高中物理中的滑块问题含解析
(完整版)高中物理中的滑块问题(含解析)

高中物理中的滑块问题1.(2010淮阴中学卷)如图,在光滑水平面上,放着两块长度相同,质量分别为M 1和M 2的木板,在两木板的左端各放一个大小、形状、质量完全相同的物块。
开始时,各物均静止,今在两物体上各作用一水平恒力F 1、F 2,当物块和木板分离时,两木板的速度分别为v 1和v 2,物体和木板间的动摩擦因数相同,下列说法正确的是 ( BD ) A .若F 1=F 2,M 1>M 2,则v 1>v 2 B .若F 1=F 2,M 1<M 2,则v 1>v 2 C .若F 1>F 2,M 1=M 2,则v 1>v 2 D .若F 1<F 2,M 1=M 2,则v 1>v 22.如图所示,长2m ,质量为1kg 的木板静止在光滑水平面上,一木块质量也为1kg (可视为质点),与木板之间的动摩擦因数为0.2。
要使木块在木板上从左端滑向右端而不至滑落,则木块初速度的最大值为( D )A .1m/sB .2 m/sC .3 m/sD .4 m/s3.如图所示,小木块质量m =1kg ,长木桉质量M =10kg ,木板与地面以及木块间的动摩擦因数均为μ=0.5.当木板从静止开始受水平向右的恒力F =90 N 作用时,木块以初速v 0=4 m /s 向左滑上木板的右端.则为使木块不滑离木板,木板的长度l 至少要多长?22112132121/3)(t t a s s m Mgm M mg F a ⨯===+--=μμ 22202225.2421/5t t t a t v s s m g a -=-===μs t ta t a v 2120==+-解得由m s s l 421=+=板长:4.如图所示,质量M=1.0kg 的长木板静止在光滑水平面上,在长木板的右端放一质量m=1.0kg 的小滑块(可视为质点),小滑块与长木板之间的动摩擦因数=0.20.现用水平横力F=6.0N 向右拉长木板,使小滑块与长木板发生相对滑动,经过t=1.0s 撤去力F.小滑块在运动过程中始终没有从长木板上掉下.求:(1)撤去力F 时小滑块和长木板的速度个是多大; (2)运动中小滑块距长木板右端的最大距离是多大?F 1F 2 M Fm(1).对滑和木板分别利用牛顿第二定律和运动学公式sm t a v s m MmgF a s m t a v s m g a /4/4/2/21222211121===-=====μμ(2).最大位移就是在滑块和木板相对静止时1s 后.没有拉力.只有相互间的摩擦力 滑块加速度大小均为α=2m/s 2(方向相反)v 1+αt 2=v 2-αt 2 代入数据 2+2t 2=4-2t 2 解得 t 2=0.5s 此时2个的速度都是v=3m/s木块和木板的位移分别为m t v v t v s 25.22221111=⋅++⋅=m t v v t v s 75.32222122=⋅++⋅= m s s s 5.112=-=∆5.(2010龙岩二中卷)如图所示,一质量M =2.0kg 的长木板静止放在光滑水平面上,在木板的右端放一质量m =1.0kg 可看作质点的小物块,小物块与木板间的动摩擦因数为μ=0.2.用恒力F 向右拉动木板使木板在水平面上做匀加速直线运动,经过t =1.0s 后撤去该恒力,此时小物块恰好运动到距木板右端l =1.0m 处。
高中物理斜面滑块专题

高中物理斜面滑块专题
【原创实用版】
目录
1.斜面滑块的基本概念
2.斜面滑块的物理原理
3.斜面滑块的应用实例
4.斜面滑块的解题技巧
5.总结
正文
高中物理斜面滑块专题
一、斜面滑块的基本概念
斜面滑块是物理学中一个重要的力学问题,它涉及到物体在斜面上滑动的诸多现象。
斜面滑块问题主要研究物体在斜面上滑动时的速度、加速度、位移以及与之相关的力学能的转化。
二、斜面滑块的物理原理
1.斜面上的物体受到重力、支持力和摩擦力三种力的作用。
2.根据牛顿第二定律,物体在斜面上的加速度 a=gsinθ-μgcosθ,其中 g 为重力加速度,θ为斜面倾角,μ为摩擦因数。
