一点,P 是BC 延长线上一点,AP 交CD 于Q 点,BE 交AD 于M 点,延长AD 交EP 于N 点,若M 是AN 的中点,且AB =3,BC=4,求△AEP 的面积.22.如图,在△ABC 中,AB =AC =10cm ,BC =16cm ,DE =4cm .动线段DE(端点D 从点B 开始)沿BC 边以1cm/s 的速度向点C 运动,当端点E 到达点C 时运动停止.过点E 作EF ∥AC 交AB 于点F(当点E 与点C 重合时,EF 与CA 重合),连接DF ,设运动的时间为t 秒(t ≥0). (1) 求出线段EF 的长(用含t 的代数式表示);(2) 在这个运动过程中,△DEF 能否为等腰三角形?若能,请求出t 的值;若不能,请说明理由;(3) 设M 、N 分别是DF 、EF 的中点,求整个运动过程中,MN 所扫过的面积.23.如图,等腰Rt △ABC 中,∠ACB=90°,AC =BC ,D 为AC 边上一点, 以BD 为边作正方形BDEF. (1) 求证: AE ⊥AB ;(2) 如图2,P 为正方形BDEF 的对角线的中点,直线CP 分别交BD 、EF 于M 、N 两点. ①求证: △BCM ∽△PFN ; ②若32=AD DC ,则=FNEN. (直接写出结果,不需要过程)BCD EAB (D )CEF图2A D24.如图1,梯形ABCD 中AB ∥CD ,且AB =2CD ,点P 为BD 的中点,直线AP 交BC 于E ,交DC的延长线于F . (1)求证:DC =CF ;(2)求APPE的值; (3)如图2,连接DE ,若AD ⊥ED ,求证:∠BAE =∠DBE .25.已知,正方形ABCD 中,AB=6,点P 是射线BC 上的一动点,过点P 作PE ⊥PA 交直线CD 于E ,连AE.(1)如图1,若BP=2,求DE 的长;(2)如图2,若AP 平分∠BAE ,连PD ,求DPE ∠tan 的值; (3)直线PD 、AE 交于点F ,若BC=4PC ,则EFAF=____________. 图1DECP BA图2DECP BAF图3DECP BA26.如图,Rt△ABC中,∠BAC=90°,AB=2,AC=4,D是BC边上一动点,G是BC边上的一动点,GE∥AD分别交AC、BA或其延长线于F、E两点(1)如图1,当BC=5BD时,求证:EG⊥BC;(2)如图2,当BD=CD时,FG+EG是否发生变化?证明你的结论;(3)当BD=CD,FG=2EF时,DG的值=或.27.在△ABC中,点D从A出发,在AB边上以每秒一个单位的速度向B运动,同时点F从B 出发,在BC边上以相同的速度向C运动,过点D作DE∥BC交AC于点E.运动时间为t秒.(1)若AB=5,BC=6,当t为何值时,四边形DFCE为平行四边形;(2)连接AF、CD.若BD=DE,求证:∠BAF=∠BCD;(3)AF交DE于点M,在DC上取点N,使MN∥AC,连接FN.①求证:BFCF=DNCN;②若AB=5,BC=6,AC=4,当MN=FN时,请直接写出t的值.28.等边⊿ABC 的边长为6,点E 、F 分别是边AC 、BC 上的点,连结AF ,BE 相交于点P . (1)若AE =CF : ①求∠APB 的度数.②若AE =2,试求的AF AP 值.(2)若AF=BE ,当点E 从点A 运动到点C 时,试求点P 经过的路径长.29.如图,△ABC 中,AB =AC ,AD ∥BC ,CD ⊥AC ,连BD ,交AC 于E .(1)如图(1),若∠BAC =60°,求AEEC的值; (2)如图(2),CF ⊥AB 于F ,交BD 于G ,求证:CG =FG ;(3)若AB =13,tan ∠ABC =32,直接写出EC 的长为 .图(1)E DCBA图(2)GFEDC BA EDCBA备用图。

相关文档
最新文档