高中数学必修三期中测试卷及答案

合集下载

人教A版高中数学必修三试卷高一年级期中考参考答案.docx

人教A版高中数学必修三试卷高一年级期中考参考答案.docx

高中数学学习材料唐玲出品高一年级数学期中考参考答案一、选择题(每题3分,共10题,合计30分) 题号 1 2 3 4 5 6 7 8 9 10 答案BACCBDAAAC二、填空题(每题3分,共7题,合计21分)11.12 12.3 13 .4π14.22 15.202海里/小时 16.272 17.34三、解答题:本大题共5小题,共49分) 18.23k =-或113k =或3132k ±= ……..7分19.解:(1)213()2cos 1cos()cos cos sin 2322xf x x x x x ωπωωωω=-++=+- 332cos sin 3sin 223x x x πωωω⎛⎫=-=+ ⎪⎝⎭,………..3分 由T AB 21==π,得22T ππω==,则1ω=……………..4分 (2)由(1)得33)32sin(3)(=+=πx x f ,则31)32sin(=+πx .由⎪⎭⎫⎝⎛∈2,0πx ,得322)32cos(-=+πx ,……………..6分 =-+=∴)3232sin(sin ππx x 32cos )32sin(ππ+x 32sin)32cos(ππ+-x616223)322()21(31-=⨯---⨯=………………10分 20.解:(I)由已知⎩⎨⎧=-+=+5)1(222232d b q d ∴0322=-+d d 得1=d 或23-=d又012>+=d q ∴1=d ⇒2=q ∴1+=n a n , 212+=n n b (6)分(Ⅱ)集合A 与集合B 的相同元素和为:302222432=+++ ……10分21.解(1)由已知得: cos 3sin cos cos c B b C a c B b C ⋅+==+ 3sin cos b C b C ∴=3tan 3C ∴=6C π∴= … …3分 (2)由正弦定理得2sin sin sin a b c A B C === 2sin ,2sin 2sin()6a Ab B A π∴===+ 22224sin sin ()423sin(2)63a b A A A ππ⎡⎤∴+=++==+-⎢⎥⎣⎦… …7分由于三角形为锐角三角形 32A ππ∴<<3sin(2)123A π∴<-≤ 227423a b ∴<+≤+… …10分22.解:(1)令1n =,则32111+2a S S =,即32111+2a a a =,所以12a =或11a =-或10a =又因为数列{}n a 的各项都是正数,所以12a =令2n =,则3321222+2a a S S +=,即332121212()2()a a a a a a +=+++解得13a =或12a =-或10a = 又数列{}n a 的各项都是正数,所以23a =… …2分 (2)33332123+2(1)n n na a a a S S ++++=33332123111+2(2)(2)n n n a a a a S S n ---∴++++=≥ 由(1)(2)-得32211(+2)(+2)n n n n n a S S S S --=-化简得到212(3)n n n a S S -=++ 21122(3)(4)n n n a S S n ---∴=++≥由(3)(4)-得221112(2)(2)n n n n n n a a S S S S -----=++-++化简得到2211n n n n a a a a ---=+,即11(3)n n a a n --=≥… …6分当2121n a a =-=时,,所以11(2)n n a a n --=≥ 所以数列{}n a 是一个以2为首项,1为公差的等差数列1(1)2(1)1n a a n d n n ∴=+-=+-=+… …8分(3)113(1)2n n n n b λ-+=+-⋅因为对任意的*n N ∈,都有1n n b b +>恒成立,即有12113(1)23(1)2n n n n n n λλ++-++-⋅>+-⋅ 化简得113(1)()32n nλ--<⋅ … …10分当n 为奇数时,13()32n λ<⋅恒成立,113()32λ<⋅,即12λ<当n 为偶数时,13()32n λ>-⋅恒成立,213()32λ>-⋅,即34λ>-3142λ∴-<< … …12分附加题(本大题共10分,每小题5分)1. (0,3⎤⎦2. 372。

【易错题】高中必修三数学上期中试卷及答案

【易错题】高中必修三数学上期中试卷及答案

【易错题】高中必修三数学上期中试卷及答案一、选择题1.以下图,墙上挂有边长为 a 的正方形木板,它的四个角的空白部分都是以正方形的顶点为圆心,半径为a的圆弧,某人向此板投镖,假定每次都能击中木板,且击中木板上每2个点的可能性都同样,则它击中暗影部分的概率是()A.18B.C.14D.与 a 的值有关系42.设m, n分别是先后投掷一枚骰子获得的点数,则方程x2mx n 0 有实根的概率为()191171 A.B.C.D.36361223.某程序框图以下图,若输出的S=57,则判断框内为A. k>4?B.k>5?C. k> 6?D. k>7?4.在本次数学考试中,第二大题为多项选择题.在每题给出的四个选项中,有多项切合题目要求 .所有选对的得 5 分,部分选对的得 3 分,有选错的得0 分,小明因某原由网课没有学习,致使题目均不会做,那么小明做一道多项选择题得 5 分的概率为()A.1B.1C.1D.1 15121145.甲、乙两名射运分行了5次射,成(位:)以下:甲: 7, 8,8, 8, 9乙: 6,6, 7, 7, 10;x1, x2表示,方差分22若甲、乙两名运的均匀成分用S1 , S2表示,()A.x1x2 , s12s22B.x1x2 , s12s22C.x1x2 , s12s22D.x1x2, s12s226.用秦九韶算法求多式 f x7x55x43x2x2x 2 在 x 2 的,令v0 a5, v1v0 x 5 ,⋯, v5v4x 2 , v3的()A. 83B. 82C. 166D. 1677.某校高一 1 班、 2 班分有10 人和 8 人自行上学,他每日行行程(位:千米)的茎叶如所示:1 班 10 人每日行行程的极差和2 班 8 人每日行行程的中位数分是A. 14, 9.5B.9,9C. 9, 10D. 14, 98.已知a 0, b0, a b 2, y 14) a的最小是 (b7B. 49D. 5A.C.229.行如所示的程序框,出的果是()A.5B.7C.9D.1110.将一骰子两次,察出的点数,并第一次出的点数m,第二次出的点数n,向量uv vp =(m,n), q =(3,6).向量uv vp 与 q 共的概率()A.1111B.4C.D.361211.我国古代名著《庄子g天下篇》中有一句名言“一尺之棰,日取其半,万世不断”,其意思为:一尺的木棍,每日截取一半,永久都截不完.现将该木棍依此规律截取,如图所示的程序框图的功能就是计算截取7 天后所剩木棍的长度( 单位:尺 ) ,则①②③处可分别填入的是 ( )A.i7?, s s 1, i i +1B.i128?, s s1,i2i i iC.i7?, s s 1i +1D.i128?, s s12i , i,i2i2i12.为认识某社区居民的家庭年收入所年支出的关系,随机检查了该社区 5 户家庭,获得以下统计数据表:收入 x (万8.28.610.011.311.9元)支出 y (万6.27.58.08.59.8元)依据上表可得回归直线方程???,其中???,据此预计,该社区一bx bxy a b 0.76, a y户收入为 15万元家庭年支出为()A. 11.4 万元B. 11.8 万元C. 12.0 万元D. 12.2 万元二、填空题13.以下说法正确的个数有_________(1)已知变量x 和y 知足关系y2x 3 ,则x 与y 正有关;(2)线性回归直线必过点x, y;(3)对于分类变量 A 与B 的随机变量k2, k 2越大说明“ A 与B有关系”的可信度越大(4)在刻画回归模型的拟合成效时,残差平方和越小,有关指数R2的值越大,说明拟合的成效越好.14.古代“五行”学说以为:“物质分金、木、水、火、土五种属性,金克木,木克土,土克水,水克火,火克金”,从五种不一样属性的物质中随机抽取两种,则抽取的两种物质不相克的概率为_________15.一盒中有 6 个乒乓球,其中 4 个新的, 2 个旧的,从盒子中任取 3 个球来用,用完后装回盒子中,此时盒中旧球个数X 是一个随机变量,则P(X4) 的值为___________ . 16.某商家察看发现某种商品的销售量x 与气温y呈线性有关关系,其中组样本数据以下表:已知该回归直线方程为y? 1.02x a? ,则实数a?__________.17.履行以下图的流程图,则输出的的值为.18.下方茎叶图记录了甲、乙两组各 5 名学生在一次英语听力测试中的成绩( 单位:分) .已知甲组数据的中位数为14 ,乙组数据的均匀数为16 ,则x y 的值为__________.19.为了在运转下边的程序以后获得输出y= 25,键盘输入x 应当是 ____________. INPUT xIF x<0 THENy=(x+1) (x+1)ELSEy=(x-1) (x-1)END IFPRINT yEND20.某路公共汽车每 5 分钟发车一次,某乘客到搭车点的时辰是随机的,则他候车时间不超出 3 分钟的概率是 _______.三、解答题21.PM 2.5的值表示空气中某种颗粒物的浓度,往常用来代表空气的污染状况,这个值越高,空气污染越严重,下表是某城市展开“绿色出行,健康生活”活动,居民每日采纳“绿色出行”的人数与PM 2.5值的一组数据:PM 2.5的值y907050403020“绿色出行”的人数 x (单位:万人)124689(1)已知“绿色出行”的人数x 和PM 2.5值y有线性有关性,求y 对于x的线性回归方程;(计算结果保存两位小数)(2)若某日“绿色出行”的人数为10 万人,请展望该市PM 2.5的值 .(计算结果保存一位小数)参照公式:nx i y i nx y ?b i 1?n, a y bxx i2nx 2i 122.某工厂有工人 1000 名,其中 250 名工人参加太短期培训(称为 A 类工人),此外 750 名工人参加过长久培训(称为 B 类工人) .现用分层抽样方法(按 A 类, B 类分二层)从该工厂的工人中共抽查100 名工人,检查他们的生产能力(生产能力指一天加工的部件数).(1) A 类工人中和 B 类工人中各抽查多少工人?(2)从 A 类工人中的抽查结果和从 B 类工人中的抽查结果分别以下表1和表 2.表一生产能力分100110110 120)[120,130)[130140) [140,150组[,)[,,)人数48x53表二生产能力分组[110,120)120 130)130140140150[,[,)[,)人数6y3618①先确立 x, y 再补全以下频次散布直方图(用暗影部分表示).②就生产能力而言, A 类工人中个体间的差别程度与B类工人中个体间的差别程度哪个更小?(不用计算,可经过察看直方图直接回答结论)③分别预计 A 类工人生产能力的均匀数和中位数(求均匀数时同一组中的数据用该组区间的中点值作代表) .23.某市统计局就某地居民的月收入检查了10000 人,并依据所得数据画出样本的频次分布直方图(每个分组包含左端点,不包含右端点,如第一组表示收入在1000,1500 ) .(1)求居民收入在 3000,3500 的频次;(2)依据频次散布直方图算出样本数据的中位数;(3)为了剖析居民的收入与年纪、职业等方面的关系,一定按月收入再从这10000 人中按分层抽样方法抽出100 人作进一步剖析,则月收入在2500,3000 的这段应抽取多少人?24.某校研究性学习小组从汽车市场上随机抽取20 辆纯电动汽车,检查其续驶里程(单次充电后能行驶的最大里程),被检查汽车的续驶里程所有介于50 公里和 300 公里之间,将统计结果分红 5 组:50,100 , 100,150 , 150,200 , 200,250 , 250,300 ,绘制成如图所示的频次散布直方图.(1)求直方图中x 的值及续驶里程在200,300 的车辆数;(2)若从续驶里程在200,300 的车辆中随机抽取 2 辆车,求其中恰有一辆车的续驶里程在 200,250 内的概率.25.某学校随机抽取部分学生检查其上学路上所需时间(单位:分钟),并将所得数据制成频次散布直方图(如图),若上学路上所需时间的范围为0,100 ,样本数据分组为0,20 , 20,40 , 40,60 , 60,80 , 80,100 .(1)求直方图中 a 的值;(2)假如上学路上所需时间许多于40 分钟的学生可申请在学校住宿,若招收学生1200人,请预计所招学生中有多少人能够申请住宿;(3)求该校学生上学路上所需的均匀时间.26.菜农按期使用低害杀虫农药对蔬菜进行喷洒,以防备害虫的危害,但收集上市时蔬菜仍存有少许的残留农药,食用时需要用清水冲洗洁净,下表是用清水x( 单位:千克 ) 冲洗该蔬菜 1 千克后,蔬菜上残留的农药 y( 单位:微克 ) 的数据作了初步办理,获得下边的散点图及一些统计量的值.y(微克)x(千克)v uv v y wx828288x i x w i w x i x y i y w i w y i y i 1i 1i 1i1338 11 10374-121-751其中x2()依据散点图判断,?bx a 与 y? dx2 c ,哪一个适合作为蔬菜农药残量?I y y 与用水量 x 的回归方程种类(给出判断即可,不用说明原由);()若用分析式?2y?x 的回归方程,求出 y?x 的回Ⅱy dx c 作为蔬菜农药残量与用水量与归方程. (c , d 精准到 0.1)( Ⅲ) 对于某种残留在蔬菜上的农药,当它的残留量低于20微克时对人体无害,为了放心食用该蔬菜,请预计需要用多少千克的清水冲洗一千克蔬菜?( 精准到 0.1 ,参照数据5 2.236 )附:参照公式:回归方程???中斜率和截距的最小二乘预计公式分别为:bxy an?x i x y i y?i 1,a? yb n2bxx i xi 1【参照答案】 *** 试卷办理标志,请不要删除一、选择题1.C分析: C【分析】试题剖析:此题考察几何概型问题,击中暗影部分的概率为a2(a)22.1a24考点:几何概型,圆的面积公式.2.A分析: A【分析】由题意知此题是一个等可能事件的概率,试验发生包含的事件数是6×6=36 种结果,方程 x2+mx+n=0 有实根要知足m2-4 n? 0,当 m=2, n=1m=3, n=1, 2m=4, n=1, 2, 3, 4m=5, n=1, 2, 3, 4, 5,6,m=6, n=1, 2, 3, 4, 5,6综上可知共有1+2+4+6+6=19 种结果∴方程 x2+mx+n=0 有实根的概率是19;36此题选择 A 选项 .3.A分析: A【分析】试题剖析:由程序框图知第一次运转k 112, S22 4 ,第二次运转k213, S8 3 11 ,第三次运转 k314, S22426 ,第四次运转k4154,S 52 5 57 ,输出S57 ,所以判断框内为k 4? ,应选 C.考点:程序框图.4.C分析: C【分析】【剖析】依据题意联合组合的知识可知,总的答案的个数为11 个,而正确的答案只有 1 个,依据古典概型的计算公式,即可求得结果.【详解】总的可选答案有:AB,AC ,AD ,BC,BD ,CD,ABC , ABD , ACD , BCD , ABCD ,共 11 个,而正确的答案只有 1 个,即得 51分的概率为 p.11应选: C.【点睛】此题考察了古典概型的基本知识,重点是弄清一共有多少个备选答案,属于中档题. 5.B分析: B【分析】【剖析】计算x18 , x27.2 ,s120.4, s22 2.16获得答案 .【详解】78889667710x158 , x257.2 ,故x1x2.7 2 8 82 2 8 2 9 82s 288 880.4 ;156 26 27 7.222 102s 227.27.277.27.22252.16,故s1s 2 .应选: B. 【点睛】此题考察了均匀值和方差的计算,意在考察学生的计算能力和察看能力.6.A分析: A【分析】【剖析】利用秦九韶算法,求解即可 .【详解】利用秦九韶算法,把多项式改写为以下形式:f ( x) ((((7 x 5) 3)x 1)x 1)x 2依据从里到外的次序,挨次计算一次多项式当x 2 时的值:v 0 7v 1 7 2 5 19v 2 19 2 3 41v 3 41 2 1 83应选: A 【点睛】此题主要考察了秦九韶算法的应用,属于中档题.7.A分析: A【分析】2 班共有 8 个数据,中间两个是 9 和 10,因其中位数为 9.5,只有 A 切合,应选 A .( 1 班10 个数据最大为 22,最小为 8,极差为 14).8.C分析: C【分析】【剖析】由题意联合均值不等式的结论即可求得1 4 y的最小值,注意等号成立的条件 .a b【详解】由题意可得:141a b 141b4ayb2a b25ba a12b4a95a b2,2当且仅当 a 2,b4时等号成立 . 3314的最小值是9.即 yb2a应选: C.【点睛】在应用基本不等式求最值时,要掌握不等式成立的三个条件,就是“——各项均为正;一正二定——积或和为定值;三相等——等号可否获得”,若忽视了某个条件,就会出现错误.9.C分析: C【分析】循环挨次为 S123, K123;S3 6 9,K325; S910 19,K 5 2 7;S191433, K729; 结束循环,输出 K9;选C.10.D分析: D【分析】【剖析】ur r36 种结果,再列举出向量由将一枚骰子投掷两次共有p 与q 共线的基本领件的个数,利用古典概型及其概率的计算公式,即可求解。

