数学椭圆的解题技巧
高二上册数学选修一《2.5 椭圆及其方程》知识点梳理

高二上数学选修一第二章《平面解析几何》知识点梳理2.5.1椭圆的标准方程学习目标:1.掌握椭圆的定义,会用椭圆的定义解决实际问题.(重点)2.掌握用定义法和待定系数法求椭圆的标准方程.(重点)3.理解椭圆标准方程的推导过程,并能运用标准方程解决相关问题.(难点)“嫦娥二号”卫星是探月二期工程的技术先导星,实现月球软着陆进行部分关键技术试验,入太空轨道绕月球运转时,1.椭圆的定义(1)定义:如果F 1,F 2是平面内的两个定点,a 是一个常数,且2a >|F 1F 2|,则平面内满足|PF 1|+|PF 2|=2a 的动点P 的轨迹称为椭圆.(2)相关概念:两个定点F 1,F 2称为椭圆的焦点,两个焦点之间的距离|F 1F 2|称为椭圆的焦距.思考1:椭圆定义中,将“大于|F 1F 2|”改为“等于|F 1F 2|”或“小于|F 1F 2|”的常数,其他条件不变,点的轨迹是什么?[提示]2a 与|F 1F 2|的大小关系所确定的点的轨迹如下表:条件结论2a >|F 1F 2|动点的轨迹是椭圆2a =|F 1F 2|动点的轨迹是线段F 1F 22a <|F 1F 2|动点不存在,因此轨迹不存在2.椭圆的标准方程焦点位置在x 轴上在y 轴上标准方程x 2a 2+y 2b 2=1(a >b >0)y 2a 2+x 2b 2=1(a >b >0)(±c,0)(0,±c ):确定椭圆标准方程需要知道哪些量?[提示]a ,b 的值及焦点所在的位置.思考3:根据椭圆方程,如何确定焦点位置?[提示]把方程化为标准形式,x 2,y 2的分母哪个大,焦点就在相应的轴上.1.思考辨析(正确的打“√”,错误的打“×”)(1)平面内与两个定点F 1,F 2的距离之和等于常数的点的轨迹是椭圆.()(2)椭圆x 216+y 225=1的焦点坐标是(±3,0).()(3)y 2a 2+x 2b 2=1(a ≠b )表示焦点在y 轴上的椭圆.()[答案](1)×(2)×(3)×[提示](1)×需2a >|F 1F 2|.(2)×(0,±3).(3)×a >b >0时表示焦点在y 轴上的椭圆.2.以下方程表示椭圆的是()A .x 2+y 2=1B .2x 2+3y 2=6C .x 2-y 2=1D .2x 2-3y 2=6B[只有B 可化为x 23+y 22=]3.以坐标轴为对称轴,两焦点的距离是2,且过点(0,2)的椭圆的标准方程是()A .x 25+y 24=1B .x 23+y 24=1C .x 25+y 24=1或x 23+y 24=1D .x 29+y 24=1或x 23+y 24=1C [若椭圆的焦点在x 轴上,则c =1,b =2,得a 2=5,此时椭圆方程是x 25+y 24=1;若焦点在y轴上,则a =2,c =1,则b 2=3,此时椭圆方程是x 23+y 24=1.]4.椭圆x 29+y 24=1的左、右焦点F 1,F 2,点P 在椭圆上,若|PF 1|=4,则|PF 2|=.2[由椭圆的定义知|PF 1|+|PF 2|=6,所以|PF 2|=6-|PF 1|=6-4=2.]求椭圆的标准方程【例1】根据下列条件,求椭圆的标准方程.(1)两个焦点坐标分别是(0,5)、(0,-5),椭圆上一点P 到两焦点的距离和为26.(2)经过点2,焦点在x 轴上.(3)过(-3,2)且与x 29+y 24=1有相同的焦点.[解](1)∵椭圆的焦点在y 轴上,所以设它的标准方程为:y 2a 2+x 2b 2=1(a >b >0).∵2a =26,2c =10,∴a =13,c =5.∴b 2=a 2-c 2=144.∴所求椭圆的标准方程为:y 2169+x 2144=1.(2)设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),∵焦点在x 轴上,2c =2,∴a 2=b 2+1,又椭圆经过点∴1b 2+1+94b 2=1,解之得b 2=3,∴a 2=4.∴椭圆的标准方程为x 24+y 23=1.(3)由方程x 29+y 24=1可知,其焦点的坐标为(±5,0),即c =5.设所求椭圆方程为x 2a 2+y 2b 2=1(a >b >0),则a 2=b 2+5,因为过点(-3,2),代入方程为9a 2+4a 2-5=1(a >b >0),解得a 2=15(a 2=3舍去),b 2=10,故椭圆的标准方程为x 215+y 210=1.利用待定系数法求椭圆的标准方程(1)先确定焦点位置;(2)设出方程;(3)寻求a ,b ,c 的等量关系;(4)求a ,b 的值,代入所设方程.提醒:若椭圆的焦点位置不确定,需要分焦点在x 轴上和在y 轴上两种情况讨论,可设椭圆方程为mx 2+ny 2=1(m ≠n ,m >0,n >0).[跟进训练]1.求适合下列条件的椭圆的标准方程.(1)焦点在x 轴上,且a =4,c =2;(2)经过点[解](1)∵a 2=16,c 2=4,∴b 2=16-4=12,且焦点在x 轴上,故椭圆的标准方程为x 216+y 212=1.(2)法一:①当椭圆的焦点在x 轴上时,设标准方程为x 2a 2+y 2b 2=1(a >b >0),依题意,有1,1,2=15,2=14,因为a >b >0,所以方程组无解.②当椭圆的焦点在y 轴上时,设标准方程为y 2a 2+x 2b2=1(a >b >0),所以所求方程为y 214+x 215=1.法二:设所求椭圆的方程为mx 2+ny 2=1(m >0,n>0,且m ≠n ),+19n =1,=1,=5,=4,故所求方程为5x 2+4y 2=1,即y 214+x 215=1.椭圆的定义及其应用[探究问题]1.如何用集合语言描述椭圆的定义?[提示]P ={M ||MF 1|+|MF 2|=2a,2a >|F 1F 2|}.2.如何判断椭圆的焦点位置?[提示]判断椭圆焦点在哪个轴上就要判断椭圆标准方程中x 2项和y 2项的分母哪个更大一些,即“谁大在谁上”.3.椭圆标准方程中,a ,b ,c 三个量的关系是什么?[提示]椭圆的标准方程中,a 表示椭圆上的点M 到两焦点间距离的和的一半,可借助图形帮助记忆.a ,b ,c (都是正数)恰是构成一个直角三角形的三条边,a 是斜边,所以a >b ,a >c ,且a 2=b 2+c 2(如图所示).【例2】设P 是椭圆x 225+y2754=1上一点,F 1,F 2是椭圆的焦点,若∠F 1PF 2=60°,求△F 1PF 2的面积.[解]由椭圆方程知,a 2=25,b 2=754,∴c 2=254,∴c =52,2c =5.在△PF 1F 2中,|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|cos 60°,即25=|PF 1|2+|PF 2|2-|PF 1|·|PF 2|.①由椭圆的定义,得10=|PF 1|+|PF 2|,即100=|PF 1|2+|PF 2|2+2|PF 1|·|PF 2|.②②-①,得3|PF 1|·|PF 2|=75,所以|PF 1|·|PF 2|=25,所以S △F 1PF 2=12|PF 1|·|PF 2|·sin 60°=2534.1.将本例中的“∠F 1PF 2=60°”改为“∠F 1PF 2=30°”其余条件不变,求△F 1PF 2的面积.