3.物体在斜面上的位移公式为:x=vt+1/2at,其中 v为物体在斜面上的初速度,t 为物体在斜面上滑动的时间。
4.物体在斜面上的机械能守恒,即重力势能转化为动能和热能,总能量保持不变。
三、斜面滑块的应用实例
斜面滑块问题在生活中有很多应用,例如:滑梯、跳台、汽车传动系统等。
这些应用都需要对斜面滑块问题进行深入研究,以确保其安全、稳定和高效。
四、斜面滑块的解题技巧
1.仔细分析题目,确定研究对象和受力情况。
2.画出物体受力分析图,找出重力、支持力和摩擦力的方向。
3.运用牛顿第二定律,求出物体在斜面上的加速度。
4.根据运动学公式,求解物体在斜面上的位移、速度等物理量。
5.注意能量守恒定律,分析机械能的转化情况。
五、总结
斜面滑块问题作为高中物理力学部分的一个重要专题,需要同学们掌握其基本概念、物理原理、应用实例和解题技巧。
(完整版)高中物理滑块-板块模型(解析版)

滑块—木板模型一、模型概述滑块-木板模型(如图a),涉及摩擦力分析、相对运动、摩擦生热,多次互相作用,属于多物体多过程问题,知识综合性较强,对能力要求较高,另外,常见的子弹射击木板(如图b)、圆环在直杆中滑动(如图c)都属于滑块类问题,处理方法与滑块-木板模型类似。
二、滑块—木板类问题的解题思路与技巧:1.通过受力分析判断滑块和木板各自的运动状态(具体做什么运动);2.判断滑块与木板间是否存在相对运动。
滑块与木板存在相对运动的临界条件是什么?⑴运动学条件:若两物体速度或加速度不等,则会相对滑动。
⑵动力学条件:假设两物体间无相对滑动,先用整体法算出共同加速度,再用隔离法算出其中一个物体“所需要”的摩擦力f;比较f与最大静摩擦力f m的关系,若f > f m,则发生相对滑动;否则不会发生相对滑动。
3. 分析滑块和木板的受力情况,根据牛顿第二定律分别求出滑块和木板的加速度;4. 对滑块和木板进行运动情况分析,找出滑块和木板之间的位移关系或速度关系,建立方程.特别注意滑块和木板的位移都是相对地面的位移.5. 计算滑块和木板的相对位移(即两者的位移差或位移和);6. 如果滑块和木板能达到共同速度,计算共同速度和达到共同速度所需要的时间;7. 滑块滑离木板的临界条件是什么?当木板的长度一定时,滑块可能从木板滑下,恰好滑到木板的边缘达到共同速度(相对静止)是滑块滑离木板的临界条件。
【典例1】如图所示,在光滑水平面上有一质量为m1的足够长的木板,其上叠放一质量为m2的木块。
假定木块和木板之间的最大静摩擦力和滑动摩擦力相等。
现给木块施加一随时间t增大的水平力F=kt(k是常数),木板和木块加速度的大小分别为a1和a2。
下列反映a1和a2变化的图线中正确的是(如下图所示)()【答案】 A【典例2】如图所示,A 、B 两物块的质量分别为2m 和m ,静止叠放在水平地面上。
A 、B 间的动摩擦因数为μ,B 与地面间的动摩擦因数为12μ。
滑块木板模型(解析版)-高考物理5种类碰撞问题

滑块木板模型【问题解读】两类情景水平面光滑,木板足够长,木板初速度为零水平面光滑,木板足够长,木板初速度不为零图示v ---t 图像物理规律动量守恒,最终二者速度相同mv 0=(m +M )v 共,机械能不守恒,损失的机械能等于产生的热量Q =fs =12mv 20-12(m +M )v 2,式中s 为木块在木板上相对滑动的距离,f 为木块与木板之间的摩擦力动量守恒,最终二者速度相同M v 0-mv 0=(m +M )v 共,机械能不守恒,损失的机械能等于产生的热量Q =fs =12mv 20+12M v 20-12(m +M )v 共2,式中s 为木块在木板上相对滑动的距离,f 为木块与木板之间的摩擦力。
【高考题典例】1.(14分)(2024年高考新课程卷)如图,一长度l =1.0m 的均匀薄板初始时静止在一光滑平台上,薄板的右端与平台的边缘O 对齐。
薄板上的一小物块从薄板的左端以某一初速度向右滑动,当薄板运动的距离Δl =l6时,物块从薄板右端水平飞出;当物块落到地面时,薄板中心恰好运动到O 点。
已知物块与薄板的质量相等。
它们之间的动摩擦因数μ=0.3,重力加速度大小g =10m/s 2。