2020-2021厦门市双十中学高中必修三数学上期中试卷(附答案)

2020-2021厦门市双十中学高中必修三数学上期中试卷(附答案)

2020-2021厦门市双十中学高中必修三数学上期中试卷(附答案)一、选择题1.如图所示,墙上挂有边长为a 的正方形木板,它的四个角的空白部分都是以正方形的顶点为圆心,半径为2a的圆弧,某人向此板投镖,假设每次都能击中木板,且击中木板上每个点的可能性都一样,则它击中阴影部分的概率是 ( )A .18π-B .4π C .14π-D .与a 的值有关联2.一组数据的平均数为m ,方差为n ,将这组数据的每个数都乘以()0a a >得到一组新数据,则下列说法正确的是( ) A .这组新数据的平均数为m B .这组新数据的平均数为a m + C .这组新数据的方差为an D .这组新数据的标准差为a n3.在区间上随机取两个数,x y ,记1p 为事件“12x y +≥”的概率,2p 为事件“12x y -≤”的概率,3p 为事件“12xy ≤”的概率,则 ( ) A .123p p p << B .231p p p << C .312p p p <<D .321p p p <<4.在去年的足球甲A 联赛上,一队每场比赛平均失球数是1.5,全年比赛失球个数的标准差为1.1;二队每场比赛平均失球数是2.1,全年失球个数的标准差是0.4,你认为下列说法中正确的个数有( )①平均来说一队比二队防守技术好;②二队比一队防守技术水平更稳定;③一队防守有时表现很差,有时表现又非常好;④二队很少不失球. A .1个 B .2个C .3个D .4个5.设a 是甲抛掷一枚骰子得到的点数,则方程220x ax ++=有两个不相等的实数根的概率为( ) A .23B .13C .12D .5126.统计某校n 名学生的某次数学同步练习成绩,根据成绩分数依次分成六组:[)[)[)[)[)[]90,100,100,110,110,120,120,130,130,140,140,150,得到频率分布直方图如图所示,若不低于140分的人数为110.①0.031m =;②800n =;③100分以下的人数120,140的人数占大半.则说法正确的是()为60;④分数在区间[)A.①②B.①③C.②③D.②④7.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为()A.2,5 B.5,5 C.5,8 D.8,88.微信中有个“微信运动”,记录一天行走的步数,小王的“微信步数排行榜”里有120个人,今天,他发现步数最少的有0.85万步,最多的有1.79万步.于是,他做了个统计,作出下表,请问这天大家平均走了多少万步?()A.1.19B.1.23C.1.26D.1.319.远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”,如图所示的是一位母亲记录的孩子自出生后的天数,在从右向左依次排列的不同绳子上打结,满七进一,根据图示可知,孩子已经出生的天数是()A.336B.510C.1326D.360310.若框图所给的程序运行结果为,那么判断框中应填入的关于k 的条件是A .?B .?C .?D .?11.已知函数()cos3xf xπ=,根据下列框图,输出S的值为()A.670B.16702C.671D.67212.已知平面区域()2,4yx yy x⎧⎫≥⎧⎪⎪Ω=⎨⎨⎬≤-⎪⎪⎪⎩⎩⎭,直线2y mx m=+和曲线24y x=-有两个不的交点,它们围成的平面区域为M,向区域Ω上随机投一点A,点A落在区域M内的概率为()P M.若01m≤≤,则()P M的取值范围为()A.22,π-⎛⎤⎥π⎝⎦B.22,π+⎛⎤⎥π⎝⎦C.212,π+⎡⎤⎢⎥π⎣⎦D.212,π-⎡⎤⎢⎥π⎣⎦二、填空题13.已知某人连续5次投掷飞镖的环数分别是8,9,10,10,8,则该组数据的方差为______.14.执行如下图所示的程序框图,若输入n的值为6,则输出S的值为__________.15.执行如图所示的程序框图,则输出S的结果为________.16.用秦九韶算法计算多项式f(x)=2x 4-x 3+3x 2+7,在求x=2时对应的值时,v 3的值为___. 17.以下四个命题错误的序号为_______(1) 样本频率分布直方图中小矩形的高就是对应组的频率.(2) 过点P(2,-2)且与曲线33y x x =-相切的直线方程是9160x y +-=.(3) 若样本1210,,x x x L 的平均数是5,方差是3,则数据121021,21,,21x x x +++L 的平均数是11,方差是12.(4) 抛掷一颗质地均匀的骰子,事件“向上点数不大于4”和事件“向上点数不小于3”是对立事件.18.已知样本数据12345,,,,a a a a a 的方差222222123451(20)5s a a a a a =++++-,则样本数据1234521,21,21,21,21a a a a a +++++的平均数为__________.19.为了了解某地区高三学生的身体发育情况,抽查了该地区400名年年龄为17岁~18岁的男生体重()kg ,得到频率分布直方图如图5所示:根据图2可得这200名学生中体重在[64.5,76.5]的学生人数是__________. 20.已知变量,x y 之间的一组数据如下表:x0 1 2 3 y 1357则y 与x 的线性回归方程y b x a ∧∧∧=+必过点_______________三、解答题21.一台还可以用的机器由于使用的时间较长,它按不同的转速生产出来的某机械零件有一些会有缺陷,每小时生产有缺陷零件的多少随机器运转的速率而变化,下表为抽样试验结果:(1)画出散点图;(2)如果y 与x 有线性相关的关系,求回归直线方程;(3)若实际生产中,允许每小时生产的产品中有缺陷的零件最多为10个,那么机器的运转速度应控制在什么范围内?22.某车间为了规定工时额定,需要确定加工零件所花费的时间,为此作了6次试验,得到数据如下:(1)试对上述变量x 与y 的关系进行相关性检验,如果x 与y 具有线性相关关系,求出y 对x 的回归直线方程;(2)根据(1)的结论,你认为每小时加工零件的数量额定为多少(四舍五入为整数)比较合理?附:相关性检验的临界值表()()nniii ix x y y x y nx yr ---==∑∑()()()1122211n niii ii i nni i i i x x y y x y nx ybx xx nx====---==--∑∑∑∑$,$$y abx =+$42.0≈27.5≈23.现从某医院中随机抽取了7位医护人员的关爱患者考核分数(患者考核:10分制),用相关的特征量y 表示;医护专业知识考核分数(试卷考试:100分制),用相关的特征量x 表示,数据如下表:(1)求y 关于x 的线性回归方程(计算结果精确到0.01);(2)利用(1)中的线性回归方程,分析医护专业考核分数的变化对关爱患者考核分数的影响,并估计当某医护人员的医护专业知识考核分数为95分时,他的关爱患者考核分数(精确到0.1).参考公式及数据:回归直线方程ˆˆˆybx a =+中斜率和截距的最小二乘法估计公式分别为 121(x x)(y y)ˆˆˆ,(x x)niii nii ba y bx ==--==--∑∑,其中72193,9.3,()()9.9i ii x y x x y y ===--=∑. 24.从某居民区随机抽取10个家庭,获得第i 个家庭的月收入i x (单位:千元)与月储蓄i y (单位:千元)的数据资料,计算得10180i i x ==∑,101120i i y ==∑,101184i i i x y ==∑,1021720ii x==∑.(1)求家庭的月储蓄y 关于月收入x 的线性回归方程y bx a =+$$$,并判断变量x 与y 之间是正相关还是负相关;(2)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.(注:线性回归方程y bx a =+$$$中,1221ni ii nii x y nx yb xnx==-⋅=-∑∑$,其中x ,y 为样本平均值.)25.一个盒子中装有4张卡片,每张卡片上写有1个数字,数字分别是1、2、3、4,现从盒子中随机抽取卡片.(Ⅰ)若一次从中随机抽取3张卡片,求3张卡片上数字之和大于或等于7的概率; (Ⅱ)若第一次随机抽取1张卡片,放回后再随机抽取1张卡片,求两次抽取的卡片中至少一次抽到数字2的概率.26.[2019·朝鲜中学]在如图所示的程序框图中,有这样一个执行框1()i i x f x -=,其中的函数关系式为42()1x f x x -=+,程序框图中的D 为函数()f x 的定义域.(1)若输入04965x =,请写出输出的所有x 的值; (2)若输出的所有i x 都相等,试求输入的初始值0x .【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】试题分析:本题考查几何概型问题,击中阴影部分的概率为222()214a a a ππ-=-.考点:几何概型,圆的面积公式.2.D解析:D 【解析】 【分析】计算得到新数据的平均数为am ,方差为2a n ,标准差为a n ,结合选项得到答案. 【详解】根据题意知:这组新数据的平均数为am ,方差为2a n ,标准差为a n . 故选:D 【点睛】本题考查了数据的平均值,方差,标准差,掌握数据变化前后的关系是解题的关键.3.B解析:B 【解析】 【分析】 【详解】因为,[0,1]x y ∈,对事件“12x y +≥”,如图(1)阴影部分,对事件“12x y -≤”,如图(2)阴影部分, 对为事件“12xy ≤”,如图(3)阴影部分,由图知,阴影部分的面积从下到大依次是,正方形的面积为,根据几何概型公式可得231p p p <<.(1) (2) (3) 考点:几何概型.4.D解析:D 【解析】在(1)中,一队每场比赛平均失球数是1.5,二队每场比赛平均失球数是2.1, ∴平均说来一队比二队防守技术好,故(1)正确;在(2)中,一队全年比赛失球个数的标准差为1.1,二队全年比赛失球个数的标准差为0.4,∴二队比一队技术水平更稳定,故(2)正确;在(3)中,一队全年比赛失球个数的标准差为1.1,二队全年比赛失球个数的标准差为0.4,∴一队有时表现很差,有时表现又非常好,故(3)正确;在(4)中,二队每场比赛平均失球数是2.1,全年比赛失球个数的标准差为0.4, ∴二队很少不失球,故(4)正确. 故选:D .5.A解析:A 【解析】分析:可以按照等可能时间的概率来考虑,可以先列举出试验发生包含的事件数,再求出满足条件的事件数,从而根据概率计算公式求解.详解:因为a 是抛掷一枚骰子得到的点数,所以试验发生包含的事件总数为6, 方程220x ax ++=有两个不等实根,所以280a ->, 以为a 为正整数,所以3,4,5,6a =,即满足条件的事件有4种结果,所以所求的概率为4263P ==,故选A. 点睛:本题主要考查的是古典概型及其概率计算公式.,属于基础题.解题时要准确理解题意,先要判断该概率模型是不是古典概型,利用排列组合有关知识,正确找出随机事件A 包含的基本事件的个数和试验中基本事件的总数代入公式()()n A P n =Ω.6.B解析:B 【解析】 【分析】根据频率分布直方图的性质和频率分布直方图中样本估计总体,准确运算,即可求解. 【详解】由题意,根据频率分布直方图的性质得10(0.0200.0160.0160.0110.006)1m +++++=,解得0.031m =.故①正确;因为不低于140分的频率为0.011100.11⨯=,所以11010000.11n ==,故②错误; 由100分以下的频率为0.00610=0.06⨯,所以100分以下的人数为10000.06=60⨯,故③正确;分数在区间[120,140)的人数占0.031100.016100.47⨯+⨯=,占小半.故④错误. 所以说法正确的是①③. 故选B. 【点睛】本题主要考查了频率分布直方图的应用,其中解答熟记频率分布直方图的性质,以及在频率分布直方图中,各小长方形的面积表示相应各组的频率,所有小长方形的面积的和等于1,着重考查了分析问题和解答问题的能力,属于基础题.7.C解析:C 【解析】试题分析:由题意得5x =,116.8(915101824)85y y =+++++⇒=,选C. 考点:茎叶图8.C解析:C 【解析】 【分析】根据频率分布直方图中平均数的计算方法求解即可. 【详解】由题,区间[)[)[)[)0.8,1.0,1.0,1.2,1.2,1.4,1.6,1.8所占频率分别为:0.20.50.1,0.2 1.250.25,0.2 2.250.45,0.20.250.05,⨯=⨯=⨯=⨯=故区间[)1.4,1.6所占频率为10.10.250.450.050.15----=. 故0.90.1 1.10.25 1.30.45 1.50.15 1.70.05 1.26x =⨯+⨯+⨯+⨯+⨯=. 故选:C 【点睛】本题主要考查了补全频率分布直方图的方法以及根据频率分布直方图计算平均数的问题.属于中档题.9.B解析:B 【解析】试题分析:由题意满七进一,可得该图示为七进制数, 化为十进制数为321737276510⨯+⨯+⨯+=,故选B.考点:1、阅读能力及建模能力;2、进位制的应用.10.A【解析】 【分析】根据所给的程序运行结果为,执行循环语句,当计算结果S 为20时,不满足判断框的条件,退出循环,从而到结论.【详解】由题意可知输出结果为, 第1次循环,,, 第2次循环,,,此时S 满足输出结果,退出循环,所以判断框中的条件为.故选:A . 【点睛】本题主要考查了循环结构,是当型循环,当满足条件,执行循环,同时考查了推理能力,属于基础题.11.C解析:C 【解析】 【分析】根据框图的流程,依次计算前六次的运算结果,判断终止运行的n 值,再根据余弦函数的周期性计算即可. 【详解】由程序框图知:第一次运行()11cos 32f π==,10.1122S n =+=+=; 第二次运行()212cos32f π==-,12S =,213n =+=, 第三次运行()3cos 1f π==-,12S =,314n =+=, 第四次运行()414cos 32f π==-,12S =,415n =+=, 第五次运行()515cos32f π==,1S =,6n =, 第六次运行()6cos21f π==,2S =,7n =, 直到2016n =时,程序运行终止,Q 函数cos3n y π=是以6为周期的周期函数,201563355=⨯+, 又()()2016cos336cos 21381f ππ==⨯=,∴若程序运行2016次时,输出2336672S =⨯=, ∴程序运行2015次时,输出33621671S =⨯-=.【点睛】本题考查了循环结构的程序框图,根据框图的流程判断算法的功能是解答本题的关键.12.D解析:D 【解析】 【分析】判断平面区域,利用特殊值法排除选项,然后利用特殊法,即可求解相应概率的范围,得到答案. 【详解】由题意知,平面区域()20,4y x y y x ⎧⎫≥⎧⎪⎪⎪Ω=⎨⎨⎬≤-⎪⎪⎪⎩⎩⎭,表示的图形是半圆是半圆以及内部点的集合,如图所示,又由直线2y mx m =+过半圆24y x =-上一点(2,0)-,当0m =时直线与x 轴重合,此时()1P M =,故可排除,A B , 若1m =,如图所示,可求得2()2P M ππ-=, 所以()P M 的取值范围为212,π-⎡⎤⎢⎥π⎣⎦.【点睛】本题主要考查了集合概型的应用,其中解答中判断平面区域,利用特殊值法排除选项,然后利用特殊法,求解相应概率的范围是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.二、填空题13.【解析】14.15【解析】程序执行过程为:当i=1s=1i<6s=1当i=3i<6s=3当i=5i<6s=15当i=7i>6退出s=15填15解析:15 【解析】 程序执行过程为:当i=1,s=1,i<6,s=1,当i=3,i<6,s=3,当i=5,i<6,s=15,当i=7,i>6,退出s=15.填15.15.30【解析】时继续时继续时停止输出点睛:本题考查的是算法与流程图算法与流程图的的考查侧重于对流程图循环结构的考查先明晰算法及流程图的相关概念包括选择结构循环结构伪代码其次要重视循环起点条件循环次数循解析:30 【解析】3i =时,0236S =+⨯=,继续, 5i =时,62516S =+⨯=,继续,7i =时,162730S =+⨯=,停止, 输出30S =.点睛:本题考查的是算法与流程图.算法与流程图的的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.16.【解析】f(x)=2x4-x3+3x2+7=(((2x-1)x+3)x)x+7∴v0=2v1=2×2-1=3v2=3×2+3=9v3=9×2=18故答案为:18解析:【解析】f (x )=2x 4-x 3+3x 2+7=(((2x -1)x +3)x )x +7, ∴v 0=2,v 1=2×2-1=3,v 2=3×2+3=9,v 3=9×2=18. 故答案为:18.17.(1)(2)(4)【解析】分析:(1)频率分布直方图中每个小矩形的高不该组的频率值;(2)先考虑点是切点的情形求出切线方程然后设切点为(x0y0)根据切点与点(2-2)的斜率等于切线的斜率建立等量关解析:(1)(2)(4) 【解析】分析:(1)频率分布直方图中每个小矩形的高不该组的频率值;(2)先考虑点22-(,)是切点的情形,求出切线方程,然后设切点为(x 0,y 0),根据切点与点(2,-2)的斜率等于切线的斜率建立等量关系,解之即可求出切点,从而求出切线方程.对于(3),利用平均数与方差的性质分别进行解答即可得出答案. 对于(4),由对立事件的定义可知其错误.详解:对于(1),频率分布直方图中每个小矩形的高是该组的频率与组距的比值,∴(1)错误;对于(2), 设直线222233|9x l y k x y x y =+=-'=-∴'=-Q :().,, 又∵直线与曲线均过点22-(,),于是直线22y k x ()+=- 与曲线33y x x =- 相切于切点22-(,)时,9k =-. 若直线与曲线切于点0002x y x ≠(,)(), 则320000000002232122y y k y x x x x x x ++==-∴=-----Q ,,,又200|33k y x x x ='==-Q ,2220000021332240x x x x x ∴---=-∴--=,, 200021330x x k x ≠∴=-∴=-=Q ,,,故直线l 的方程为9160x y +-=或2y =-.故(2)错;对于(3),若样本1210,,x x x L 的平均数是5,方差是3,则数据121021,21,,21x x x +++L 的平均数是25111,⨯+= ,方差是22312⨯=.故(3)正确;对于(4),掷一颗质地均匀的骰子,事件“向上点数不大于4”和事件“向上点数不小于3”不是对立事件.故(4)错误. 故选(1)(2)(4)点睛:本题考查了频率分布直方图的应用问题,考查了利用导数研究曲线上某点切线方程,考查了样本平均数,方差,考查了对立事件的定义,是基础题..18.或【解析】设样本数据的平均数为则方差:结合可得:即样本数据的平均数为2或-2则样本数据的平均数为:或故答案为或点睛:平均数与方差都是重要的数字特征是对总体的一种简明的描述它们所反映的情况有着重要的实解析:5或3- 【解析】设样本数据的平均数为a ,则方差:()()522152215522115221522115125125512555155i i i i i i i i i i i i i s a a a aa a a a a a a a a a a a =======-=-+⎛⎫=-+ ⎪⎝⎭⎛⎫=-⨯+ ⎪⎝⎭⎛⎫=- ⎪⎝⎭∑∑∑∑∑∑ 结合()222222123451205s a a a a a =++++-可得:2520,2a a =∴=±, 即样本数据12345,,,,a a a a a 的平均数为2或-2,则样本数据1234521,21,21,21,21a a a a a +++++的平均数为:2215⨯+=或()2213⨯-+=-.故答案为5或3-.点睛:平均数与方差都是重要的数字特征,是对总体的一种简明的描述,它们所反映的情况有着重要的实际意义,平均数、中位数、众数描述其集中趋势,方差和标准差描述其波动大小.要注意其区别与联系.19.232【解析】由图可知:段的频率为则频数为人解析:232 【解析】由图可知:64.576.5~段的频率为1(0.010.030.050.050.07)20.58-++++⨯=, 则频数为4000.58232⨯=人.20.【解析】由题意∴x 与y 组成的线性回归方程必过点(154) 解析:()1.5,4【解析】由题意,()()110123 1.5,1357444x y =+++==+++= ∴x 与y 组成的线性回归方程必过点(1.5,4)三、解答题21.(1)见解析;(2)ˆ0.72860.8575yx =-;(3)机器的转速应控制在14.9转/秒以下 【解析】 【分析】(1)由表中数据做图(2)根据线性回归方程中公式求ˆ,ba 即可写出方程(3)利用线性回归方程建立不等式求解. 【详解】(1)画出散点图,如图所示:(2)4421112.5,8.25,438,660,i ii i i x y x yx ======∑∑41422214438412.58.250.7286660412.ˆ54i i i i i x y xy bx x ==--⨯⨯∴==≈-⨯-∑∑,8.250.728612.50.857ˆˆ5ay bx =-≈-⨯=-. 故回归直线方程为0.72860.8575ˆyx =-. (3)要使100.72860.857510y x ≤-≤,则,14.9019x ≤.故机器的转速应控制在14.9转/秒以下. 【点睛】本题主要考查了散点图,线性回归方程,利用线性回归方程解决问题,属于中档题. 22.(1)答案见解析.(2)96 【解析】 【分析】(1)根据表中所给数据,计算出||r ,即可求得答案.(2)每小时加工零件的数量,即60x =,将60x =代入ˆ0.65757yx =+,即可求得答案. 【详解】(1)由表中数据得:6117950i ii x y==∑,6219100i i x ==∑,62139158i i y ==∑,35,80x y ==∴0.05||0.997r r ==>从而有95%的把握认为x 与y 之间具有线性相关关系,∴此求回归直线方程是有意义的.计算得:ˆˆ0.657,57ba== ∴ˆ0.65757yx =+ (2)Q 每小时加工零件的数量,即60x =将60x =代入ˆ0.65757y x =+ ˆ96.42y= 故每小时加工零件的数量额定为96比较合理 【点睛】本题考查回归直线方程以及应用,考查基本分析与求解能力,属基本题.23.(1) ˆ0.12 1.93yx =-. (2) 随着医护专业知识的提高,个人的关爱患者的心态会变得更温和,耐心。

【好题】高中必修三数学上期中试卷(及答案)

【好题】高中必修三数学上期中试卷(及答案)