[解]由椭圆方程知,a 2=25,b 2=754,∴c 2=254,∴c =52,2c =5.在△PF 1F 2中,|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|·cos 30°,即25=|PF 1|2+|PF 2|2-3|PF 1|·|PF 2|.①由椭圆的定义得10=|PF 1|+|PF 2|,即100=|PF 1|2+|PF 2|2+2|PF 1|·|PF 2|.②②-①,得(2+3)|PF 1|·|PF 2|=75,所以|PF 1|·|PF 2|=75(2-3),所以S △F 1PF 2=12|PF 1|·|PF 2|·sin 30°=754(2-3).2.将椭圆的方程改为“x 2100+y 264=1”其余条件不变,求△F 1PF 2的面积.[解]|PF 1|+|PF 2|=2a =20,又|F 1F 2|=2c =12.由余弦定理知:(2c )2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|·cos 60°,即:144=(|PF 1|+|PF 2|)2-3|PF 1|·|PF 2|.所以|PF 1|·|PF 2|=2563,椭圆定义的应用技巧(1)椭圆的定义具有双向作用,即若|MF 1|+|MF 2|=2a (2a >|F 1F 2|),则点M 的轨迹是椭圆;反之,椭圆上任意一点M 到两焦点的距离之和必为2a .(2)椭圆的定义能够对一些距离进行相互转化,简化解题过程.因此,解题过程中遇到涉及曲线上的点到焦点的距离问题时,应先考虑是否能够利用椭圆的定义求解.拓展延伸:椭圆中的焦点三角形椭圆上一点P 与椭圆的两个焦点F 1,F 2构成的△PF 1F 2,称为焦点三角形.解关于椭圆的焦点三角形的问题,通常要利用椭圆的定义,结合正弦定理、余弦定理等知识求解.与椭圆有关的轨迹问题【例3】如图,圆C :(x +1)2+y 2=25及点A (1,0),Q 为圆上一点,AQ 的垂直平分线交CQ 于M ,求点M 的轨迹方程.[解]由垂直平分线性质可知|MQ |=|MA |,|CM |+|MA |=|CM |+|MQ |=|CQ |.∴|CM |+|MA |=5.∴M 点的轨迹为椭圆,其中2a =5,焦点为C (-1,0),A (1,0),∴a =52,c =1,∴b 2=a 2-c 2=254-1=214.∴所求轨迹方程为:x 2254+y 2214=1.求解与椭圆相关的轨迹问题的方法[跟进训练]2.已知两圆C 1:(x -4)2+y 2=169,C 2:(x +4)2+y 2=9,动圆在圆C 1内部且和圆C 1相内切,和圆C 2相外切,求动圆圆心的轨迹方程.[解]如图所示,设动圆圆心为M (x ,y ),半径为r ,由题意动圆M 内切于圆C 1,∴|MC 1|=13-r .圆M 外切于圆C 2,∴|MC 2|=3+r .∴|MC 1|+|MC 2|=16>|C 1C 2|=8,∴动圆圆心M 的轨迹是以C 1、C 2为焦点的椭圆,且2a =16,2c =8,b 2=a 2-c 2=64-16=48,故所求轨迹方程为x 264+y 248=1.(1)平面内到两定点F 1、F 2的距离之和为常数,即|MF 1|+|MF 2|=2a >|F 1F 2|,轨迹为椭圆a =|F 1F 2|,线段F 1F 2a <|F 1F 2|,不存在.(2)求椭圆的方程,可以利用定义求出参数a ,b ,c 其中的两个量;也可以用待定系数法构造三者之间的关系,但是要注意先确定焦点所在的位置,其主要步骤可归纳为“先定位,后定量”.(3)当焦点位置不确定时,可设椭圆方程为mx 2+ny 2=1(m >0,n >0,m ≠n ),因为它包括焦点在x 轴上(m <n )或焦点在y 轴上(m >n )两类情况,所以可以避免分类讨论,从而达到了简化运算的目的.1.椭圆x 225+y 2=1上一点P 到一个焦点的距离为2,则点P 到另一个焦点的距离为()A .5B .6C .7D .8D [由椭圆定义知点P 到另一个焦点的距离是10-2=8.]2.到两定点F 1(-2,0)和F 2(2,0)的距离之和为4的点的轨迹是()A .椭圆B .线段C .圆D .以上都不对B[|MF 1|+|MF 2|=|F 1F 2|=4,∴点M 的轨迹为线段F 1F 2.]3.椭圆x 216+y 232=1的焦距为.8[由方程得a 2=32,b 2=16,∴c 2=a 2-b 2=16.∴c =4,2c =8.]4.已知椭圆x 216+y 29=1的左、右焦点分别为F 1、F 2,过点F 1的直线l 交椭圆于A 、B 两点,则△ABF 2的周长是.16[由椭圆定义知,|AF 1|+|AF 2|=|BF 1|+|BF 2|=2a =8,又△ABF 2的周长等于|AB |+|AF 2|+|BF 2|=|AF 1|+|BF 1|+|AF 2|+|BF 2|=16.]5.设F 1,F 2分别为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右两个焦点,若椭圆C 上的点A F 1,F 2两点的距离之和为4,求椭圆C 的方程是.x 24+y 23=1[|AF 1|+|AF 2|=2a =4得a =2,∴原方程化为x 24+y 2b 2=1,将A b 2=3,∴椭圆方程为x 24+y 23=1.]2.5.2椭圆的几何性质学习目标1.根据椭圆的方程研究曲线的几何性质,并正确地画出它的图形.2.根据几何条件求出曲线方程,并利用曲线的方程研究它的性质、图形.(重点、难点)奥地利维也纳金色大厅的顶棚设计为椭圆面,演奏时,椭圆面顶棚会把声音反射到椭圆面的另一个焦点处汇聚,有另外一个乐队存在(其实什么都没有椭圆的简单几何性质焦点的位置焦点在x 轴上焦点在y 轴上标准方程x 2a 2+y 2b 2=1(a >b >0)y 2a 2+x 2b 2=1(a >b >0)图形对称性对称轴x 轴和y 轴,对称中心(0,0)范围x ∈[-a ,a ],y ∈[-b ,b ]x ∈[-b ,b ],y ∈[-a ,a ]顶点A 1(-a,0),A 2(a,0),B 1(0,-b ),B 2(0,b )A 1(0,-a ),A 2(0,a ),B 1(-b,0),B 2(b,0)轴长短轴|B 1B 2|=2b ,长轴|A 1A 2|=2a焦点F 1(-c,0),F 2(c,0)F 1(0,-c ),F 2(0,c )焦距|F 1F 2|=2c[提示]最大距离:a +c ;最小距离:a -c .思考2:椭圆方程x 2a 2+y 2b 2=1(a >b >0)中a ,b ,c 的几何意义是什么?[提示]在方程x 2a 2+y 2b2=1(a >b >0)中,a ,b ,c 的几何意义如图所示.即a ,b ,c 正好构成了一个以对称中心,一个焦点、一个短轴顶点构成的直角三角形.1.思考辨析(正确的打“√”,错误的打“×”)(1)椭圆x 2a 2+y 2b 2=1(a >b >0)的长轴长等于a .()(2)椭圆上的点到焦点的距离的最小值a -c .()(3)椭圆上的离心率e 越小,椭圆越圆.()[答案](1)×(2)√(3)√[提示](1)×椭圆x 2a 2+y 2b 2=1(a >b >0)的长轴长等于2a .