求(1)物块初速度大小及其在薄板上运动的时间;解题思路本题考查的考点:动量守恒定律、动能定理、平抛运动规律。
(1)设物块质量m ,初速度为v 0,薄板质量m ,物块滑上薄板,由动量守恒定律mv 0=mv 1+mv 2μmgl =12mv 20-12mv 21-12mv 22物块在薄板上运动加速度a 1=μg =3m/s 2物块在薄板上运动位移s =7l /6v 20-v 21=2a 1s联立解得:v 0=4m/s ,v 1=3m/s ,v 2=1m/s由v 0-v 1=at 1,解得t 1=13s(2)物块抛出后薄板匀速运动,l2-Δl =v 2t 2解得t 2=13s平台距地面的高度h =12gt 22=59m2.(2023年高考选择性考试辽宁卷)如图,质量m 1=1kg 的木板静止在光滑水平地面上,右侧的竖直墙面固定一劲度系数k =20N /m 的轻弹簧,弹簧处于自然状态。
高中物理难点分类解析滑块与传送带模型问题(经典)

滑块—木板模型例1如图1所示,光滑水平面上放置质量分别为m、2m的物块A和木板B,A、B间的最大静摩擦力为μmg,现用水平拉力F拉B,使A、B以同一加速度运动,求拉力F的最大值。
分析:为防止运动过程中A落后于B(A不受拉力F的直接作用,靠A、B间的静摩擦力加速),A、B一起加速的最大加速度由A决定。
解答:物块A能获得的最大加速度为:.∴A、B 一起加速运动时,拉力F的最大值为:.变式1例1中若拉力F作用在A上呢如图2所示。
解答:木板B能获得的最大加速度为:。
∴A、B一起加速运动时,拉力F的最大值为:.变式2在变式1的基础上再改为:B与水平面间的动摩擦因数为(认为最大静摩擦力等于滑动摩擦力),使A、B以同一加速度运动,求拉力F的最大值。
解答:木板B能获得的最大加速度为:,设A、B一起加速运动时,拉力F的最大值为F m,则:解得:《例2 如图3所示,质量M=8kg的小车放在光滑的水平面上,在小车右端加一水平恒力F,F=8N,当小车速度达到1.5m/s时,在小车的前端轻轻放上一大小不计、质量m=2kg的物体,物体与小车间的动摩擦因数μ=0.2,小车足够长,求物体从放在小车上开始经t=1.5s通过的位移大小。
(g 取10m/s2)解答:物体放上后先加速:a1=μg=2m/s2,此时小车的加速度为:,当小车与物体达到共同速度时:v共=a1t1=v0+a2t1,解得:t1=1s ,v共=2m/s,以后物体与小车相对静止:(∵,物体不会落后于小车)物体在t=1.5s内通过的位移为:s=a1t12+v共(t-t1)+ a3(t-t1)2=2.1m练习1如图4所示,在水平面上静止着两个质量均为m=1kg、长度均为L=1.5m的木板A和B,A、B 间距s=6m,在A的最左端静止着一个质量为M=2kg的小滑块C,A、B与C之间的动摩擦因数为μ1=0.2,A、B与水平地面之间的动摩擦因数为μ2=0.1。
最大静摩擦力可以认为等于滑动摩擦力。
高中物理滑块练习及答案解析

高中物理滑块练习及答案解析一、计算题(每空?分,共?分)1、如下图中甲所示为传送装置的示意图。
绷紧的传送带长度L=2.0m,以v=3.0m/s的恒定速率运行,传送带的水平部分AB距离水平地面的高度h=0.45m。
现有一行李箱(可视为质点)质量m=10kg,以v0=1.0 m/s的水平初速度从A端滑上传送带,被传送到B端时没有被及时取下,行李箱从B端水平抛出,行李箱与传送带间的动摩擦因数m=0.20,不计空气阻力,重力加速度g取l0 m/s2。
(1)求行李箱从传送带上A端运动到B端过程中摩擦力对行李箱冲量的大小;(2)传送带与轮子间无相对滑动,不计轮轴处的摩擦,求为运送该行李箱电动机多消耗的电能;(3)若传送带的速度v可在0~5.0m/s之间调节,行李箱仍以v0的水平初速度从A端滑上传送带,且行李箱滑到B 端均能水平抛出。
请你在图乙中作出行李箱从B端水平抛出到落地点的水平距离x与传送带速度v的关系图象。
(要求写出作图数据的分析过程)2、如图所示,质量M= 4.0kg的长木板B静止在光滑的水平地面上,在其右端放一质量m= 1.0kg的小滑块A(可视为质点)。