【好题】高中必修三数学上期中试卷(及答案)一、选择题1.如图所示,墙上挂有边长为a 的正方形木板,它的四个角的空白部分都是以正方形的顶点为圆心,半径为2a的圆弧,某人向此板投镖,假设每次都能击中木板,且击中木板上每个点的可能性都一样,则它击中阴影部分的概率是 ( )A .18π-B .4π C .14π-D .与a 的值有关联2.函数()log a x xf x x=(01a <<)的图象大致形状是( )A .B .C .D .3.右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入,a b 分别为14,18,则输出的a =( )A .0B .2C .4D .144.已知变量,x y 之间满足线性相关关系ˆ 1.31yx =-,且,x y 之间的相关数据如下表所示: x 1 2 3 4 y0.1m3.14则实数m =( ) A .0.8B .0.6C .1.6D .1.85.我校高中生共有2700人,其中高一年级900人,高二年级1200人,高三年级600人,现采取分层抽样法抽取容量为135的样本,那么高一、高二、高三各年级抽取的人数分别为 ( ) A .45,75,15B .45,45,45C .45,60,30D .30,90,156.统计某校n 名学生的某次数学同步练习成绩,根据成绩分数依次分成六组:[)[)[)[)[)[]90,100,100,110,110,120,120,130,130,140,140,150,得到频率分布直方图如图所示,若不低于140分的人数为110.①0.031m =;②800n =;③100分以下的人数为60;④分数在区间[)120,140的人数占大半.则说法正确的是( )A .①②B .①③C .②③D .②④7.有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为 A .45B .35C .25D .158.某城市2017年的空气质量状况如下表所示: 污染指数T 3060100110130140概率P110 16 13 730 215 130其中污染指数50T ≤时,空气质量为优;50100T <≤时,空气质量为良;100150T <≤时,空气质量为轻微污染,该城市2017年空气质量达到良或优的概率为( )A .35B .1180 C .119 D .569.运行该程序框图,若输出的x 的值为16,则判断框中不可能填( )A .5k ≥B .4k >C .9k ≥D .7k >10.若框图所给的程序运行结果为,那么判断框中应填入的关于k 的条件是A .?B .?C .?D .?11.下列命题:①对立事件一定是互斥事件;②若A ,B 为两个随机事件,则P(A∪B)=P(A)+P(B);③若事件A ,B ,C 彼此互斥,则P(A)+P(B)+P(C)=1;④若事件A ,B 满足P(A)+P(B)=1,则A 与B 是对立事件. 其中正确命题的个数是( ) A .1B .2C .3D .412.如图所示是为了求出满足122222018n +++>L 的最小整数n ,和两个空白框中,可以分别填入( )A .2018S >?,输出1n -B .2018S >?,输出nC .2018S ≤?,输出1n -D .2018S ≤?,输出n二、填空题13.执行如图所示的程序框图,则输出的m 的值为____.14.某高中校高一、高二、高三三个年级人数分别为300,300,400通过分层抽样从中抽取40人进行问卷调查,高三抽取的人数是______.15.已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边,若3b =,三内角A ,B ,C 成等差数列,则该三角形的外接圆半径等于______________;16.在区间[]3,3-上随机取一个数x ,使得11x +≥成立的概率为______. 17.执行如图所示的框图,输出值______.18.假设在5秒内的任何时刻,两条不相关的短信机会均等地进入同一部手机,若这两条短信进入手机的时间之差小于2秒,手机就会受到干扰,则手机受到干扰的概率为_________________19.一盒中有6个乒乓球,其中4个新的,2个旧的,从盒子中任取3个球来用,用完后装回盒子中,此时盒中旧球个数X 是一个随机变量,则(4)P X =的值为___________.20.在1270x y x y x -≤⎧⎪+≤⎨⎪>⎩的可行域内任取一点(),x y ,则满足230x y -≥的概率是__________.三、解答题21. 2.5PM 的值表示空气中某种颗粒物的浓度,通常用来代表空气的污染情况,这个值越高,空气污染越严重,下表是某城市开展“绿色出行,健康生活”活动,居民每天采用“绿色出行”的人数与 2.5PM 值的一组数据:2.5PM 的值y90 70 50 40 30 20 “绿色出行”的人数x (单位:万人) 124689(1)已知“绿色出行”的人数x 和 2.5PM 值y 有线性相关性,求y 关于x 的线性回归方程;(计算结果保留两位小数)(2)若某日“绿色出行”的人数为10万人,请预测该市 2.5PM 的值.(计算结果保留一位小数) 参考公式:1221ˆˆ,ni ii nii x y nx yba y bxxnx ==-⋅==--∑∑ 22.某校高二八班学生每周用于数学学习的时间x (单位:h )与数学成绩y (单位:分)之间有如下数据:x24 15 23 19 16 11 20 16 17 13y 92 79 97 89 6447 83 68 71 59某同学每周用于数学学习的时间为18小时,试预测该生数学成绩.(保留小数点后两位) 参考数据17.4x = 74.9y =10213182ii x==∑ 102158375i i y ==∑ 10113578i i i x y ==∑,参考公式:回归直线的方程$y bx a =+,其中()()()1122211,n niii ii i nniii i x x y y x y nx yb a y bx x x xnx====---===---∑∑∑∑.23.袋子中放有大小和形状相同而颜色互不相同的小球若干个, 其中标号为0的小球1个, 标号为1的小球1个, 标号为2的小球2个, 从袋子中不放回地随机抽取2个小球, 记第一次取出的小球标号为a ,第二次取出的小球标号为b . (1) 记事件A 表示“2a b +=”, 求事件A 的概率;(2) 在区间[]0,2内任取2个实数,x y , 记()2a b -的最大值为M ,求事件“22x y M +<”的概率.24.某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中a 的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;(3)若这100名学生语文成绩某些分数段的人数(x )与数学成绩相应分数段的人数(y )之比如下表所示,求数学成绩在[50,90)之外的人数. 分数段 [50,60) [60,70) [70,80) [80,90) x ∶y1∶12∶13∶44∶525.某市统计局就某地居民的月收入调查了10000人,并根据所得数据画出样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在[)1000,1500).(1)求居民收入在[)3000,3500的频率;(2)根据频率分布直方图算出样本数据的中位数;(3)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这10000人中按分层抽样方法抽出100人作进一步分析,则月收入在[)2500,3000的这段应抽取多少人? 26.菜农定期使用低害杀虫农药对蔬菜进行喷洒,以防止害虫的危害,但采集上市时蔬菜仍存有少量的残留农药,食用时需要用清水清洗干净,下表是用清水x(单位:千克)清洗该蔬菜1千克后,蔬菜上残留的农药y(单位:微克)的数据作了初步处理,得到下面的散点图及一些统计量的值. y (微克)x (千克)x vy u vw v()281ii x x =-∑()821ii w w =-∑()()81iii x x y y =--∑ ()()81iii w w y y =--∑3 38 11 10 374 -121 -751其中2x ω=(I )根据散点图判断,ˆybx a =+与2ˆy dx c =+,哪一个适宜作为蔬菜农药残量ˆy 与用水量x 的回归方程类型(给出判断即可,不必说明理由);(Ⅱ)若用解析式2ˆydx c =+作为蔬菜农药残量ˆy 与用水量x 的回归方程,求出ˆy 与x 的回归方程.(c ,d 精确到0.1)(Ⅲ)对于某种残留在蔬菜上的农药,当它的残留量低于20微克时对人体无害,为了放心食用该蔬菜,请估计需要用多少千克的清水清洗一千克蔬菜?(精确到0.1,参考数据2.236≈)附:参考公式:回归方程ˆˆˆya bx =+中斜率和截距的最小二乘估计公式分别为: ()()()121ˆˆˆ,niii ni i x x y y bay bx x x ==--==--∑∑【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】试题分析:本题考查几何概型问题,击中阴影部分的概率为222()214aa a ππ-=-.考点:几何概型,圆的面积公式. 2.C解析:C 【解析】 【分析】确定函数是奇函数,图象关于原点对称,x >0时,f (x )=log a x (0<a <1)是单调减函数,即可得出结论. 【详解】由题意,f (﹣x )=﹣f (x ),所以函数是奇函数,图象关于原点对称,排除B 、D ; x >0时,f (x )=log a x (0<a <1)是单调减函数,排除A . 故选C . 【点睛】本题考查函数的图象,考查函数的奇偶性、单调性,正确分析函数的性质是关键.3.B解析:B 【解析】 【分析】 【详解】由a=14,b=18,a <b , 则b 变为18﹣14=4,由a >b ,则a 变为14﹣4=10, 由a >b ,则a 变为10﹣4=6, 由a >b ,则a 变为6﹣4=2, 由a <b ,则b 变为4﹣2=2, 由a=b=2, 则输出的a=2. 故选B .4.D解析:D 【解析】分析:由题意结合线性回归方程的性质整理计算即可求得最终结果. 详解:由题意可得:12345 2.542x +++===,0.1 3.14 1.844m my +++==+, 线性回归方程过样本中心点,则:1.8 1.3 2.514m+=⨯-, 解得:8.1=m . 本题选择D 选项.点睛:本题主要考查线性回归方程的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.5.C解析:C 【解析】因为共有学生2700,抽取135,所以抽样比为1352700,故各年级分别应抽取135900452700⨯=,1351200602700⨯=,135600302700⨯=,故选C. 6.B解析:B 【解析】 【分析】根据频率分布直方图的性质和频率分布直方图中样本估计总体,准确运算,即可求解. 【详解】由题意,根据频率分布直方图的性质得10(0.0200.0160.0160.0110.006)1m +++++=,解得0.031m =.故①正确;因为不低于140分的频率为0.011100.11⨯=,所以11010000.11n ==,故②错误; 由100分以下的频率为0.00610=0.06⨯,所以100分以下的人数为10000.06=60⨯,故③正确;分数在区间[120,140)的人数占0.031100.016100.47⨯+⨯=,占小半.故④错误. 所以说法正确的是①③. 故选B. 【点睛】本题主要考查了频率分布直方图的应用,其中解答熟记频率分布直方图的性质,以及在频率分布直方图中,各小长方形的面积表示相应各组的频率,所有小长方形的面积的和等于1,着重考查了分析问题和解答问题的能力,属于基础题.7.C解析:C 【解析】选取两支彩笔的方法有25C 种,含有红色彩笔的选法为14C 种,由古典概型公式,满足题意的概率值为142542105C p C ===. 本题选择C 选项. 考点:古典概型名师点睛:对于古典概型问题主要把握基本事件的种数和符合要求的事件种数,基本事件的种数要注意区别是排列问题还是组合问题,看抽取时是有、无顺序,本题从这5支彩笔中任取2支不同颜色的彩笔,是组合问题,当然简单问题建议采取列举法更直观一些.8.A解析:A 【解析】 【分析】根据互斥事件的和的概率公式求解即可. 【详解】由表知空气质量为优的概率是110, 由互斥事件的和的概率公式知,空气质量为良的概率为111632+=, 所以该城市2017年空气质量达到良或优的概率1131025P =+=, 故选:A 【点睛】本题主要考查了互斥事件,互斥事件和的概率公式,属于中档题.9.D解析:D 【解析】运行该程序,第一次,1,k 2x ==, 第二次,2,k 3x ==,x==,第三次,4,k4x==,第四次,16,k5x==,第五次,4,k6x==,第六次,16,k7x==,第七次,4,k8x==,第八次,16,k9观察可知,k≥.,则第四次结束,输出x的值为16,满足;若判断框中为5k>.,则第四次结束,输出x的值为16,满足;若判断框中为4k≥.,则第八次结束,输出x的值为16,满足;若判断框中为9k>.,则第七次结束,输出x的值为4,不满足;若判断框中为7故选D.10.A解析:A【解析】【分析】根据所给的程序运行结果为,执行循环语句,当计算结果S为20时,不满足判断框的条件,退出循环,从而到结论.【详解】由题意可知输出结果为,第1次循环,,,第2次循环,,,此时S满足输出结果,退出循环,所以判断框中的条件为.故选:A.【点睛】本题主要考查了循环结构,是当型循环,当满足条件,执行循环,同时考查了推理能力,属于基础题.11.A解析:A【解析】【分析】根据互斥之间和对立事件的概念,及互斥事件和对立事件的关系和概率的计算,即可作出判断,得到答案.