(2)√椭圆上的点到焦点的距离的最大值为a +c ,最小值为a -c .(3)√离心率e =ca越小,c 就越小,这时b 就越接近于a ,椭圆就越圆.2.椭圆6x 2+y 2=6的长轴端点坐标为()A .(-1,0),(1,0)B .(-6,0),(6,0)C .(-6,0),(6,0)D .(0,-6),(0,6)D [x 2+y 26=1焦点在y 轴上,长轴端点坐标为(0,-6),(0,6).]3.椭圆x 2+4y 2=4的离心率为()A .32B .34C .22D .23A [化椭圆方程为标准形式得x 24+y 2=1,所以a 2=4,b 2=1,所以c 2=a 2-b 2=3.所以e =c a =32.]4.椭圆x 29+y 216=1的焦点坐标是,顶点坐标是.(0,±7)(±3,0),(0,±4)[由方程x 29+y 216=1知焦点在y 轴上,所以a 2=16,b 2=9,c 2=a 2-b 2=7.因此焦点坐标为(0,±7),顶点坐标为(±3,0),(0,±4).]椭圆的几何性质【例1】求椭圆16x 2+25y 2=400的长轴和短轴的长、离心率、焦点和顶点的坐标.[思路探究]化为标准方程,确定焦点位置及a ,b ,c 的值,再研究相应的几何性质.[解]把已知方程化成标准方程x 252+y 242=1,可知a =5,b =4,所以c =3.因此,椭圆的长轴和短轴的长分别是2a =10和2b =8,离心率e =c a =35,两个焦点分别是F 1(-3,0)和F 2(3,0),椭圆的四个顶点是A 1(-5,0),A 2(5,0),B 1(0,-4)和B 2(0,4).1.已知椭圆的方程讨论性质时,若不是标准形式的先化成标准形式,再确定焦点的位置,进而确定椭圆的类型.2.焦点位置不确定的要分类讨论,找准a 与b ,正确利用a 2=b 2+c 2求出焦点坐标,再写出顶点坐标.提醒:长轴长、短轴长、焦距不是a ,b ,c ,而应是a ,b ,c 的两倍.[跟进训练]1.求椭圆4x 2+9y 2=36的长轴长和焦距、焦点坐标、顶点坐标和离心率.[解]将椭圆方程变形为x 29+y 24=1,∴a =3,b =2,∴c =a 2-b 2=9-4=5.∴椭圆的长轴长和焦距分别为2a =6,2c =25,焦点坐标为F 1(-5,0),F 2(5,0),顶点坐标为A 1(-3,0),A 2(3,0),B 1(0,-2),B 2(0,2),离心率e =c a =53.利用几何性质求椭圆的标准方程【例2】求适合下列条件的椭圆的标准方程:(1)与椭圆4x2+9y2=36有相同的焦距,且离心率为55;(2)长轴长是短轴长的2倍,且过点(2,-4).[解](1)将方程4x2+9y2=36化为x29+y24=1,可得椭圆焦距为2c=25.又因为离心率e=5 5,即55=5a,所以a=5,从而b2=a2-c2=25-5=20.若椭圆焦点在x轴上,则其标准方程为x225+y220=1;若椭圆焦点在y轴上,则其标准方程为y225+x220=1.(2)依题意2a=2×2b,即a=2b.若椭圆焦点在x轴上,设其方程为x2a2+y2b2=1(a>b>0),2b,+16b2=1.2=68,2=17,所以标准方程为x268+y217=1.若椭圆焦点在y轴上,设其方程为y2a2+x2b2=1(a>b>0),2b,+4b2=1,2=32,2=8.所以标准方程为x28+y232=1.利用待定系数法求椭圆标准方程的基本步骤及注意事项1 用几何性质求椭圆的标准方程通常采用的方法是待定系数法.2 根据已知条件求椭圆的标准方程的思路是“选标准,定参数”,即先明确焦点的位置或分类讨论.一般步骤是:①求出a2,b2的值;②确定焦点所在的坐标轴;③写出标准方程.3 在求解a 2、b 2时常用方程 组 思想,通常由已知条件与关系式a 2=b 2+c 2,e =ca 等构造方程 组加以求解.提醒:解答本例时容易忽视焦点的位置而漏解.[跟进训练]2.求适合下列条件的椭圆的标准方程:(1)长轴长是10,离心率是45;(2)在x 轴上的一个焦点,与短轴两个端点的连线互相垂直,且焦距为6.[解](1)设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0)或y 2a 2+x 2b 2=1(a >b >0).由已知得2a =10,a =5,e =c a =45,∴c =4.∴b 2=a 2-c 2=25-16=9.∴椭圆方程为x 225+y 29=1或x 29+y 225=1.(2)依题意可设椭圆方程为x 2a 2+y 2b 2=1(a >b >0).如图所示,△A 1FA 2为一等腰直角三角形,OF 为斜边A 1A 2的中线(高),且|OF |=c ,|A 1A 2|=2b,2c =6,∴c =b =3,∴a 2=b 2+c 2=18,故所求椭圆的方程为x 218+y 29=1.求椭圆的离心率[探究问题]1.求椭圆离心率的关键是什么?[提示]根据e =ca ,a 2-b 2=c 2,可知要求e ,关键是找出a ,b ,c 的等量关系.2.a ,b ,c 对椭圆形状有何影响?[提示]【例3】已知F 1,F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆于A ,B 两点,若△ABF 2是正三角形,求该椭圆的离心率.[思路探究]由题设求得A 、B 点坐标,根据△ABF 2是正三角形得出a ,b ,c 的关系,从而求出离心率.[解]设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0),焦点坐标为F 1(-c,0),F 2(c,0).依题意设A c则B c ∴|AB |=2b 2a.由△ABF 2是正三角形得2c =32×2b 2a ,即3b 2=2ac ,又∵b 2=a 2-c 2,∴3a 2-3c 2-2ac =0,两边同除以a 2+2ca -3=0,解得e =c a =33.1.(变换条件)本例中将条件“过F 1且与椭圆长轴垂直的直线交椭圆于A ,B 两点,若△ABF 2是正三角形”改为“A 为y 轴上一点,且AF 1的中点B 恰好在椭圆上,若△AF 1F 2为正三角形”.如何求椭圆的离心率?[解]设椭圆的方程为x 2a 2+y 2b2=1(a >b >0),焦点坐标为F 1(-c,0),F 2(c,0),设A点坐标为(0,y0)(y0>0),则B -c 2,∵B点在椭圆上,∴c24a2+y204b2=1,解得y20=4b2-b2c2 a2,由△AF1F2为正三角形得4b2-b2c2a2=3c2,即c4-8a2c2+4a4=0,两边同除以a4得e4-8e2+4=0,解得e=3-1.2.(变换条件)“若△ABF2是正三角形”换成“椭圆的焦点在x轴上,且A点的纵坐标等于短半轴长的23”,求椭圆的离心率.[解]设椭圆方程为x2a2+y2b2=1(a>b>0),F1(-c,0),F2(c,0),由题意知A c,23b∴c2a2+49=1,解得e=53.求椭圆离心率的方法(1)直接求出a和c,再求e=ca,也可利用e=1-b2a2求解.(2)若a和c不能直接求出,则看是否可利用条件得到a和c的齐次等式关系,然后整理成ca的形式,并将其视为整体,就变成了关于离心率e的方程,进而求解.1.