初始时刻,A、B分别以v0= 2.0m/s向左、向右运动,最后A恰好没有滑离B板。
已知A、B之间的动摩擦因数μ = 0.40,取g=10m/s2。
求:⑴A、B相对运动时的加速度a A和a B的大小与方向;⑵A相对地面速度为零时,B相对地面运动已发生的位移x;⑶木板B的长度l。
3、水平放置的传送带AB间的距离L=10m,传送带在电动机带动下以v=2m/s的速度匀速运动,如下图所示。
在A点轻轻放上一个质量为m=2kg的小物块,物块向右运动s=2m后和传送带保持静止(取g=10m/s2)求:(1)物块与传送带间的动摩擦因数.(2)若在A点,每隔1s放上一个初速为零的物块,经过相当长的时间稳定后,传送带上共有几个物块?此时电动机的功率比不放物块时增加多少?(3)若在A点由静止释放第一个物块,3s后再释放第二个物块,为使第二个物块在传送带上与第一个物块碰撞,第二个物块释放时的初速度v0至少需要多大?4、利用皮带运输机将物体由地面运送到高出水平地面的C平台上,C平台离地面的竖直高度为5m,已知皮带和物体问的动摩擦因数为0.75,运输机的皮带以2m/s的速度匀速顺时针运动且皮带和轮子之间不打滑。
在外力作用下的滑块——滑板模型问题透析

在外力作用下的滑块——滑板模型问题透析摘要:滑块——滑板模型问题是动力学中的综合性问题,可以通过考查学生运用力与运动相关规律解决物理问题的知识掌握情况的同时,全面考查学生综合能力,因此滑块——滑板模型问题也成为历年高考热点,在外力作用下的滑块——滑板模型问题更是热点中的重点和难点。
从教学角度思考,如果学生能够掌握好在外力作用下的滑块——滑板模型问题的分析思路和方法,不仅有助于学生进一步认识和理解力与运动的相关规律,更有助于提升学生的物理思维能力和探究能力。
关键词:外力作用下;滑块滑板模型;问题透析滑块——滑板模型问题主要涉及两个物体或者三个物体之间通过相互作用的摩擦力或在外力作用下发生相对滑动的多运动过程,属于多体多过程问题,可以把其定位成追及问题来思考,进行相对运动分析,着重三个物理量分析:一是速度分析,如靠近、远离、滑下、不滑下等;二是时间分析,设定各运动过程的时间为未知量;三是位移分析,从追及问题的角度来寻找相对位移,从而确定对地位移关系,这解决问题的关键之处。
在分析问题之初要观察三个初始条件:一是动摩擦因数,如滑块与滑板之间、滑板与地面之间;二是初始情况,如初位置、初速度等;三是板长,有限长还是无限长;在分析问题之中要进行共速分析,此状态是涉及临界、突变等问题的节点,也是解决此类问题进程中的关键的关键。
本文以在外力作用下的滑块——滑板模型问题为例来透析解决此类问题的思维策略。
例1如图1所示,光滑水平面上静止放着长L=2m,质量M=3.0kg的木板.一个质量m=1.0kg的小物体放在离木板右端b=0.40m处,m和M之间的动摩擦因数μ=0.1,今对木板施加向右的拉力F=10.0N,为使木板能自物体下方分离出来,此拉力作用不得少于多长时间?图1解析运动过程如图2所示:图2设拉力最小作用时间为t,据牛顿第二定律有得: m/s2得: m/s2从拉力作用到撤去拉力的瞬时,有……①……②……③由①②③解得:……④撤去拉力后,物体m仍做匀加速运动,木板M做匀减速运动,经时间t1,物体m滑到木板的左端,两者的速度等于v共,有解得: m/s2……⑤……⑥⑤代入⑥解得:再利用位移关系(也可以:)将各量代入解得:……⑦从图中不难看出:……⑧由④⑦⑧得到: s.透析定位为滑块与滑板的追及问题,题设要求分离出来,依题意必然是在滑板左边分离,滑块相对滑板向左运动,取水平向右为正方向,则:设拉力最小作用时间为t1,撤去拉力后直到分离运动时间为t2,则:恰好分离时两者速度相等,则:据牛顿第二定律有:联立解之得:由上解我们可以看到,从追及问题的定位可以很快找到位移关系,从共速分析中可以很快找到时间关系,从运动过程和受力分析中辨别各段运动性质及加速度变化,列方程求解。
高中物理-专题3.20 滑块板块问题(能力篇)(解析版)