【详解】由题意①中,根据对立事件与互斥事件的关系,可得是正确;②中,当A与B是互斥事件时,才有P(A∪B)=P(A)+P(B),对于任意两个事件A,B满足P(A∪B)=P(A)+P(B)-P(AB),所以是不正确的;③也不正确.P(A)+P(B)+P(C)不一定等于1,还可能小于1;④也不正确.例如:袋中有大小相同的红、黄、黑、绿4个球,从袋中任摸一个球,设事件A ={摸到红球或黄球},事件B ={摸到黄球或黑球},显然事件A 与B 不互斥,但P(A)+P(B)=+=1. 【点睛】本题主要考查了互斥事件和对立事件的基本概念、互斥事件与对立时间的关系及其应用,其中熟记互斥事件和对立事件的概念和关系是解答的关键,着重考查了推理与论证能力,属于基础题.12.A解析:A 【解析】 【分析】通过要求122222018n +++>L 时输出且框图中在“是”时输出确定“”内应填内容;再通过循环体确定输出框的内容. 【详解】因为要求122222018n +++>L 时输出,且框图中在“是”时输出, 所以“”内输入“2018S >?”,又要求n 为最小整数, 所以“”中可以填入输出1n -,故选:A . 【点睛】本题考查了程序框图的应用问题,是基础题.二、填空题13.【解析】【分析】执行如图所示的程序框图逐次计算根据判断条件即可求解得到答案【详解】执行如图所示的程序框图可得:第1次循环满足判断条件;第2次循环满足判断条件;第3次循环满足判断条件;第4次循环满足判 解析:6【解析】 【分析】执行如图所示的程序框图,逐次计算,根据判断条件,即可求解,得到答案. 【详解】执行如图所示的程序框图,可得:0,1S m ==, 第1次循环,满足判断条件,10122,2S m =+⨯==; 第2次循环,满足判断条件,222210,3S m =+⨯==; 第3次循环,满足判断条件,3103234,4S m =+⨯==; 第4次循环,满足判断条件,4344298,5S m =+⨯==;第5次循环,满足判断条件,59852258,6S m =+⨯==; 不满足判断条件,此时输出6m =. 故答案为6. 【点睛】本题主要考查了循环结构的程序框图的计算与输出问题,其中解答中根据给定的程序框图,逐次计算,结合判断条件求解是解答的关键,着重考查了推理与运算能力,属于基础题.14.16【解析】高一高二高三抽取的人数比例为所以高三抽取的人数是解析:16 【解析】高一、高二、高三抽取的人数比例为300300400=334::::, 所以高三抽取的人数是440=16.3+3+4⨯ 15.1【解析】ABC 成等差数列所以解析:1 【解析】A ,B ,C成等差数列,所以2213sin sin3b B R R B π=∴===⇒= 16.【解析】【分析】求出不等式的解集计算长度运用几何概型即可求出概率【详解】或则在区间上随机取一个数x 使得成立的概率为故答案为【点睛】本题考查了几何概型中的长度型概率只需将题目中的含有绝对值不等式进行求 解析:23【解析】 【分析】求出不等式的解集,计算长度,运用几何概型即可求出概率 【详解】11x +≥Q0x ∴≥或2x ≤-则在区间[]33-,上随机取一个数x ,使得11x +≥成立的概率为4263= 故答案为23【点睛】本题考查了几何概型中的长度型概率,只需将题目中的含有绝对值不等式进行求解,然后计算出长度,即可得到结果17.-1【解析】【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量a的值模拟程序的运行过程分析循环中各变量值的变化情况可得答案【详解】模拟程序的运行可得a=2i=1不满足条件i≥2解析:【解析】【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量a的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【详解】模拟程序的运行,可得,不满足条件,执行循环体,,不满足条件,执行循环体,,不满足条件,执行循环体,,观察规律可知a的取值周期为3,由于,可得:不满足条件,执行循环体,,此时,满足条件,退出循环,输出a的值为.故答案为:.【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.18.【解析】【分析】根据几何概型的概率公式求出对应的测度即可得到结论【详解】分别设两个互相独立的短信收到的时间为xy则所有事件集可表示为0≤x≤50≤y≤5由题目得如果手机受则到干扰的事件发生必有|x解析:16 25【解析】【分析】根据几何概型的概率公式求出对应的测度,即可得到结论.【详解】分别设两个互相独立的短信收到的时间为x,y.则所有事件集可表示为0≤x≤5,0≤y≤5.由题目得,如果手机受则到干扰的事件发生,必有|x-y|≤2.三个不等式联立,则该事件即为x-y=2和y-x=2在0≤x≤5,0≤y≤5的正方形中围起来的图形即图中阴影区域而所有事件的集合即为正方型面积52=25, 阴影部分的面积2125252162-⨯-=() ,所以阴影区域面积和正方形面积比值即为手机受到干扰的概率为1625. 【点睛】本题主要考查几何概型的概率的计算,分别求出对应区域的面积是解决本题的关键,比较基础.19.【解析】【分析】要使盒子中恰好有4个是用过的球要求开始取的3个球1个是用过的2个没有用过的结合组合知识根据古典概型公式可得到结果【详解】从盒子中任取的3个球使用用完全后装回盒子中要使盒子中恰好有4个解析:35【解析】 【分析】要使盒子中恰好有4个是用过的球,要求开始取的3个球1个是用过的,2个没有用过的,结合组合知识根据古典概型公式可得到结果. 【详解】从盒子中任取的3个球使用,用完全后装回盒子中, 要使盒子中恰好有4个是用过的球,则要求开始取的3个球1个是用过的,2个没有用过的,共有214212C C =种方法,从装有6个乒乓球的盒子任取3个球使用有3620C =种方法,∴盒子中恰好有4个是用过的球的概率为123205P ==,故答案为35.【点睛】本题主要考查古典概型概率公式的应用,所以中档题.要应用古典概型概率公式,分清在一个概型中某随机事件包含的基本事件个数和试验中基本事件的总数是解题的关键.20.【解析】分析:首先绘制可行域结合点的坐标求得可行域的面积然后结合题意利用几何概型计算公式即可求得最终结果详解:绘制不等式组所表示的平面区域如图所示由解得即A(32)且故作出直线2x-3y=0则2x- 解析:29【解析】分析:首先绘制可行域,结合点的坐标求得可行域的面积,然后结合题意利用几何概型计算公式即可求得最终结果.详解:绘制不等式组所表示的平面区域如图所示,由127x y x y -=⎧⎨+=⎩解得32x y =⎧⎨=⎩,即A (3,2). 且()70,,0,12B C ⎛⎫-⎪⎝⎭, 故172713224ABC S ⎛⎫=⨯+⨯= ⎪⎝⎭V . 作出直线2x -3y =0.则2x -3y ≥0所以表示区域为△OAC , 即不等式2x -3y ≥0所表示的区领为△OAC ,面积为131322AOC S =⨯⨯=V , 所以满足230x y -≥的概率是为3222794AOCABCS p S V V ===.点睛:数形结合为几何概型问题的解决提供了简捷直观的解法.用图解题的关键:用图形准确表示出试验的全部结果所构成的区域,由题意将已知条件转化为事件A 满足的不等式,在图形中画出事件A 发生的区域,据此求解几何概型即可.三、解答题21.(1)^7.8889.42y x =-+;(2)10.6 . 【解析】 【分析】(1)根据题意,分别求出,x y ,利用参考公式,求出^b 和^a ,即可得出y 关于x 的回归方程;(2)根据回归方程,可预测出当10x =时,该市 2.5PM 的值. 【详解】 解:(1)1246899070504030205,5066x y ++++++++++====,^222222219027045064083092065504107.881246896552b ⨯+⨯+⨯+⨯+⨯+⨯-⨯⨯==-≈-+++++-⨯,^41050()589.4252a =--⨯≈ ,所以线性回归方程为^7.8889.42y x =-+, (2)当10x =时,代入^7.8889.42y x =-+,^7.881089.4210.6y =-⨯+≈,所以某日“绿色出行”的人数为10万人时,该市 2.5PM 的估计值为10.6 . 【点睛】本题考查线性回归方程以及由线性回归方程估计其他值.22.77.02【解析】 【分析】根据公式计算得到 3.53b ≈,13.48a =,$3.5313.48y x =+,再代入数据计算得到答案. 【详解】12221135781017.474.9545.43.5331821017.4154.4ni ii nii x y nx yb xnx==--⨯⨯===≈-⨯-∑∑,故74.9 3.5317.413.48a y bx =-=-⨯=,故$3.5313.48y x =+. 当18x =时,$3.531813.4877.02y =⨯+=. 【点睛】本题考查了线性回归方程,意在考查学生的计算能力和应用能力. 23.)(1)13;(2)4π. 【解析】 【分析】(1)用列举法表示所有基本事件,数出满足“a +b =2”为事件A 的个数,然后利用古典概型求解概率;(2)直接利用几何概型,求解全部结果的区域面积与所求结果的区域面积,求解概率即可. 【详解】(1)不放回地随机抽取2个小球的所有基本事件个数有(0,1),(1,0),(0,21),(21,0),(0,22),(22,0),(1,21),(21,1),(1,22),(22,1),(21,22),(22,21)记事件A 表示“a +b =2”,有(0,21),(21,0),(0,22),(22,0),∴事件A 的概率P (A )41123==, (2)记“x 2+y 2<M ”为事件B , (a ﹣b )2的最大值为M ,则M =4,则x 2+y 2<M ”的概率等价于“x 2+y 2<4的概率”, (x ,y )可以看成平面中的点的坐标,则全部结果所构成的区域为Ω={(x ,y )|0≤x ≤2,0≤y ≤2,x ,y ∈R}, 而事件B 构成的区域为B ={(x ,y )|x 2+y 2<4,(x ,y )∈Ω}. 所以所求的概率为P (B )4π=.【点睛】本题考查古典概型以及几何概型的概率的求法,古典概型的计算关键在于找到所有的基本事件及所求的基本事件个数,几何概型关键在于确定属于“长度型、面积型还是体积型”,基本知识的考查,属于中档题. 24.(1)0.005a =(2)73 (分)(3)10 【解析】 【分析】(1)由频率分布直方图的性质列方程即可得到a 的值; (2)由平均数加权公式可得平均数,计算出结果即可;(3)按表中所给的数据分别计算出数学成绩在分数段的人数,从总人数中减去这些段内的人数即可得出数学成绩在[5090,)之外的人数.25.(1)0.15;(2)2400;(3)25 【解析】 【分析】(1)根据频率=小矩形的高⨯组距来求;(2)根据中位数的左右两边的矩形的面积和相等,所以只需求出从左开始面积和等于0.5的底边横坐标的值即可;(3)求出月收入在[2500,3000)的人数,用分层抽样的抽取比例乘以人数,可得答案. 【详解】解:(1)月收入在[)3000,3500的频率为0.00035000.15⨯=; (2)从左数第一组的频率为0.00025000.1⨯=; 第二组的频率为0.00045000.2⨯=; 第三组的频率为0.00055000.25⨯=;∴中位数位于第三组,设中位数为2000x +,则0.00050.50.10.20.2x ⨯=--=,400x ∴=.∴中位数为2400(元)(3)月收入在[)2500,3000的频数为0.25100002500⨯=(人),Q 抽取的样本容量为100.∴抽取比例为100110000100=, ∴月收入在[)2500,3000的这段应抽取1250025100⨯=(人). 【点睛】本题考查了频率分布直方图,分层抽样方法,是统计常规题型,解答此类题的关键是利用频率分布直方图求频数或频率.26.(1)见解析; (2)2ˆ 2.060.0yx =-+;(3)需要用4.5千克的清水清洗一千克蔬菜. 【解析】 【分析】(I )根据散点图判断2ˆydx c =+适宜作为蔬菜农药残量ˆy 与用水量x 的回归方程类型;(II )令2x ω=,先建立y 关于w 的线性回归方程,平均数公式可求出ω与y 的值从而可得样本中心点的坐标,从而求可得公式()()()81821751= 2.0374ˆi i i i i w w y y d w w ==---=≈--∑∑, =38ˆˆ211=60cy dw =-+⨯,可得y 关于w 的回归方程,再代换成y 关于x 的回归方程可得结果;(III )解关于x 的不等式,求出x 范围即可. 【详解】(I )根据散点图判断2ˆydx c =+适宜作为蔬菜农药残量ˆy 与用水量x 的回归方程类型; (Ⅱ)令2w x =,先建立y 关于w 的线性回归方程,由于()()()81821751= 2.0374ˆi i i i i w w y y d w w ==---=≈--∑∑,∴=38ˆˆ211=60c y dw =-+⨯. ∴y 关于w 的线性回归方程为 2.060.ˆ0yw =-+, ∴y 关于x 的回归方程为22.06.0ˆ0yx =-+. (Ⅲ)当ˆ20y<时,22.060.020x -+<, 4.5x >≈ ∴为了放心食用该蔬菜,估计需要用4.5千克的清水清洗一千克蔬菜. 【点睛】本题考查了非线性拟合及非线性回归方程的求解与应用,是源于课本的试题类型,解答非线性拟合问题,先作出散点图,再根据散点图选择合适的函数类型,设出回归方程,利用换元法将非线性回归方程化为线性回归方程,求出样本数据换元后的值,然后根据线性回归方程的计算方法计算变换后的线性回归方程系数,即可求出非线性回归方程,再利用回归方程进行预报预测,注意计算要细心,避免计算错误.。