已知椭圆的方程讨论性质时,若不是标准形式要先化成标准形式,再确定焦点的位置,找准a、b.2.利用椭圆的几何性质求标准方程通常采用待定系数法.3.求离心率e 时,注意方程思想的运用.1.椭圆x 29+y 216=1的离心率()A .74B .916C .13D .14A [a 2=16,b 2=9,c 2=7,从而e =c a =74.]2.若中心在原点,焦点在x 轴上的椭圆的长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的方程是()A .x 281+y 272=1B .x 281+y 29=1C .x 281+y 245=1D .x 281+y 236=1A [由已知得a =9,2c =13×2a ,∴c =13a =3,b 2=a 2-c 2=72.又焦点在x 轴上,∴椭圆方程为x 281+y 272=1.]3.椭圆x 2+my 2=1的焦点在y 轴上,长轴长是短轴长的2倍,则m 的值为()A .12B .2C .14D .4C [椭圆x 2+my 2=1的标准形式为:x 2+y 21m=1.因为焦点在y 轴上,且长轴长是短轴长的2倍,所以1m =4,所以m =14.]4.若一个椭圆长轴的长度,短轴的长度和焦距成等差数列,则该椭圆的离心率是.35[由题意有2a +2c =2(2b ),即a +c =2b ,又c 2=a 2-b 2,消去b 整理得5c 2=3a 2-2ac ,即5e 2+2e -3=0,∴e =35或e =-1(舍去).]5.已知椭圆的标准方程为x24+y29=1.(1)求椭圆的长轴长和短轴长;(2)求椭圆的离心率;(3)求以此椭圆的长轴端点为短轴端点,并且经过点P(-4,1)的椭圆方程.[解](1)椭圆的长轴长为2a=6,短轴长为2b=4.(2)c=a2-b2=5,所以椭圆的离心率e=ca=53.(3)若以椭圆的长轴端点为短轴端点,则b′=3,可设椭圆方程为x2a′2+y29=1,又椭圆过点P(-4,1),将点P(-4,1)代入得16a′2+19=1,解得a′2=18.故所求椭圆方程为x218+y29=1.。
高中数学椭圆的焦点弦长公式的四种推导方法及其应用

椭圆的焦点弦长公式的四种推导方法及其应用摘要:直线与椭圆相交时的弦长问题,可以用万能的弦长公式解决即12AB x -或者12AB y -,而有一种特殊的弦是过焦点的弦,它的弦长有专门的公式:22222cos ab AB a c θ=-,如果记住公式,可以给我们解题带来方便.下面我们用万能弦长公式,余弦定理,焦半径公式,仿射性四种方法来推导椭圆的焦点弦长公式,这几种方法涉及到很多思想,最后举例说明其应用.解法一:根据弦长公式直接带入解决.题:设椭圆方程为12222=+by a x ,左右焦点分别为12(,0),(,0)F c F c -,直线l 过椭圆的右焦点2F 交椭圆于1122(,),(,)A x y B x y 两点,求弦长AB .椭圆方程12222=+by a x 可化为0222222=-+b a y a x b ……①,直线l 过右焦点,则可以假设直线为:x my c =+(斜率不存在即为0m =时),代入①得:222222222()20b m a y mcb y b c a b +++-=,整理得,222224()20b m a y mcb y b ++-=∴2412122222222,mcb b y y y y b m a b m a +=-=-++,∴12AB y -==∴()2222221ab AB m b m a=++ (1)若直线l 的倾斜角为θ,且不为90,则1tan m θ=,则有: ()2222222222221111tan tan ab ab AB m b m a b a θθ⎛⎫=+=+ ⎪+⎝⎭+,由正切化为余弦,得到最后的焦点弦长公式为22222cos ab AB a c θ=-……②. (2)若=90θ,则0m =,带入()2222221ab AB m b m a =++,得通径长为22b a ,同样满足②式.并且由()222232222222222222222222()222()2()21=22ab a b m a a ab a a b a a b b AB m a a b m a b m a b m a a a +-+--=+=-≥-=+++,当且仅当0=m 即斜率不存在的时候,过焦点弦长最短为a b 22,故可知通径是最短的焦点弦,.综上,焦点弦长公式为22222cos ab AB a c θ=-.解法二:根据余弦定理解决题:设椭圆方程为12222=+by a x ,左右焦点分别为12(,0),(,0)F c F c -,直线l 过椭圆的右焦点2F 交椭圆于1122(,),(,)A x y B x y 两点,求弦长AB .解:如右图所示,连结11,F A F B ,设22=,F A x F B y =,假设直线的倾斜角为θ,则由椭圆定义可得11=2,2F A a x F B a y -=-,在12AF F ∆中,由余弦定理得222(2)(2)cos()4c x a x cx πθ+---=,化简可得2cos b x a c θ=-,在12BF F ∆中,由余弦定理同理可得2cos b y a c θ=+,则弦长2222222=cos cos cos b b ab AB x y a c a c a c θθθ=+=+-+-.解法三:利用焦半径公式解决题:设椭圆方程为12222=+by a x ,左右焦点分别为12(,0),(,0)F c F c -,直线l 过椭圆的右焦点2F 交椭圆于1122(,),(,)A x y B x y 两点,求弦长AB .解:由解法一知22212121222222222=()22m cb a cx x my c my c m y y c c b m a b m a ++++=++=-+=++.由椭圆的第二定义可得焦半径公式,那么2122,F A a ex F B a ex =-=-故222221212222222222(1)=2()ab m ab ab m AB a ex a ex a e x x b m a b m a ++-+-=-+==++后面分析同解法一.解法四:利用仿射性解决题:设椭圆方程为12222=+by a x ,左右焦点分别为12(,0),(,0)F c F c -,直线l 过椭圆的右焦点2F 交椭圆于1122(,),(,)A x y B x y 两点,求弦长AB .解:利用仿射性,可做如下变换''x xa y yb =⎧⎪⎨=⎪⎩,则原椭圆变为222(')(')x y a +=,这是一个以原点为圆心,a 为半径的圆.假设原直线的斜率为k ,则变换后斜率为ak b.椭圆中弦长212=1AB k x x +-,经过变换后变为212''1()a A B k x x b=+-,带入,得变换前后弦长关系为22221=''b k AB A B b a k++……③而我们知道圆的弦长可以用垂径定理求得.