2021年高考物理100考点最新模拟题千题精练第三部分 牛顿运动定律专题3.20滑块板块问题(能力篇)一.选择题1.如图所示,长木板静止于光滑水平地面,滑块叠放在木板右端,现对木板施加水平恒力,使它们向右运动.当滑块与木板分离时,滑块相对地面的位移为x 、速度为v .若只减小滑块质量,重新拉动木板,滑块与木板分离时( )A .x 变小,v 变小B .x 变大,v 变大C .x 变小,v 变大D .x 变大,v 变小【参考答案】A【名师解析】长木板和滑块做初速度为0的匀加速直线运动,根据牛顿第二定律得滑块的加速度a 1=μg ,长木板加速度a 2=F -μmg M ,由运动学公式可得滑块与木板分离时,滑块相对地面的位移为x =12a 1t 2,滑块相对长木板的位移为L =12a 2t 2-12a 1t 2,滑块相对地面的速度v =a 1t ,若只减小滑块质量,再次拉动木板,根据牛顿第二定律得滑块的加速度a 1=μg 不变,长木板加速度a 2=F -μmg M变大,由滑块相对长木板的位移为L =12a 2t 2-12a 1t 2可得运动时间变小,滑块相对地面的位移为x =12a 1t 2变小,滑块相对地面的速度为v =a 1t 变小,故A 正确,B 、C 、D 错误.2. (2016福建名校联考)如图3所示,质量为m 的木块P 在质量为M 的长木板ab 上滑行,长木板放在水平地面上一直处于静止状态.若长木板ab 与地面间的动摩擦因数为μ1,木块P 与长木板ab 间的动摩擦因数为μ2,则长木板ab 受到地面的摩擦力大小为 ( )A .μ1MgB .μ1(m +M )gC .μ2mgD .μ1Mg +μ2mg【参照答案】 C【名师解析】质量为m 的木块P 在质量为M 的长木板ab 上滑行,M 对m 的摩擦力等于μ2mg ,由牛顿第三定律可知,m 对M 的摩擦力大小等于μ2mg 。
对M 由平衡条件可得长木板ab 受到地面的摩擦力大小为μ2mg 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理中的滑块问题1.(2010淮阴中学卷)如图,在光滑水平面上,放着两块长度相同,质量分别为M 1和M 2的木板,在两木板的左端各放一个大小、形状、质量完全相同的物块。
开始时,各物均静止,今在两物体上各作用一水平恒力F 1、F 2,当物块和木板分离时,两木板的速度分别为v 1和v 2,物体和木板间的动摩擦因数相同,下列说法正确的是 ( BD ) A .若F 1=F 2,M 1>M 2,则v 1>v 2 B .若F 1=F 2,M 1<M 2,则v 1>v 2 C .若F 1>F 2,M 1=M 2,则v 1>v 2 D .若F 1<F 2,M 1=M 2,则v 1>v 22.如图所示,长2m ,质量为1kg 的木板静止在光滑水平面上,一木块质量也为1kg (可视为质点),与木板之间的动摩擦因数为0.2。
要使木块在木板上从左端滑向右端而不至滑落,则木块初速度的最大值为( D )A .1m/sB .2 m/sC .3 m/sD .4 m/s3.如图所示,小木块质量m =1kg ,长木桉质量M =10kg ,木板与地面以及木块间的动摩擦因数均为μ=0.5.当木板从静止开始受水平向右的恒力F =90 N 作用时,木块以初速v 0=4 m /s 向左滑上木板的右端.则为使木块不滑离木板,木板的长度l 至少要多长?22112132121/3)(t t a s s m Mgm M mg F a ⨯===+--=μμ 22202225.2421/5t t t a t v s s m g a -=-===μs t ta t a v 2120==+-解得由m s s l 421=+=板长:4.如图所示,质量M=1.0kg 的长木板静止在光滑水平面上,在长木板的右端放一质量m=1.0kg 的小滑块(可视为质点),小滑块与长木板之间的动摩擦因数=0.20.现用水平横力F=6.0N 向右拉长木板,使小滑块与长木板发生相对滑动,经过t=1.0s 撤去力F.小滑块在运动过程中始终没有从长木板上掉下.求:(1)撤去力F 时小滑块和长木板的速度个是多大; (2)运动中小滑块距长木板右端的最大距离是多大?F 1F 2 M Fm(1).