北师大版高中数学必修三第一章《统计》测试卷(包含答案解析)(1)

北师大版高中数学必修三第一章《统计》测试卷(包含答案解析)(1)

一、选择题1.某班统计一次数学测验的平均分与方差,计算完毕才发现有位同学的分数还未录入,只好重算一次.已知原平均分和原方差分别为x ,2s ,新平均分和新方差分别为1x ,21s ,若此同学的得分恰好为x ,则( )A .1x x =,221s s = B .1x x =,221s s < C .1x x =,221s s >D .1x x <,221s s =2.若一组数据12345,,,,x x x x x 的平均数为5,方差为2,则12323,23,23x x x ---,4523,23x x --的平均数和方差分别为( )A .7,-1B .7,1C .7,2D .7,83.采用系统抽样的方法从400人中抽取20人做问卷调查,为此将他们随机编号为1,2,3…,400.适当分组后在第一组采用随机抽样的方法抽到的号码为5,则抽到的20人中,编号落入区间[201,319]内的人员编号之和为( ) A .600B .1225C .1530D .18554.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是 A .中位数 B .平均数 C .方差D .极差5.根据表中提供的全部数据,用最小二乘法得出y 关于x 的线性回归方程是9944y x =+,则表中m 的值为( )A .26B .27C .28D .296. 2.5PM 是衡量空气质量的重要指标,我国采用世卫组织的最宽值限定值,即 2.5PM 日均值在335/g m μ以下空气质量为一级,在335~75/g m μ空气量为二级,超过375/g m μ为超标.如图是某地12月1日至10日的 2.5PM (单位:3/g m μ)的日均值,则下列说法不正确...的是( )A .这10天中有3天空气质量为一级B .从6日到9日 2.5PM 日均值逐渐降低C .这10天中 2.5PM 日均值的中位数是55D .这10天中 2.5PM 日均值最高的是12月6日7.下图是某公司2018年1月至12月空调销售任务及完成情况的气泡图,气泡的大小表示完成率的高低,如10月份销售任务是400台,完成率为90%,则下列叙述不正确的是( )A .2018年3月的销售任务是400台B .2018年月销售任务的平均值不超过600台C .2018年第一季度总销售量为830台D .2018年月销售量最大的是6月份 8.①45化为二进制数为(2)101101;②一个总体含有1000个个体(编号为0000,0001,…,0999),采用系统抽样从中抽取一个容量为50的样本,若第一个抽取的编号为0008,则第六个编号为0128; ③已知a ,b ,c 为ABC ∆三个内角A ,B ,C 的对边,其中3a =,4c =,6A π=,则这样的三角形有两个解.以上说法正确的个数是( ) A .0B .1C .2D .39.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是( )A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时. 相同条件下,在该市用丙车比用乙车更省油10.已知x,y的取值如表:x 2678y若x,y之间是线性相关,且线性回归直线方程为,则实数a的值是A.B.C.D.11.某校高中三个年级共有学生1050人,其中高一年级300人,高二年级350人,高三年级400人.现要从全体高中学生中通过分层抽样抽取一个容量为42的样本,那么应从高三年级学生中抽取的人数为A.12 B.14 C.16 D.1812.从存放号码分别为1,2, ,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如下:则取到号码为奇数的频率是()A.0.53 B.0.5 C.0.47 D.0.37二、填空题13.如图,这是某校高一年级一名学生七次数学测试成绩(满分100分)的茎叶图. 去掉一个最高分和一个最低分后,所剩数据的方差是 _____14.为调查某高校学生对“一带一路”政策的了解情况,现采用分层抽样的方法抽取一个容量为500的样本.其中大一年级抽取200人,大二年级抽取100人.若其他年级共有学生2000人,则该校学生总人数是_______..15.已知数据(1,2,3,4,5)i x i =的平均值为a ,数列2{()}i x a -为等差数列,且3||0.1x a -=________.16.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取_______名学生.17.某公司的广告费支出x 与销售额y (单位:万元)之间有下列对应数据:由资料显示y 对x 呈线性相关关系。

高中数学选择性必修三 6 2 1 排列及排列数(精练)(含答案)

高中数学选择性必修三 6 2 1 排列及排列数(精练)(含答案)