如图所示,假设直线为()ay k x c b=-,圆心到直线的距离为21()a kc bd a k b=+,根据半径为a ,勾股定理求得弦长为222222222()(1)''=221()akc a b k b A B a ak b a k b+-=++,将此结果带入③中,得222222222222222222211(1)2(1)=''=2=b k b k a b k ab k AB A B b a k b a k b a k b a k++++++++,由tan k θ=,带入得 22222cos ab AB a c θ=-.上面我们分别用了四种不同的方法,求出了椭圆中过焦点的弦长公式为:22222cos ab AB a c θ=-,记住这个公式,可以帮助我们快速解决一些题目,下面我们举例说明.例1已知椭圆2212521x y +=的直线交椭圆于,A B 两点,求AB . 分析:如果直接用弦长公式解决,因为有根号,特别繁琐,利用公式则迎刃而解.解:由题,225,21,4=3a b c πθ===,,带入22222cos ab AB a c θ=-得=10AB . 例2已知点3(1,)2P -在椭圆C :22221(0)x y a b a b +=>>上,过椭圆C 的右焦点2(1,0)F 的直线l 与椭圆C 交于,M N 两点. (1)求椭圆的标准方程;(2)若AB 是椭圆C 经过原点O 的弦,且MNAB ,2ABW MN=,试判断W 是否为定值?若是定值,求出这个定值,若不是,说明理由.分析:因为l 过焦点,故弦长可以用过焦点的弦长公式解决,显得十分简洁简单. 解:(1)由题知1c =,将点P 带入得221914a b+=,又222a b c =+,解得224,3a b ==,故椭圆方程为22143x y +=. (2)假设(,)A m n,则AB =,设倾斜角为θ,则cos θ=,根据过焦点的弦长公式则2222222222221234cos 12()4abm n MN m a c m n m n θ+===-+-+,故222=443ABm n W MN =+()=4. 例3如图,已知椭圆22143x y +=的左右焦点为12,F F ,过2F 的直线1l 交椭圆于,A C 两点,过1F 的直线2l 交椭圆于,B D 两点,12,l l 交于点P (P 在x 轴下方),且1234F PF π∠=,求四边形ABCD 的面积的最大值.分析:注意到以原点为圆心,半焦距为半径的圆与椭圆没有交点,故形成1234F PF π∠=的点P 在圆内,先可以用焦点弦长公式表示出面积,再利用换元求出其最大值.解:假设1l 的倾斜角为θ,则2l 的倾斜角为3+4πθ,由椭圆的焦点弦长公式得:2124cos AC θ=-, 2124cos ()4BD πθ=--,221221212=2244cos 4cos ()4S AC BD πθθ⋅⋅⋅=⋅⋅---, 设22()(4cos )(4cos ())4f πθθθ=---71714971(cos 2)(sin 2)sin 2+cos 2+sin 42222448θθθθθ=--=-() 设sin 2cos 2(2,2)t t θθ⎡⎤+=∈-⎣⎦, 则2sin 41t θ=-,带入得24971()+(1)448f t t t =-- 即21797()848f t t t =-+ min 99142()8f t -=,此时2t =, 即sin 2cos 22θθ+=,得到=8πθ.综上,四边形ABCD 的最大值为2882=5.1499142S ≈-.此时=8πθ,得到2l 的倾斜角为78π,刚好两直线关于y 轴对称,如右图所示.。
高考数学椭圆与双曲线的经典性质技巧归纳总结

椭圆的定义、性质及标准方程高三数学备课组 刘岩老师1. 椭圆的定义:⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。
⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<<e e ,则动点M 的轨迹叫做椭圆。
定点F 是椭圆的焦点,定直线l 叫做椭圆的准线,常数e 叫做椭圆的离心率。
说明:①若常数2a 等于2c ,则动点轨迹是线段12F F 。
②若常数2a 小于2c ,则动点轨迹不存在。
2. 椭圆的标准方程、图形及几何性质:标准方程)0(12222>>=+b a b y a x 中心在原点,焦点在x 轴上)0(12222>>=+b a b x a y 中心在原点,焦点在y 轴上图形范围x a y b ≤≤, x b y a ≤≤, 顶点()()()()12120000A a A a B b B b --,、,,、,()()()()12120000A a A a B b B b --,、,,、,对称轴x 轴、y 轴;长轴长2a ,短轴长2b ;焦点在长轴上x 轴、y 轴;长轴长2a ,短轴长2b ;焦点在长轴上焦点 ()()1200F c F c -,、, ()()1200F c F c -,、, 焦距 )0(221>=c c F F)0(221>=c c F F离心率)10(<<=e a ce )10(<<=e a ce 准线2a x c=±2a y c=±参数方程与普通方程22221x y a b +=的参数方程为 ()cos sin x a y b θθθ=⎧⎨=⎩为参数 22221y x a b +=的参数方程为 ()cos sin y a x b θθθ=⎧⎨=⎩为参数3. 焦半径公式:椭圆上的任一点和焦点连结的线段长称为焦半径。
高中数学_椭圆,知识题型总结

陈氏优学教学课题椭圆知识点一:椭圆的定义 平面内一个动点到两个定点、的距离之和等于常数(),这个动点的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距.注意:若,则动点的轨迹为线段;若,则动点的轨迹无图形.讲练结合一.椭圆的定义1.若ABC ∆的两个顶点()()4,0,4,0A B -,ABC ∆的周长为18,则顶点C 的轨迹方程是 知识点二:椭圆的标准方程1.当焦点在轴上时,椭圆的标准方程:,其中;2.当焦点在轴上时,椭圆的标准方程:,其中;注意:1.只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到椭圆的标准方程;2.在椭圆的两种标准方程中,都有和;3.椭圆的焦点总在长轴上.当焦点在轴上时,椭圆的焦点坐标为,;当焦点在轴上时,椭圆的焦点坐标为,。
讲练结合二.利用标准方程确定参数1.椭圆2214x y m+=的焦距为2,则m = 。
2.椭圆5522=+ky x 的一个焦点是)2,0(,那么=k 。
知识点三:椭圆的简单几何性质椭圆的的简单几何性质(1)对称性对于椭圆标准方程,把x 换成―x ,或把y 换成―y ,或把x 、y 同时换成―x 、―y ,方程都不变,所以椭圆是以x 轴、y 轴为对称轴的轴对称图形,且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。
(2)范围椭圆上所有的点都位于直线x=±a 和y=±b 所围成的矩形内,所以椭圆上点的坐标满足|x|≤a ,|y|≤b 。
(3)顶点①椭圆的对称轴与椭圆的交点称为椭圆的顶点。
②椭圆(a>b>0)与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为A1(―a,0),A2(a,0),B1(0,―b),B2(0,b)。