对滑和木板分别利用牛顿第二定律和运动学公式sm t a v s m MmgF a s m t a v s m g a /4/4/2/21222211121===-=====μμ(2).最大位移就是在滑块和木板相对静止时1s 后.没有拉力.只有相互间的摩擦力 滑块加速度大小均为α=2m/s 2(方向相反)v 1+αt 2=v 2-αt 2 代入数据 2+2t 2=4-2t 2 解得 t 2=0.5s 此时2个的速度都是v=3m/s木块和木板的位移分别为m t v v t v s 25.22221111=⋅++⋅=m t v v t v s 75.32222122=⋅++⋅= m s s s 5.112=-=∆5.(2010龙岩二中卷)如图所示,一质量M =2.0kg 的长木板静止放在光滑水平面上,在木板的右端放一质量m =1.0kg 可看作质点的小物块,小物块与木板间的动摩擦因数为μ=0.2.用恒力F 向右拉动木板使木板在水平面上做匀加速直线运动,经过t =1.0s 后撤去该恒力,此时小物块恰好运动到距木板右端l =1.0m 处。
在此后的运动中小物块没有从木板上掉下来.求:(1)小物块在加速过程中受到的摩擦力的大小和方向; (2)作用于木板的恒力F 的大小; (3)木板的长度至少是多少?解:(1)小物块受力分析如图所示,设它受到的摩擦力大小为f1N f μ= 01=-mg Nf=0.2×1.0×10N=2N 方向水平向右(2)设小物块的加速度为a 1,木板在恒力F 作用下做匀加速直线运动时的加速度为a 2,此过程中小物块的位移为s 1,木板的位移为s 2 则有:1ma f = 21m/s 0.2=a21121t a s =22221t a s =l s s =-12212)(21t a a l -= 22m/s 0.4=a 代入数值得:对木板进行受力分析,如图所示,根据牛顿第二定律:F-f’=Ma 2,则F=f’+Ma 2, 代入数值得出F =10N 。
(3)设撤去F 时小物块和木板的速度分别为v 1和v 2,撤去F 后,木板与小物块组成的系统动量守恒,当小物块与木板相对静止时,它们具有共同速度V 共 m/s0.4m/s 0.22211====t a v t a v根据动量守恒定律得: mv 1+Mv 2=(m+M ) V 共m/s 310m/s 0.20.10.40.220.1=+⨯+⨯=共V对小物块:根据动能定理: 2122121mv mV fs -=共对木板:根据动能定理:2222121)(Mv MV l s f -='+-共 代入数据:m 32='l所以木板的长度至少为L =l +l '=35m ≈1.7m ) 6.如图所示,一辆M=8kg,长L=2m 的平板小车静止在水平地面上,小车的左端放置一物块(可视为质点)。
已知小车高度h=0.80 m 。
物块的质量m=1.0kg ,它与小车平板间的动摩擦因数μ=0.20。
现用F=26 N 水平向左的恒力拉小车,经过一段时间后,物块与小车分离。
不计小车与地面间的摩擦。
取g=10m/s 2,求:(1)物块与小车分离前,小车向左运动的最大距离; (2)当物块落地时,物块与小车右端的水平距离。
答案:(1)6.0m (2)1.06 m 。
解:(1)21/2sm g a ==μ ①22/3s m MmgF a =-=μ ② 231212==a a v v ③ 12112a v s = ④ 22222a v s = ⑤ 12s s L -= ⑥利用①~⑥并代入数据解得s 2=6m (2) 2'2/826s m M F a ==⑦s ght 4.022==⑧ m t a t v s 66.22122'222'2=+= ⑨m t v s 6.121'1== ⑩m s s 06.111'2=-7.如图所示,水平地面上一个质量M=4.0kg 、长度L=2.0m 的木板,在F=8.0 N 的水平拉力作用下,以v 0=2.0m/s 的速度向右做匀速直线运动。
某时刻将质量m=1.0 kg 的物块(物块可视为质点)轻放在木板最右端。