6.2.1 排列及排列数(精练)【题组一 排列数】1(2020·新疆)已知2132n A =,则n =( )A .11B .12C .13D .14【答案】B【解析】∵2132n A =,∴(1)132n n -=,整理,得,21320n n --=;解得12n =,或11n =- (不合题意,舍去);∴n 的值为12. 故选:B.2.设m ∈N *,且m <25,则(20﹣m )(21﹣m )…(26﹣m )等于( ) A .726m A - B .726m C -C .720m A -D .626m A -【答案】A【解析】根据题意,(20﹣m )(21﹣m )…(26﹣m )()()72626!19!mm A m --==-,故选:A .3.(2021·江苏常州·高二期末)(多选)由0,1,2,3,4,5,6,7,8,9这10个数字组成无重复数字的五位数,其中偶数的个数是( ) A .41139488A A A A +⋅⋅ B .41439498()A A A A +-C .54143109498()A A A A A -+- D .54143109598()A A A A A ---【答案】ABD【解析】对于A ,如果个位是0,则有49A 个无重复数字的偶数;如果个位不是0,则有113488A A A ⋅⋅个无重复数字的偶数,所以共有41139488A A A A +⋅⋅个无重复数字的偶数,故A 正确;对于B ,由于13438898A A A A ⋅=-,所以4113414394889498()A A A A A A A A +⋅⋅=+-,故B 正确; 对于C ,由于5441099A A A -≠,所以4143541439498109498()()A A A A A A A A A +-≠-+-,故C 错误;对于D ,由于541433411310959889488()41A A A A A A A A A A ---==+⋅⋅,故D 正确. 故选:ABD .4.(2020·山东莱州一中)下列等式中,错误的是( )A .11(1)m m n n n A A +++=B .!(2)!(1)n n n n =--C .!m m nnA C n =D .11m mn n A A n m+=- 【答案】C【解析】通过计算得到选项A,B,D 的左右两边都是相等的.对于选项C, !m m nnA C m =,所以选项C 是错误的.故答案为C.5.(2020·靖远县第四中学)若532m m A A =,则m 的值为( )A .5B .6C .7D .8【答案】A【解析】由532m m A A =,得(1)(2)(3)(4)2(1)(2)m m m m m m m m ----=--,且5m ≥所以(3)(4)2m m --=即27100,5m m m -+=∴=或2(5m m =≥舍去). 故选:A6.(2020·海南枫叶国际学校)设*a N ∈,28a <,则等式()()()35282935ma a a a A ---⋅⋅⋅-=中m =______ . 【答案】8 【解析】()()()()3535343336m a A a a a a m -=---⋅⋅⋅--,2836a a m ∴-=--,解得:8m =.故答案为:8.7.(2020·江苏宿迁·高二期中)已知2247n n A A -=,那么n =________.【答案】7【解析】∵2247n n A A -=,∴()()()1745n n n n -⨯--=,5n ≥,化为:()()31070n n --=,解得7n =,故答案为:7.8.(2021·江苏)已知111095mn A =⨯⨯⨯⨯,则mn 为__________.【答案】77【解析】已知(1)(2)(1)11109mn A n n n n m =⨯-⨯-⋯⨯-+=⨯⨯⋯,5⨯,11n ∴=,15n m -+=,7m ∴=,则77mn =.故答案为:77.9.(2021·浙江余姚中学)已知则20!133n A +=,则n =________;计算323n nn A +A =+________.【答案】12 726【解析】(1)()()20!11133,2n A n n n +=+-=≥,即()()213212110n n n n --=-+=,所以12n =;(2)由题可知,323333n n n n n n +≤≥⎧⎧⇒⇒=⎨⎨≤≤⎩⎩,所以3632363654321321726n n n A +A =A +A +=⨯⨯⨯⨯⨯+⨯⨯=故答案为:(1). 12 (2). 72612.(1)解不等式288A 6A x x -<; (2)解方程4321A 140A x x +=.【答案】(1)8(2)3【解析】(1)由288A 6A x x -<,得()()8!8!68!10!x x <⨯--,化简得x 2-19x +84<0,解之得7<x <12,① 又∴2<x ≤8,②由①②及x ∈N *得x =8. (2)因为2143x x +≥⎧⎨≥⎩,,所以x ≥3,*x N ∈,由4321A 140A x x +=得(2x +1)2x (2x -1)(2x -2)=140x (x -1)(x -2).化简得,4x 2-35x +69=0,解得x 1=3,2234x =(舍去). 所以方程的解为x =3. 【题组二 排队问题】1.(2020·江西九江一中)5人随机排成一排,其中甲、乙不相邻的概率为( ) A .15B .25C .35D .45【答案】C【解析】将5人随机排成一列,共有55120A =种排列方法;当甲、乙不相邻时,先将5人中除甲、乙之外的3人排成一列,然后将甲、乙插入,故共有323461272A A=⨯=种排列方法,则5人随机排成一排,其中甲、乙不相邻的概率为7231205P==.故选:C.2.(2020·灵丘县豪洋中学)5名同学合影,其中3位男生,2位女生,站成了一排,要求3位男生不相邻的排法有()A.12种B.10种C.15种D.9种【答案】A【解析】首先排女生,再排男生,然后再根据插空法可得:23 232132112A A⋅=⨯⨯⨯⨯=.故选:A3.(2021·河南))三名男生和三名女生站成一排照相,男生甲与男生乙相邻,且三名女生中恰好有两名女生相邻,则不同的站法共有( )A.72种B.108种C.36种D.144种【答案】D【解析】:先将男生甲与男生乙“捆绑”,有22A种方法,再与另一个男生排列,则有22A种方法,三名女生任选两名“捆绑”,有23A种方法,再将两组女生插空,插入男生3个空位中,则有23A种方法,利用分步乘法原理,共有22222233144A A A A=种.故选:D.4.(2020·渝中·重庆巴蜀中学高三月考)在新冠肺炎疫情防控期间,某记者要去武汉4个方舱医院采访,则不同的采访顺序有()A.4种B.12种C.18种D.24种【答案】D【解析】由题意可得不同的采访顺序有4424A=种,故选:D.5.(2020·湖南永州·高三月考)某县政府为了加大对一贫困村的扶贫力度,研究决定将6名优秀干部安排到该村进行督导巡视,周一至周四这四天各安排1名,周五安排2名,则不同的安排方法共有( ) A .320种 B .360种 C .370种 D .390种【答案】B【解析】由题意分步进行安排:第一步:从6名优秀干部中任选4人,并排序到周一至周四这四天,有46A 种排法; 第二步:剩余两名干部排在周五,只有1种排法.故不同的安排方法共有4616543360A ⨯=⨯⨯⨯=种.故选:B.6.(2020·重庆)6月,也称毕业月,高三的同学们都要与相处了三年的同窗进行合影留念.现有4名男生、2名女生照相合影,若女生必须相邻,则有( )种排法. A .24 B .120 C .240 D .140【答案】C【解析】将2名女生捆绑在一起,当作1个元素,与另4名男生一起作全排列,有55120A =种排法,而2个女生可以交换位置,所以共有52521202240A A ⋅=⨯=排法,故选:C.7.(2021·河南)某校迎新晚会上有6个节目,考虑整体效果,对节目演出顺序有如下要求:节目甲必须排在前三位,且节目丙、丁必须排在一起.则该校迎新晚会节目演出顺序的编排方案共有( ) A .120种 B .156种 C .188种D .240种【答案】A【解析】先考虑将丙、丁排在一起的排法种数,将丙、丁捆绑在一起,与其他四人形成五个元素,排法种数为25252120240A A =⨯=,利用对称性思想,节目甲放在前三位或后三位的排法种数是一样的, 因此,该校迎新晚会节目演出顺序的编排方案共有2401202=种,故选A. 8.(2020·莒县教育局教学研究室高二期中)3名男生、3名女生排成一排,男生必须相邻,女生也必须相邻的排法种数为( ) A .2 B .9C .72D .36【答案】C【解析】根据题意男生一起有336A =排法,女生一起有336A =排法,一共有3333272A A =种排法,故选:C ..9.(2021·甘肃兰州一中)有3名大学毕业生,到5家招聘员工的公司应聘,若每家公司至多招聘一名新员工,且3名大学毕业生全部被聘用,若不允许兼职,则共有________种不同的招聘方案.(用数字作答) 【答案】60【解析】将5家招聘员工的公司看作5个不同的位置,从中任选3个位置给3名大学毕业生,则本题即为从5个不同元素中任取3个元素的排列问题.所以不同的招聘方案共有35A =5×4×3=60(种). 10(2020·北京高二期末)某年级举办线上小型音乐会,由6个节目组成,演出顺序有如下要求:节目甲必须排在前两位,节目丙必须排在节目乙的下一个,则该小型音乐会节目演出顺序的编排方案共有______种.(用数字作答) 【答案】42【解析】由题意知,甲的位置影响乙的排列,∴①甲排在第一位共有4424A =种,②甲排在第二位共有133318A A =种,∴故编排方案共有241842+=种. 故答案为:42.11.(2020·江苏省太湖高级中学)已知4名学生和2名教师站在一排照相,求: (1)两名教师必须排中间,有多少种排法?(2)两名教师必须相邻且不能排在两端,有多少种排法? 【答案】(1)48种;(2)144种.【解析】解:(1)先排教师有22A 种方法,再排学生有44A 种方法, 则242422448A A ⋅=⨯=,答:两名教师必须排中间,共有48种排法. (2)24243624144A A ⨯⋅=⨯=,答:两名教师必须相邻且不能排在两端,共有144种排法. 12.(2021·防城港市防城中学)5个男同学和4个女同学站成一排 (1)4个女同学必须站在一起,有多少种不同的排法? (2)任何两个女同学彼此不相邻,有多少种不同的排法?(3)其中甲、乙两同学之间必须有3人,有多少种不同的排法? (4)男生和女生相间排列方法有多少种?【答案】(1)17280;(2)43200;(3)302400;(4)2880. 【解析】(1)4个女同学必须站在一起,则视4位女生为以整体,可得排法为646417280A A =;(2)先排5个男同学,再插入女同学即可,所以排法为:545643200A A =;(3)根据题意可得排法为:33257325302400C A A A =;(4)5个男生中间有4个空,插入女生即可,故有排法54542880A A =.13.(2020·吉林油田第十一中学高三月考(理))一场小型晚会有3个唱歌节目和2个相声节目,要求排出一个节目单.(1)2个相声节目要排在一起,有多少种排法?(2)第一个节目和最后一个节目都是唱歌节目,有多少种排法? (3)前3个节目中要有相声节目,有多少种排法? (要求:每小题都要有过程,且计算结果都用数字表示) 【答案】(1)48;(2)36;(3)108.【解析】(1)把两个相声节目捆绑在一起作为一个节目与其他节目排列共有排法424248A A =;(2)选两个唱歌节目排在首尾,剩下的3个节目在中间排列,排法为233336A A =;(3)5个节目全排列减去后两个都是相声的排法,共有53253212012108A A A -=-=. 14(2020·江苏省前黄高级中学高二期中)3男3女共6个同学排成一行. (1)女生都排在一起,有多少种排法? (2)任何两个男生都不相邻,有多少种排法?(3)男生甲与男生乙中间必须排而且只能排2名女生,女生又不能排在队伍的两端,有多少种排法? 【答案】(1)144;(2)144;(3)24【解析】(1)将3名女生看成一个整体,就是4个元素的全排列,有44A 种排法,又3名女生内部有33A 种排法,所以共有44A ⋅33A 144=种排法.(2)女生先排,女生之间以及首尾共有4个空隙, 任取其中3个安插男生即可,所以任何两个男生都不相邻的排法共有33A ⋅34A 144=种排法.(3)先选2个女生排在男生甲、乙之间,有23A 种排法,又甲、乙有22A 种排法,这样就有23A ⋅22A 种排法,然后把他们4人看成一个整体(相当于一个男生), 这一元素以及另1名男生排在首尾,有22A 种排法, 最后将余下的女生排在中间,有1种排法,故总排法为23A ⋅222224A A ⋅=种排法,【题组三 数字问题】1.(2020·江苏高二期中)由1,2,3,4,5,6组成没有重复数字且1,3不相邻的六位数的个数是( ) A .36 B .72 C .600 D .480【答案】D【解析】根据题意将2,4,5,6进行全排列,再将1,3插空得到4245480A A ⨯=个.故选:D .2.(2021·龙港市第二高级中学)用1,2,3,4,5组成一个没有重复数字的五位数,三个奇数中仅有两个相邻的五位数有________. 【答案】72【解析】用1,2,3,4,5组成一个没有重复数字的五位数,共有55120A =个;三个奇数中仅有两个相邻;其对立面是三个奇数都相邻或者都不相邻;当三个奇数都相邻时,把这三个奇数看成一个整体与2和4全排列共有333336A A ⨯=个;三个奇数都不相邻时,把这三个奇数分别插入2和4形成的三个空内共有232312A A ⨯=个; 故符合条件的有120123672--=; 故答案为:72.3.(2020·上海浦东新·华师大二附中高二期中)由0,1,2,3组成的没有重复数字的四位数有________个; 【答案】18;【解析】因为第一个数字不能为0,所以先排第一个数字,再把剩下的三个数字排列,则一共有13333618A A =⨯=种排法.故答案为:18.4.(2020·南开大学附属中学高三月考)由123456、、、、、组成没有重复数字且13、都不与5相邻的六位偶数的个数是________ 【答案】108【解析】先确定个位数为偶数,有3种方法,再讨论:若5在首位或十位,则1,3有三个位置可选,其排列数为22323A A ⨯⨯;若5在百位、千位或万位,则1,3有两个位置可选,其排列数为22223A A ⨯⨯;从而所求排列数为222232223233108.A A A A ⨯⨯⨯+⨯⨯⨯=5.(2021·康保衡水一中联合中学)用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为____ . 【答案】72【解析】要组成无重复数字的五位奇数,则个位只能排1,3,5中的一个数,共有3种排法,然后还剩4个数,剩余的4个数可以在十位到万位4个位置上全排列,共有4424A =种排法,由分步乘法计数原理得,由1,2,3,4,5组成的无重复数字的五位数中奇数有32472⨯=个.故答案为:72. 6(2020·湖北武汉为明学校)用0,1,2,3这4个数字组成是偶数的四位数,这样的数共有_____个. 【答案】10【解析】解:个位是0,有336A =个;个位不是0,有2224A =个,故共有6410+=个.故答案为:10.7.(2020·江苏省太湖高级中学高二期中)把1、2、3、4、5这五个数字组成无重复数字的五位数,并把它们按由小到大的顺序排成一个数列. (1)45312是这个数列的第几项? (2)这个数列的第71项是多少? (3)求这个数列的各项和.【答案】(1)第95项;(2)第71项是3开头的五位数中第二大的数;(3)3999960. 【解析】(1)先考虑大于45312的数,分为以下两类:第一类5开头的五位数有:4424A =第二类4开头的五位数有:45321一个∴不大于45312的数有:5454112024195A A --=--=(个) 即45312是该数列中第95项.(2)1开头的五位数有:4424A = 2开头的五位数有:4424A = 3开头的五位数有:4424A =共有24372⨯=(个).所以第71项是3开头的五位数中第二大的数,即35412.(3)因为1,2,3,4,5各在万位上时都有4424A =个五位数,所以万位数上的数字之和为454(12345)10A ++++⋅⋅同理,它们在千位,百位,十位,个位上也都有4424A =个五位数,所以这个数列的各项和为()4432104(12345)1010101010A ++++⋅⋅++++1524111113999960=⨯⨯=.8.(2021·黄梅国际育才高级中学高二期中(理))用0、1、2、3、4这五个数字组成无重复数字的自然数.(1)在组成的三位数中,求所有偶数的个数;(2)在组成的三位数中,如果十位上的数字比百位上的数字和个位上的数字都小,则称这个数为“凹数”,如301、423等都是“凹数”,试求“凹数”的个数. 【答案】(1)30;(2)20. 【解析】(1)偶数分为二类:若个位数0,则共有2412A =个;若个位数是2或4,则首位数不能为0,则共有23318⨯⨯=个; 所以,符合条件的三位偶数的个数为121830+=; (2)“凹数”分三类:若十位是0,则有2412A =个;若十位是1,则有236A =个; 若十位是2,则有222A =个;所以,符合条件的“凹数”的个数为126220++=.。