③线段A1A2,B1B2分别叫做椭圆的长轴和短轴,|A1A2|=2a,|B1B2|=2b。
a和b分别叫做椭圆的长半轴长和短半轴长。
(4)离心率①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e表示,记作。
高考数学 专题07 直线与椭圆的解题方法(解析版)

专题07 直线与椭圆的解题方法一.【学习目标】1.掌握椭圆的定义、几何图形、标准方程及简单几何性质.2.熟练掌握常见的几种数学思想方法——函数与方程、数形结合、转化与化归. 3.了解椭圆的实际背景及椭圆的简单应用. 二.【知识要点】 1.椭圆的定义平面内与两个定点F 1,F 2的距离的和等于常数(大于____________)的点的轨迹叫做椭圆,这两个定点F 1,F 2叫做焦点,两焦点间的距离叫做焦距. 2.椭圆的标准方程(1) ______________ (a >b >0),焦点F 1(-c ,0),F 2(c ,0),其中c =_____________. (2)y 2a 2+x 2b2=1(a >b >0),焦点___________________,其中c =_____________. 3.椭圆的几何性质以x 2a 2+y 2b2=1(a >b >0)为例(1)范围:________________.(2)对称性:对称轴:x 轴,y 轴;对称中心:O (0,0).(3)顶点:长轴端点:A 1(-a ,0),A 2(a ,0),短轴端点:B 1(0,-b ),B 2(0,b );长轴长|A 1A 2|=2a ,短轴长|B 1B 2|=2b ,焦距|F 1F 2|=2c .(4)离心率e =_______,0<e <1,e 越大,椭圆越______,e 越_______,椭圆越圆. (5)a ,b ,c 的关系:c 2=a 2-b 2或a 2=c 2+b 2. 三.【方法总结】(一)直线与椭圆关系求离心率 (二)对称问题 (三)椭圆与圆(四)直线与椭圆的中点弦问题 (五)定点问题 (六)定值问题 (七)范围问题 (八)探索性问题 四.【题型归纳】(一)直线与椭圆关系求离心率例1.在平面直角坐标系xOy 中,已知点, A F 分别为椭圆2222:1(0)x y C a b a b+=>>的右顶点和右焦点,过坐标原点O 的直线交椭圆C 于,P Q 两点,线段AP 的中点为M ,若, , Q F M 三点共线,则椭圆C 的离心率为( ) A .13 B .23 C .83D .32或83【答案】A【解析】如图 设()()0000,,,P x y Q x y --,又(,0),(,0)A a F c ,00,22x a y M +⎛⎫∴ ⎪⎝⎭,,,Q F M Q 三点共线,MF QF k k = 0000022y y x a c x c-∴=++-,即00002y y c x x a c =++-,002c x x a c ∴+=+-,3a c ∴=,13c e a ∴==,故选A.练习1.已知1F ,2F 为椭圆22221(0)x yC a b a b+=>>:的左右焦点,过原点O 且倾斜角为30°的直线l 与椭圆C 的一个交点为A ,若12AF AF ⊥,122F AF S ∆=,则椭圆C 的方程为A.22162x y += B.22184x y += C.22182x y += D.2212016x y += 【答案】A【解析】由题意,过原点O 且倾斜角为30o 的直线l 与椭圆C 的一个交点为A , 且12AF AF ⊥,且122F AF S ∆=,则可知OA c =, 设(,)A x y ,则31cos30,sin 302x c y c c ====o o ,即31,)2A c , 代入椭圆的方程可得2222144c c a b+=又由122F AF S ∆=,则211122222S c c c =⨯⨯== ,解答24c =,且222c a b =-, 解得226,2a b ==,所以椭圆的方程为22162x y +=,故选A.方法2,利用焦点三角形面积公式2tan ||||21221θb y F F S A ==(21AF F ∠=θ) 求出坐标31,)2A c ,带入第一个面积公式求c ,利用第二个面积公式2πθ=求b练习2.已知F 1,F 2为椭圆C :()222210x y a b a b+=>>的两个焦点,过点F 1作x 轴的垂线,交椭圆C 于P ,Q 两点.当△F 2PQ 为等腰直角三角形时,椭圆C 的离心率为e 1,当△F 2PQ 为等边三角形时, 椭圆C 的离心率为e 2,则e 1,e 2的大小关系为e 1______e 2 (用“>”,“<”或“=”连接) 【答案】< 【解析】把x c =-代入椭圆方程可得:22221c y a b+=,解得:2by a =± ①当2F PQ ∆为等腰直角三角形时,可得:22b c a=,即222a c ac -=化为:211210e e +-=,101e <<解得:1212e -+== ②当2F PQ ∆为等边三角形时,22b c a=)222a c ac -=22220e +=,201e <<解得:2e =则1e ,2e 的大小关系为:12e e <本题正确结果:<(二)对称问题例2. 在平面直角坐标系xOy 中,点P 为椭圆:C 22221y x a b+=()0a b >>的下顶点,M ,N 在椭圆上,若四边形OPMN 为平行四边形,α为直线ON 的倾斜角,若,64ππα⎛⎤∈ ⎥⎝⎦,则椭圆C 的离心率的取值范围为( ) A.0,3⎛ ⎝⎦B.0,2⎛ ⎝⎦C.,32⎣⎦D.,33⎣⎦ 【答案】A【解析】OP Q 在y 轴上,且平行四边形中,MN OP P ,∴M 、N 两点的横坐标相等,纵坐标互为相反数,即M 、N 两点关于x 轴对称,而MN OP a ==,可设,2a M x ⎛⎫-⎪⎝⎭,,2a N x ⎛⎫ ⎪⎝⎭,代入椭圆方程得:||x =,得,2a N ⎫⎪⎪⎝⎭, α为直线ON的倾斜角,tan aa ==,,,tan 164a ππα⎛⎤∈<≤ ⎥⎝⎦,1<≤,1a b ∴<≤1b a ≤<22113b a ∴≤<,而221ab ac e -==0e ∴<≤. ∴椭圆C的离心率的取值范围为⎛ ⎝⎦.故选A 项.练习1. 设1F ,2F 分别是椭圆()222210x y a b a b+=>>的左、右焦点,若在直线2a x c =(其中222cb a +=)上存在点P ,使线段1PF 的垂直平分线经过点2F ,则椭圆离心率的取值范围是( )A.0,2⎛ ⎝⎦B.0,3⎛ ⎝⎦ C.3⎫⎪⎪⎣⎭ D.,12⎫⎪⎪⎣⎭【答案】C【解析】由题意得 ()1,0)F c -,2F (),0c ,设点2,a P m c ⎛⎫⎪⎝⎭, 则由中点公式可得线段1PF 的中点221(,22a c K m c - ),∴线段1PF 的斜率与2KF 的斜率之积等于1-,即2221212m m a a c c c c c--⋅=--+-, 22230a a m c c c c ⎛⎫⎛⎫∴=-+⋅-≥ ⎪ ⎪⎝⎭⎝⎭,4224230a a c c ∴--≤,423210e e ∴+-≥,213e ∴≥,或21(e ≤-舍去),e ∴≥. 又椭圆的离心率 01e <<,故13e ≤<, 故选:C .练习2. 