(1)若物块与木板间无摩擦,求物块离开木板所需的时间; (2)若物块与木板间有摩擦,且物块与木板间的动摩擦因数和木板与地面间的动摩擦因数相等,求将物块放在木板上后,经过多长时间木板停止运动。
(结果保留二位有效数字) 答案:(1)1.2s(2)4.0 s 解(1)2.0===Mg F MgF μμ 2/5.0)(s m Mgm M F a -=+-=μ 2021at t v L += 代入数据得:t ≈1.2s(2)21/2s m g a ==μ 22/1)2(s m M g M m F a -=+-=μ共速时12011t a v t a v +== 解得m v s t 34321==接着一起做匀减速直线运动2/5.0)('s m MM m F a a -=+-==μ直到速度为零,停止运动,s a v t 38'2==总时间s t t t 31021=+=8.(2010长沙市一中卷)如图所示,质量M = 1kg 的木板静止在粗糙的水平地面上,木板与地面间的动摩擦因数μ1=0.1,在木板的左端放置一个质量m =1kg 、大小可以忽略的铁块,铁块与木板间的动摩擦因数μ2=0.4,取g =10m/s 2,试求:(1)若木板长L =1m ,在铁块上加一个水平向右的恒力F =8N ,经过多长时间铁块运动到木板的右端?(2)若在铁块上的右端施加一个大小从零开始连续增加的水平向左的力F ,通过分析和计f 2/N1 02 3 4 56 4 F/N 2 6 8 10 12 14算后,请在图中画出铁块受到木板的摩擦力f 2随拉力F 大小变化的图像。
(设木板足够长)解析:(1)木块的加速度大小 21F mg a mμ-==4m/s 2铁块的加速度大小 212()mg M m ga Mμμ-+==2m/s 2设经过时间t 铁块运动到木板的右端,则有22121122a t a t L -=解得:t =1s(2)①当F ≤ μ1(mg +Mg )=2N 时,A 、B 相对静止且对地静止,f 2=F ②设F =F 1时,A 、B 恰保持相对静止,此时系统的加速度 2a a ==2m/s 2以系统为研究对象,根据牛顿第二定律有11()()F M m g M m a μ-+=+解得:F 1=6N所以,当2N<F ≤6N 时,M 、m 相对静止,系统向右做匀加速运动,其加速度 1()12F M m g Fa M m μ-+==-+,以M 为研究对象,根据牛顿第二定律有 21()f M m g Ma μ-+=, 解得:212Ff =+ ③当F >6N ,A 、B 发生相对运动,22f mg μ==4N画出f 2随拉力F 大小变化的图像如右f 2 /N 1 02 3 4 5 6 4 F/2 6 8 10 12 149.如图所示,质量m 1=0.3 kg 的小车静止在光滑的水平面上,车长L=15 m,现有质量m 2=0.2 kg 可视为质点的物块,以水平向右的速度v 0=2 m/s 从左端滑上小车,最后在车面上某处与小车保持相对静止。
物块与车面间的动摩擦因数μ=0.5,取g=10 m/s 2,求(1)物块在车面上滑行的时间t;(2)要使物块不从小车右端滑出,物块滑上小车左端的速度v ′0不超过多少。
(1)0.24s (2)5m/s【解析】本题考查摩擦拖动类的动量和能量问题。
涉及动量守恒定律、动量定理和功能关系这些物理规律的运用。
(1)设物块与小车的共同速度为v ,以水平向右为正方向,根据动量守恒定律有 ()v m m v m 2102+= ① 设物块与车面间的滑动摩擦力为F ,对物块应用动量定理有022v m v m t F --= ② 其中 g m F 2μ= ③ 解得()gm m v m t 2101+=μ代入数据得 s 24.0=t ④ (2)要使物块恰好不从车厢滑出,须物块到车面右端时与小车有共同的速度v ′,则()v m m v m '+='2102 ⑤ 由功能关系有()gL m v m m v m 22212022121μ+'+=' ⑥ 代入数据解得 =5m/s故要使物块不从小车右端滑出,物块滑上小车的速度v 0′不能超过5m/s 。