高中数学必修三答案

高中数学必修三答案

高中数学必修三答案【篇一:高一数学必修3测试题及答案】ass=txt>数学第一章测试题一.选择题1.下面的结论正确的是()a.一个程序的算法步骤是可逆的b、一个算法可以无止境地运算下去的 c、完成一件事情的算法有且只有一种 d、设计算法要本着简单方便的原则 2、早上从起床到出门需要洗脸刷牙(5 min)、刷水壶(2 min)、烧水(8 min)、泡面(3 min)、吃饭(10 min)、听广播(8 min)几个步骤、从下列选项中选最好的一种算法 ( )a、 s1 洗脸刷牙、s2刷水壶、s3 烧水、s4 泡面、s5 吃饭、s6 听广播 b、 s1刷水壶、s2烧水同时洗脸刷牙、s3泡面、s4吃饭、s5听广播 c、 s1刷水壶、s2烧水同时洗脸刷牙、s3泡面、s4吃饭同时听广播 d、 s1吃饭同时听广播、s2泡面、s3烧水同时洗脸刷牙、s4刷水壶 3.算法 s1 m=as2 若bm,则m=b s3 若cm,则m=c s4 若dm,则 m=ds5 输出m,则输出m表示 ( ) a.a,b,c,d中最大值b.a,b,c,d中最小值c.将a,b,c,d由小到大排序d.将a,b,c,d由大到小排序 4.右图输出的是a.2005 b.65 c.64d.635、下列给出的赋值语句中正确的是( )a. 5 = mb. x =-x (第4题)c. b=a=3d. x +y = 06、下列选项那个是正确的()a、input a;bb. input b=3 c. print y=2*x+1d. print 7、以下给出的各数中不可能是八进制数的是() a.123 b.10 110 c.4724 d.7 8578、如果右边程序执行后输出的结果是990,那么在程序until后面的“条件”应为() a.i 10 b. i 8 c. i =9 d.i9 9.读程序甲: i=1 乙:i=1000s=0 s=0 while i=1000 do s=s+i s=s+i i=i+l i=i一1 wend loop until i1 print s prints4*xend end对甲乙两程序和输出结果判断正确的是( )a.程序不同结果不同b.程序不同,结果相同c.程序相同结果不同d.程序相同,结果相同10.在上题条件下,假定能将甲、乙两程序“定格”在i=500,即能输出i=500 时一个值,则输出结果()a.甲大乙小 b.甲乙相同 c.甲小乙大 d.不能判断二.填空题.11、有如下程序框图(如右图所示),则该程序框图表示的算法的功能是第(第11题)( 第12题)12、上面是求解一元二次方程ax?bx?c?0(a?0)的流程图,根据题意填写:(1);(2);(3)。

(典型题)高中数学必修三第三章《概率》测试题(包含答案解析)(1)

(典型题)高中数学必修三第三章《概率》测试题(包含答案解析)(1)

一、选择题1.第24届国际数学大会会标是以我国古代数学家赵爽的弦图为基础进行设计的.如图,会标是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形的一个锐角为θ,且πsin 2sin 52θθ⎛⎫++= ⎪⎝⎭.若在大正方形内随机取一点,则该点取自小正方形区域的概率为( ).A .14B .15C .25D .352.“哥德巴赫猜想”是近代三大数学难题之一,其内容是:一个大于2的偶数都可以写成两个质数(素数)之和,也就是我们所谓的“1+1”问题.它是1742年由数学家哥德巴赫提出的,我国数学家潘承洞、王元、陈景润等在哥德巴赫猜想的证明中做出相当好的成绩.若将6拆成两个正整数的和,则拆成的和式中,加数全部为质数的概率为( ) A .15B .13C .35D .233.将一枚质地均匀的硬币连掷三次,设事件A :恰有1次正面向上;事件B :恰有2次正面向上,则()P A B +=( ) A .23B .14C .38D .344.若数列{a n }满足a 1=1,a 2=1,a n +2=a n +a n +1,则称数列{a n }为斐波那契数列,斐波那契螺旋线是根据斐波那契数列画出来的螺旋曲线,自然界中存在许多斐波那契螺旋线的图案,是自然界最完美的经典黄金比例.作图规则是在以斐波那契数为边的正方形拼成的长方形中画一个圆心角为90°的扇形,连起来的弧线就是斐波那契螺旋线,如图所示的7个正方形的边长分别为a 1,a 2,…,a 7,在长方形ABCD 内任取一点,则该点不在任何一个扇形内的概率为( )A .1103156π-B .14π-C .17126π-D .681237π-5.类比“赵爽弦图”,可类似地构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设2AD BD =,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是( )A .14B .13C .17D .4136.甲乙两艘轮船都要在某个泊位停靠,甲停靠的时间为4小时,乙停靠的时间为6小时,假定他们在一昼夜的时间段中随机到达,则这两艘船停靠泊位时都不需要等待的概率为( )A .916B .58C .181288D .5127.某研究机构在对具有线性相关的两个变量x 和y 进行统计分析时,得到如下数据:x 4 6 8 10 12 y12356由表中数据求得y 关于的回归方程为,则在这些样本点中任取一点,该点落在回归直线下方的概率为( ) A .25B .35 C .34D .128.从含有2件正品和1件次品的产品中任取2件,恰有1件次品的概率是( ) A .16B .13C .12D .239.从分别写有1,2,3,4的4张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数不小于第二张卡片上的数的概率为 A .25B .35C .38D .5810.圆周率π是一个在数学及物理学中普遍存在的数学常数,它既常用又神秘,古今中外很多数学家曾研究它的计算方法.下面做一个游戏:让大家各自随意写下两个小于1的正数然后请他们各自检查一下,所得的两数与1是否能构成一个锐角三角形的三边,最后把结论告诉你,只需将每个人的结论记录下来就能算出圆周率的近似值.假设有n 个人说“能”,而有m 个人说“不能”,那么应用你学过的知识可算得圆周率π的近似值为() A .mm n+ B .nm n+ C .4mm n+ D .4nm n+11.如图所示的图形中,每个三角形上各有一个数字,若六个三角形上的数字之和为26,则称该图形是“和谐图形”.已知其中四个三角形上的数字之和为20,现从1、2、3、4、5中任取两个数字标在另外两个三角形上,则恰好使该图形为“和谐图形”的概率为( )A .310B .15C .110D .32012.勒洛三角形是具有类似圆的“定宽性”的面积最小的曲线,它由德国机械工程专家,机构运动学家勒洛首先发现,其作法是:以等边三角形每个顶点为圆心,以边长为半径,在另两个顶点间作一段弧,三段弧围成的曲边三角形就是勒洛三角形,现在勒洛三角形中随机取一点,则此点取自正三角形外的概率为( )A ()3323π- B ()323π-C ()323π+ D ()23323ππ-+二、填空题13.辛普森悖论(Simpson’sParadox)有人译为辛普森诡论,在统计学中亦有人称为“逆论”,甚至有人视之为“魔术”.辛普森悖论为英国统计学家E .H .辛普森(E.H.Simpson)于1951年提出的,辛普森悖论的内容大意是“在某个条件下的两组数据,分别讨论时都会满足某种性质,可是一旦合并考虑,却可能导致相反的结论.”下面这个案例可以让我们感受到这个悖论:关于某高校法学院和商学院新学期已完成的招生情况,现有如下数据: 某高校申请人数性别 录取率 法学院200人男50%女 70% 商学院300人男60% 女90% ①法学院的录取率小于商学院的录取率;②这两个学院所有男生的录取率小于这两个学院所有女生的录取率; ③这两个学院所有男生的录取率不一定小于这两个学院所有女生的录取率; ④法学院的录取率不一定小于这两个学院所有学生的录取率. 其中,所有正确结论的序号是___________.14.住在同一城市的甲、乙两位合伙人,约定在当天下午4.00-5:00间在某个咖啡馆相见商谈合作事宜,他们约好当其中一人先到后最多等对方10分钟,若等不到则可以离去,则这两人能相见的概率为__________.15.一个多面体的直观图和三视图所示,M 是AB 的中点,一只蝴蝶在几何体ADF BCE -内自由飞翔,由它飞入几何体F AMCD -内的概率为______.16.乒乓球赛规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换,每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,甲发球得1分的概率为35,乙发球得1分的概率为23,各次发球的胜负结果相互独立,甲、乙的一局比赛中,甲先发球.则开始第4次发球时,甲、乙的比分为1比2的概率为________.17.若某学校要从5名男同学和2名女同学中选出3人参加社会考察活动,则选出的同学中男女生均不少于1名的概率是_____.18.在区间[-1,2]上随机取一个数x,则x ∈[0,1]的概率为 .19.设{}{}1,3,5,7,2,4,6a b ∈∈,则函数()log a bf x x =是增函数的概率为__________.20.在边长为2的正△ABC 所在平面内,以A 3AB ,AC 于D ,E.若在△ABC 内任丢一粒豆子,则豆子落在扇形ADE 内的概率是________.三、解答题21.某中学刚搬迁到新校区,学校考虑,若非住校生上学路上单程所需时间人均超过20分钟,则学校推迟5分钟上课.为此,校方随机抽取100个非住校生,调查其上学路上单程所需时间(单位:分钟),根据所得数据绘制成如下频率分布直方图,其中时间分组为[)0,10,[)10,20,[)20,30,[)30,40,[]40,50.(1)求频率分布直方图中a的值;(2)从统计学的角度说明学校是否需要推迟5分钟上课;(3)若从样本单程时间不小于30分钟的学生中,随机抽取2人,求这两个学生的单程时30,40上的概率.间均落在[)22.甲、乙两家商场对同一种商品开展促销活动,对购买该商品的顾客两家商场的奖励方案如下:甲商场:顾客转动如图所示圆盘,当指针指向阴影部分(图中四个阴影部分均为扇形,且每个扇形圆心角均为15︒,边界忽略不计)即为中奖.乙商场:从装有3个白球3个红球的盒子中一次性摸出2个球(球除颜色外不加区分),如果摸到的是2个红球,即为中奖.问:购买该商品的顾客在哪家商场中奖的可能性大?23.某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.已知这100位顾客中一次购物量超过10件的顾客占40%.一次购物量1至5件6至10件11至15件16至20件21件及以上顾客数(人)x3025y5结算时间(分钟/人)12345(1)确定,x y的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过3分钟的概率.(将频率视为概率)24.安庆市某中学教研室从高二年级随机抽取了50名学生的十月份语文成绩(满分100分,成绩均为不低于40分的整数),得到如图所示的频率分布直方图.(1)若该校高二年级共有学生1000人,试估计十月份月考语文成绩不低于60分的人数; (2)为提高学生学习语文的兴趣,学校决定在随机抽取的50名学生中成立“二帮一”小组,即从成绩[]90,100中选两位同学,共同帮助[)40,50中的某一位同学.已知甲同学的成绩为42分,乙同学的成绩为95分,求甲乙恰好被安排在同一小组的概率.25.手机运动计步已经成为一种新时尚.某单位统计了职工一天行走步数(单位:百步),绘制出如下频率分布直方图:(1)求直方图中a 的值,并由频率分布直方图估计该单位职工一天步行数的中位数; (2)若该单位有职工200人,试估计职工一天行走步数不大于13000的人数; (3)在(2)的条件下,该单位从行走步数大于15000的3组职工中用分层抽样的方法选取6人参加远足拉练活动,再从6人中选取2人担任领队,求这两人均来自区间150,(170]的概率.26.已知集合{(,)|[0,2],[1,1]}M x y x y =∈∈-. (1)若,x y Z ∈,求0x y +≥的概率; (2)若,x y R ∈,求0x y +≥的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.B 解析:B 【分析】根据πsin 2sin 52θθ⎛⎫++= ⎪⎝⎭,可以求得sin()1θϕ+=,tan 2ϕ=,求出小正方形的边长和直角三角形两直角边的长,进而得到大正方形的边长,然后根据几何概型概率公式求解即可. 【详解】 由πsin 2sin 52θθ⎛⎫++= ⎪⎝⎭可得sin 2cos 5θθ+=, 即5sin()5θϕ+=,即sin()1θϕ+=,且tan 2ϕ=,所以2πθϕ+=,所以直角三角形较大的锐角为ϕ,较小的锐角为θ,如图,设小正方形的边长为a ,直角三角形较大的锐角为θ、较大的锐角为为ϕ, 较小的直角的边长b ,则直角三角形较大的直角边长为+a b ,∵tan 2a bbϕ+==, ∴a b =,∴22(2)5a a a +=, 由几何概型概率公式可得,所求概率为2215(5)P a ==. 故选:B . 【点睛】解答几何概型概率的关键是分清概率是属于长度型的、面积型的、还是体积型的,然后再根据题意求出表示基本事件的点构成的线段的长度(或区域的面积、空间几何体的体积),最后根据公式计算即可.2.A解析:A 【分析】列出所有可以表示成和为6的正整数式子,找到加数全部为质数的只有336+=,利用古典概型求解即可. 【详解】6拆成两个正整数的和含有的基本事件有:(1,5),(2,4),(3,3), (4,2),(5,1), 而加数全为质数的有(3,3), 根据古典概型知,所求概率为15P =. 故选:A. 【点睛】本题主要考查了古典概型,基本事件,属于容易题.3.D解析:D 【分析】根据题意,列举出所有的基本事件,再分别找出满足事件A 与事件B 的事件个数,分别求出其概率,最后再相加即可. 【详解】根据题意,将一枚质地均匀的硬币连掷三次,可能出现的情况有以下8种:(正正正),(正正反),(正反正),(正反反),(反正正),(反正反),(反反正),(反反反).满足事件A :恰有1次正面向上的基本事件有(正反反),(反正反),(反反正)三种,故3()8P A =;满足事件B :恰有2次正面向上的基本事件有(正正反),(正反正),(反正正)三种,故3()8P B =;因此,3()()()4P A B P A P B +=+=. 故选:D. 【点睛】本题主要考查利用列举法计算基本事件的个数以及求解事件发生的概率.4.D解析:D 【分析】由题意求得数列{}n a 的前8项,求得长方形ABCD 的面积,再求出6个扇形的面积和,由测度比是面积比得答案. 【详解】由题意可得,数列{}n a 的前8项依次为:1,1,2,3,5,8,13,21.∴长方形ABCD 的面积为1321273⨯=.6个扇形的面积之和为222222(1235813)684ππ+++++=.∴所求概率681273P π=-.故选:D . 【点睛】本题考查几何概型概率的求法,考查扇形面积公式的应用,是基础题.5.C解析:C 【分析】由题意求出AB =,所求概率即为DEF ABCS P S=,即可得解.【详解】由题意易知120ADB ∠=,AF FD BD ==,由余弦定理得22222cos1207AB AD BD AD BD BD =+-⋅⋅=即AB =,所以AB =,则所求概率为217DEF ABCSFD P SAB ⎛⎫=== ⎪⎝⎭. 故选:C. 【点睛】本题考查了几何概型概率的求法和余弦定理的应用,属于中档题.6.C解析:C 【分析】设甲、乙到达的时间分别为,x y ,列出所有基本事件的约束条件,同时列出两艘船停靠泊位时都不需要等待的约束条件,利用线性规划做出平面区域,利用几何概型概率关系转化为面积比. 【详解】设甲、乙到达的时间分别为,x y ,则所有基本事件的构成的区域024{|}024x x y ≤≤⎧Ω=⎨≤≤⎩, 则这两艘船停靠泊位时都不需要等待包含的基本事件构成的区域024024{(,)|}46x y A x y y x x y ≤≤⎧⎪≤≤⎪=⎨≥+⎪⎪≥+⎩,做出Ω构成的区域,其面积为224=576,阴影部分为集合A 构成的区域,面积为221(2018)3622+=, 这两艘船停靠泊位时都不需要等待的概率362181()576288P A ==. 故选:C.【点睛】本题考查利用线性规划做出事件对应的平面区域,再利用几何概型概率公式求出事件的概率,属于中档题.7.A解析:A 【分析】求出样本点的中心,求出ˆa的值,得到回归方程得到5个点中落在回归直线下方的有(6,2),(8,3),共2个,求出概率即可.【详解】8x =, 3.4y =,故3.40.658ˆa=⨯+,解得: 1.8a =-, 则0.65.8ˆ1yx =-, 故5个点中落在回归直线下方的有(6,2),(8,3),共2个, 故所求概率是25p =, 故选:A . 【点睛】本题考查回归方程概念、概率的计算以及样本点的中心,考查数据处理能力,是一道基础题.8.D解析:D 【分析】设正品为12,a a ,次品为b ,列出所有的基本事件,根据古典概型求解即可. 【详解】设正品为12,a a ,次品为b ,任取两件所有的基本事件为12(,)a a ,1(,)a b ,2(,)a b 共3个基本事件, 其中恰有1件次品的基本事件为1(,)a b ,2(,)a b ,共2个, 所以23P =, 故选:D 【点睛】本题主要考查了古典概型,基本事件的概念,属于容易题.9.D解析:D 【分析】直接列举出所有的抽取情况,再列举出符合题意的事件数,即可计算出概率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