设椭圆C :22221(0)x y a b a b +=>>的左焦点为F ,上顶点为A ,过点A 与AF 垂直的直线分别交椭圆C 与x 轴正半轴于点P 、Q ,且85AP PQ =uu u r uu u r, 椭圆C 的离心率为___.【答案】12【解析】:设0(,0)Q x ,由(,0)F c -,(0,)A b 知∵FA AQ ⊥u u u r u u u r ,0FA AQ ⋅=u u u r u u u r ,∴200cx b -=,20b x c= 设11(,)P x y ,由85AP PQ =uu u r uu u r 得21813b x c =,1513y b = 因为点P 在椭圆上,所以222221851313b a c bb +⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝=⎭整理得2b 2=3ac ,即2(a 2-c 2)=3ac ,2e 2+3e -2=0,故椭圆的离心率12e =(三)椭圆与圆例3.如图,1A ,2A 分别是椭圆2214xy +=的左、右顶点,圆1A 的半径为2,过点2A 作圆1A 的切线,切点为P ,在x 轴的上方交椭圆于点Q ,则2PQ QA =_______.【答案】34【解析】连结1PO PA 、,可得1POA n 是边长为2的等边三角形,所以1160PAO POA ∠∠==︒, 可得直线1PA 的斜率1603k tan =︒=PO 的斜率为21203k tan =︒=- 因此,直线1PA 的方程为)32y x =+,直线PO 的方程为3y x =, 设()P m n ,,由)323y x y x⎧=+⎪⎨=⎪⎩解得1m =-, 因为圆1A 与直线2PA 相切于点P ,所以21PA PA ⊥,因此219030PA O PAO ∠∠=︒-=︒, 故直线2PA 的斜率3150k tan =︒=2PA 的方程为)32y x =-,代入椭圆方程2214x y +=,消去y 得271640xx -+=,解得2x =或27x =, 因为直线2PA 交椭圆于()22,0A 与Q 点,设(),Q s t ,可得27s =, 由此可得22213722427Q P A Q x x PQ s m QA x x s +--====---. 故答案为34练习1.祖暅原理:两个等高的几何体,若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等.利用祖暅原理可以求旋转体的体积.比如:设半圆方程为222(0,0)x y r y r +=≥>,半圆与x 轴正半轴交于点A ,作直线x r =,y r =交于点P ,连接OP (O 为原点),利用祖暅原理可得:半圆绕y 轴旋转所得半球的体积与OAP ∆绕y 轴旋转一周形成的几何体的体积相等.类比这个方法,可得半椭圆22221(0,0)y x a b y a b+=>>≥绕y 轴旋转一周形成的几何体的体积是_________. 【答案】223ab π 【解析】如图,这是椭圆22221(0,0)y x a b y a b+=>>≥绕y 轴旋转一周形成的几何体,所以半椭圆22221(0,0)y x a b y a b+=>>≥绕y 轴旋转一周形成的几何体为:椭圆的长半轴为a ,短半轴为b ,现构造两个底面半径为b ,高为a 的圆柱,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥,根据祖暅原理,得出该几何体的体积是V V V =-圆柱圆锥22212=33b a b a b a πππ-=;答案:223ab π练习2.已知O 是椭圆E 的对称中心,1F ,2F 是E 的焦点,以O 为圆心,1OF 为半径的圆与E 的一个交点为A .若¼1AF 与¼2AF 的长度之比为2:1,则E 的离心率等于______. 【答案】31e =【解析】解法1:如图,设122F F c =,1OF c =,因为¼1AF 与¼2AF 的长度之比为2:1,故1120AOF ∠=o ,260AOF ∠=o ,所以2AOF △为正三角形,故2AF c =.在等腰1AOF △中,求得13AF c =.根据椭圆的定义,可得)12231a AF AF c =+=,故椭圆的离心率231231c c e a a ====+. 解法2:如图,设椭圆的方程为22221(0)x y a b a b+=>>,122F F c =.由题意,易知1120AOF ∠=o,260AOF ∠=o,所以2AOF △为正三角形,故13,22A c c ⎛⎫⎪ ⎪⎝⎭,因为点A 在椭圆上,所以22223144c c a b+=,即()222223144c c a a c +=-,即()22231441e e e +=-, 整理,得()22221344e eee -+=-,即42840e e -+=,解得2423e =+2423e =-31e =.练习3.设p 是椭圆2213632x y +=上一点,M ,N 分别是两圆:()2221x y -+=和()22124x y ++=上的点,则PM PN +的取值范围为______【答案】⎥⎦⎤⎢⎣⎡227221, 【解析】首先将P 点固定于一处,设两圆心分别为12,C C ,则1211,2r r ==,且12,C C 为椭圆的焦点, 根据圆外一点到与圆上的点的距离的范围可得11221111,22PC PM PC PC PN PC -≤≤+-≤≤+, 从而得到12123322PC PC PM PN PC PC +-≤+≤++,根据椭圆的定义可知1212PC PC +=,所以PM PN +的取值范围为2127[,]22, 故答案是:2127[,]22.(四)直线与椭圆的中点弦问题例4.已知椭圆T : 22221(>0)x y a b a b +=>的离心率为2,右焦点为()1,0F ,三角形ABC 的三个顶点都在椭圆T 上,设它的三条边AB BC AC 、、的中点分别为D E M 、、,且三条边所在直线的斜率分别1k 、2k 、3k ,且1k 、2k 、3k 均不为0。
高中数学椭圆秒杀技巧

高中数学椭圆秒杀技巧
椭圆是平面几何中的重要概念,也是高中数学中常见的几何图形之一。
在学习
椭圆的过程中,很多同学可能会觉得难以掌握,但实际上只要掌握一些技巧,就能轻松秒杀椭圆相关问题。
本文将介绍几个高中数学中秒杀椭圆题目的技巧。
技巧一:理解椭圆的定义
在学习椭圆之前,首先要对椭圆的定义有一个清晰的认识。
椭圆是平面上到两
个定点的距离之和等于常数的点的轨迹。
这个定义看起来有点抽象,但理解了这个定义之后,我们就能更好地解决与椭圆相关的问题。
技巧二:熟练掌握椭圆的标准方程
椭圆的标准方程是一个常见的形式,即$\\frac{x^2}{a^2} + \\frac{y^2}{b^2} =
1$。
掌握这个标准方程可以帮助我们快速识别椭圆,并在解题过程中更加得心应手。
技巧三:利用对称性简化问题
椭圆具有很强的对称性,可以利用这一特点简化问题。
分析题目中给出的条件,找到椭圆的对称轴和对称中心,可以帮助我们更快地找到解题思路。
技巧四:化简方程,消减未知数
有些椭圆相关的问题可能会涉及复杂的方程式,我们可以通过一系列化简操作,将方程转化为更简单的形式。
在这个过程中,适当的代换和方程变换是非常有帮助的。