n 不是质数n 不是质数是否r=0开始a=3n=1输出an=n+1n>5a=0.5a+0.5高一数学必修3期中测试1一、选择题(每小题6分,共60分)1.从学号为0~50的高一某班50名学生中随机选取5名同学参加数学测试,采用系统抽样的方法,则所选5名学生的学号可能是( ).A. 5,15,25,35,45B. 1,2,3,4,5C. 2,4,6,8,10D. 4,13,22,31,40 2.某小组有3名男生和2名女生,从中任选2名同学参加演讲比赛,那么互斥不对立的两个事件是( ).A .至少有1名男生与全是女生B .至少有1名男生与全是男生C .至少有1名男生与至少有1名女生D .恰有1名男生与恰有2名女生 3.A ,B 两名同学在5次数学考试中的成绩统计如下面的茎叶图所示,若A ,B 两人的平均成绩分别是B A x x ,,观察茎叶图,下列结论正确的是( ).A. B A x x <,B 比A 成绩稳定B. B A x x >,B 比A 成绩稳定C. B A x x <,A 比B 成绩稳定D. B A x x >,A 比B 成绩稳定4.某程序框图如右图所示,该程序运行后输 出的最后一个数是( ).A .1617 B .89 C .45 D .235.O 为边长为6的等边三角形心,P 是三角形任一点, 使得OP<3的概率是( ).A .123B .93B .C .123π D .93π6.如右图,是某算法流程图的一部分,其算法的逻辑结构为 ( ) A. 顺序结构 B. 判断结构 C. 条件结构 D. 循环结构7.某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点,公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为(1);在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务情况,记这项调查为(2)。

则完成(1)、(2)这两项调查宜采用的抽样方法依次是 ( ) A 、分层抽样法,系统抽样法 B 、分层抽样法,简单随机抽样法C 、系统抽样法,分层抽样法D 、简单随机抽样法,分层抽样法 8.下列对一组数据的分析,不正确的说法是 ( )A 、数据极差越小,样本数据分布越集中、稳定B 、数据平均数越小,样本数据分布越集中、稳定C 、数据标准差越小,样本数据分布越集中、稳定D 、数据方差越小,样本数据分布越集中、稳定9. 输入两个数a,b,要输出b,a,下面语句正确一组是 ( ).A. B. C. D.10.先后抛掷质地均匀的硬币三次,则至少一次正面朝上的概率是 ( )a=bb=ac=b b=a a=cb=a a=ba=c c=b b=a茎叶图 A.81B. 83C. 85D. 87二、填空题(每小题5分,共15分)11.计算机的程序设计语言很多,但各种程序语言都包含下列基本的算法语句: , , , , 。

12.为了解某地高一年级男生的身高情况,从其中的一个学校选取容量为60的样本(60名男生的身高,单位:cm),分组情况如下:则表中的=m ,=a 。

13.如右图,在正方形有一扇形(见阴影部分),扇形对应的圆心是 正方形的一顶点,半径为正方形的边长。

在这个图形上随机撒一粒黄豆, 它落在扇形外正方形的概率为 。

(用分数表示)三、解答题:(共75分,解答题应书写合理的解答或推理过程) 14.(6分)为了了解某地高一学生的体能状况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形的面积之比为2:4:17:15:9:3,第二小组频数为12. (1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上为达标,试估计全体高一学生的达标率为多少?(3)通过该统计图,可以估计该地学生跳绳次数的众数是 ,中位数是 。

15.(14分)下面是计算应纳税所得额的算法过程,其算法如下:第一步 输入工资x(注x<=5000);第二步 如果x<=800,那么y=0;如果800<x<=1300,那么 y=0.05(x-800);否则 y=25+0.1(x-1300)第三步 输出税款y, 结束。

请写出该算法的程序框图和程序。

(注意:程序框图与程序必须对应)16.(15分)为了调查甲、乙两个受欢迎的程度,随机选取了14天,统计上午8:00—10:00间各自的点击量,得如下所示的统计图,根据统计图: (1)甲、乙两个点击量的极差分别是多少? (4分) (2)甲点击量在[10,40]间的频率是多少? (4分) (3)甲、乙两个哪个更受欢迎?并说明理由。

(4分)17.(15分)在人群流量较大的街道,有一中年人吆喝“送钱”,只见他手拿一黑色小布袋,袋中有3只黄色、3只白色的乒乓球(其体积、质地完成相同),旁边立着一块小黑板写道:分组 151.5~158.5~165.5~172.5~频数 6 2lm频率a0.1摸球方法:从袋中随机摸出3个球,若摸得同一颜色的3个球,摊主送给摸球者5元钱;若摸得非同一颜色的3个球,摸球者付给摊主1元钱。

(1)摸出的3个球为白球的概率是多少?(2)摸出的3个球为2个黄球1个白球的概率是多少?(3)假定一天中有100人次摸奖,试从概率的角度估算一下这个摊主一个月(按30天计)能赚多少钱?18.(15分)假设你家订了一份报纸,送报人可能在早上6点—8点之间把报纸送到你家,你每天离家去工作的时间在早上7点—9点之间(1)你离家前不能看到报纸(称事件A)的概率是多少?(2)请你设计一种随机模拟的方法近似计算事件A的概率(包括手工的方法或用计算器、计算机的方法)19.(10分)给出50个数,1,2,4,7,11,…,其规律是:个数大2,第4个数比第3个数大3,…,以此类推. 要求计算这50个数的和. 先将下面给出的程序框图补充完整,再根据程序框图写出程序.1. 把程序框图补充完整:(1)________________________(2)________________________2. 程序:高一数学必修3期中测试1答案一、选择题1.A2.D3.A4.B5.D6.C7.B8.B9.C 10.D二、填空题11输入语句,输出语句,赋值语句,条件语句,循环语句12由题设条件m=60×0.1=6故身高在165.5~172.5之间的频数是60-6-21-6=27故a=27/ 60 =0.45故答案为:6;0.45.13令正方形的边长为a,则S正方形=a2,则扇形所在圆的半径也为a,则S扇形=1 /4 (πa2 )则黄豆落在阴影区域的概率P=1-S扇形 /S正方形 =(4-π)/ 4 .故答案为:(4-π)/ 4 .三解答题14.解:(1)∵从左到右各小长方形的面积之比为2:4:17:15:9:3,第二小组频数为12.∴样本容量是 (2+4+17+15+9+3)×12 4 =150,∴第二小组的频率是 12/ 150 =0.08.(2)∵次数在110以上为达标,∴在这组数据中达标的个体数一共有17+15+9+3,∴全体学生的达标率估计是(17+15+9+3 )/50 =0.88 …6分(3)在频率分布直方图中最高的小长方形的底边的中点就是这组数据的众数,即(110+120 )/2 =115,…7分处在把频率分布直方图所有的小长方形的面积分成两部分的一条垂直与横轴的线对应的横标就是中位数121.3 …8分15解①程序如下:②框图如下:16解:(1)甲的极差为:73-8=65;乙的极差为:71-5=66(4分)(2)甲点击量在[10,40]间的频率为4 /14 =2 7(3)甲的点击量集中在茎叶图的下方,而乙的点击量集中在茎叶图的上方.从数据的分布情况来看,甲更受欢迎.17解:把3只黄色乒乓球标记为A、B、C,3只白色的乒乓球标记为1、2、3.从6个球中随机摸出3个的基本事件为:ABC、AB1、AB2、AB3、AC1、AC2、AC3、A12、A13、A23、BC1、BC2、BC3、B12、B13、B23、C12、C13、C23、123,共20个(1)事件E={摸出的3个球为白球},事件E包含的基本事件有1个,即摸出123:P(E)=1/ 20 =0.05(2)事件F={摸出的3个球为2个黄球1个白球},事件F包含的基本事件有9个,P(F)=9 /20 =0.45(3)事件G={摸出的3个球为同一颜色}={摸出的3个球为白球或摸出的3个球为黄球},P(G)=2 /20 =0.1,假定一天中有100人次摸奖,由摸出的3个球为同一颜色的概率可估计事件G发生有10次,不发生90次.则一天可赚90×1-10×5=40,每月可赚1200元。

18解:(1)如图,设送报人到达的时间为X,小王离家去工作的时间为Y.(X,Y)可以看成平面中的点,试验的全部结果所构成的区域为Ω={(x,y)|6≤X≤8,7≤Y≤9}一个正方形区域,面积为SΩ=4,事件A表示小王离家前不能看到报纸,所构成的区域为A={(X,Y)|6≤X≤8,7≤Y≤9,X>Y} 即图中的阴影部分,面积为SA=0.5.这是一个几何概型,所以P(A)=SA/ SΩ =0.5/ 4 =0.125.答:小王离家前不能看到报纸的概率是0.125.…(6分)(2)用计算机产生随机数摸拟试验,X是0-1之间的均匀随机数,Y也是0-1之间的均匀随机数,各产生1002X+6表示早上6点-8点,2Y+7表示早上7点-9点,依序计算,如果满足2X+6>2Y+7,那小王离家前不能看到报纸,统计共有多少为M,则M 100 即为估计的概率.19.解:(1)∵循环变量的初值为1,终边为50,根据循环要实现的功能,故循环体的①语句应为:i<=50;②语句应为:p=p+I 故答案为:①i<=50;②p=p+i.(2)程序如下:i=1p=1S=0WHILE i<50S=S+pp=p+ii=i+1WENDPRINT SEND。

相关文档
最新文档