技巧五:灵活运用性质和定理
掌握椭圆的相关性质和定理是解题过程中的利器。
比如椭圆的离心率性质、焦
点定理等,都可以帮助我们更好地理解题目和解题。
通过掌握上述技巧,我们就能更好地应对高中数学中关于椭圆的问题,轻松秒
杀各种椭圆相关题目。
希望同学们能够在练习中不断提升解题能力,取得更好的成绩!。
高考数学椭圆解题方法总结

高考数学椭圆解题方法总结一、设点或直线做题一般都需要设点的坐标或直线方程,其中点或直线的设法有很多种。
其中点可以设为,等,如果是在椭圆上的点,还可以设为。
一般来说,如果题目中只涉及到唯一一个椭圆上的的动点,这个点可以设为。
还要注意的是,很多点的坐标都是设而不求的。
对于一条直线,如果过定点并且不与y轴平行,可以设点斜式,如果不与x轴平行,可以设,如果只是过定点,可以设参数方程,其中α是直线的倾斜角。
一般题目中涉及到唯一动直线时可以设直线的参数方程。
二、转化条件有的时候题目给的条件是不能直接用或直接用起来不方便的,这时候就需要将这些条件转化一下。
对于一道题来说这是至关重要的一步,如果转化得巧,可以极大地降低运算量。
比如点在圆上可以转化为向量点乘得零,三点共线可以转化成两个向量平行,某个角的角平分线是一条水平或竖直直线则这个角的两条边斜率和是零。
有的题目可能不需要转化直接带入条件解题即可,有的题目给的条件可能有多种转化方式,这时候最好先别急着做题,多想几种转化方法,估计一下哪种方法更简单。
三、代数运算转化完条件就剩算数了。
很多题目都要将直线与椭圆联立以便使用一元二次方程的韦达定理,但要注意并不是所有题目都是这样。
有的题目可能需要算弦长,可以用弦长公式,设参数方程时,弦长公式可以简化为解析几何中有时要求面积,如果O是坐标原点,椭圆上两点A、B坐标分别为和,AB与x轴交于D,则(d是点O到AB的距离;第三个公式是我自己推的,教材上没有,解答题慎用)。
解析几何中很多题都有动点或动直线。
如果题目只涉及到一个动点时,可以考虑用参数设点。
若是只涉及一个过定点的动直线,题目中又涉及到求长度面积之类的东西,这时设直线的参数方程会简单一些。
在解析几何中还有一种方法叫点差法,设椭圆上两个点的坐标,将两点在椭圆上的方程相减,整理即可得到这两点的中点的横纵坐标与这两点连线的斜率的关系式。
四、能力要求做解析几何题,首先对人的耐心与信心是一种考验。
高中数学解椭圆方程的常见方法和注意事项

高中数学解椭圆方程的常见方法和注意事项椭圆方程是高中数学中的重要内容,解椭圆方程需要掌握一些常见的方法和注意事项。
本文将介绍几种常见的解椭圆方程的方法,并给出相应的例题进行说明。
一、配方法解椭圆方程配方法是解椭圆方程的一种常用方法,它的基本思想是通过变量代换将椭圆方程转化为标准形式,从而求解出方程的解。
例题一:解方程$x^2-3xy+2y^2=7$解法:首先,我们将方程进行配方,即将$x^2-3xy+2y^2$转化为$(x-y)(x-2y)$的形式。
因此,原方程可写为$(x-y)(x-2y)=7$。
接下来,我们可以尝试令$u=x-y$和$v=x-2y$,则方程可以进一步转化为$uv=7$。
这样,我们就将原方程转化为了一个更简单的形式,可以通过求解$u$和$v$的值来得到方程的解。
假设$u=1$,则$v=7$;假设$u=7$,则$v=1$。
因此,原方程的解为$(x-y,x-2y)=(1,7)$和$(7,1)$。
二、直接求解椭圆方程直接求解椭圆方程是一种简单直接的方法,需要将方程转化为标准形式,然后根据标准形式进行求解。
例题二:解方程$4x^2+9y^2-24x+36y=0$解法:首先,我们将方程进行配方,即将$4x^2-24x$转化为$4(x^2-6x)$,将$9y^2+36y$转化为$9(y^2+4y)$。
然后,我们再将方程进行分组,即$4(x^2-6x)+9(y^2+4y)=0$。
接下来,我们可以将$x^2-6x$转化为$(x-3)^2-9$,将$y^2+4y$转化为$(y+2)^2-4$。
将这些转化代入方程,得到$(x-3)^2-9+9(y+2)^2-36=0$。
整理后,得到$(x-3)^2+9(y+2)^2=45$。
这是一个标准的椭圆方程,可以根据标准形式求解。
通过对方程进行分析,我们可以得到椭圆的中心坐标为$(3,-2)$,长轴长度为$\sqrt{45}$,短轴长度为$\sqrt{5}$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学椭圆的解题技巧
数学椭圆的解题技巧
数学的复习策略及其椭圆技巧对考生来说极其重要。
下面要为大家分享的就是数学椭圆的解题技巧,希望你会喜欢!
一、设点或直线
做题一般都需要设点的坐标或直线方程,其中点或直线的设法有很多种。
其中点可以设为等,如果是在椭圆上的点,还可以设为。
一般来说,如果题目中只涉及到唯一一个椭圆上的的动点,这个点可以设为。
还要注意的是,很多点的坐标都是设而不求的。
对于一条直线,如果过定点并且不与y轴平行,可以设点斜式,如果不与x轴平行,可以设,如果只是过定点,可以设参数方程,其中α是直线的倾斜角。
一般题目中涉及到唯一动直线时可以设直线的参数方程。
二、转化条件
有的时候题目给的条件是不能直接用或直接用起来不方便的,这时候就需要将这些条件转化一下。
对于一道题来说这是至关重要的一步,如果转化得巧,可以极大地降低运算量。
比如点在圆上可以转化为向量点乘得零,三点共线可以转化成两个向量平行,某个角的角平分线是一条水平或竖直直线则这个角的两条边斜率和是零。
有的题目可能不需要转化直接带入条件解题即可,有的题目给的条件可能有多种转化方式,这时候最好先别急着做题,多想几种转化方法,估计一下哪种方法更简单。
三、代数运算
转化完条件就剩算数了。
很多题目都要将直线与椭圆联立以便使用一元二次方程的韦达定理,但要注意并不是所有题目都是这样。
有的题目可能需要算弦长,可以用弦长公式,设参数方程时,弦长
公式可以简化为解析几何中有时要求面积,如果O是坐标原点,椭
圆上两点A、B坐标分别为和,AB与x轴交于D,则
(d是点O到AB的距离;第三个公式是我自己推的,教材上没有,解答题慎用)。
解析几何中很多题都有动点或动直线。
如果题目只涉及到一个动点时,可以考虑用参数设点。
若是只涉及一个过定点的动直线,题
目中又涉及到求长度面积之类的东西,这时设直线的参数方程会简
单一些。
在解析几何中还有一种方法叫点差法,设椭圆上两个点的坐标,将两点在椭圆上的方程相减,整理即可得到这两点的中点的横纵坐
标与这两点连线的斜率的关系式。
四、能力要求
做解析几何题,首先对人的耐心与信心是一种考验。
在做题过程中可能遇到会一大长串的式子要化简,这时候,只要你方向没错,
坚持算下去肯定能看到最终的结果。
另外运算速度和准确率也是很
重要的,在真正考试的时候肯定不像平时做题的时候能容你慢慢做题,因此需要有一定的做题速度,在做题的时候运算准确也是必须
要保证的,因为一旦算错数,就很可能功亏一篑。
五、理论拓展
1、将直线的两点式整理后,可以得到这个方程:。
据此可以直
接写出过和两点的直线,至于这两点连线是否与x轴垂直,是否与
y轴垂直都没有关系。
对于一些坐标很复杂的点,可以直接代入这
个方程便捷的得到过两点的直线。
2、直线一般式Ax+By+C=0表示的这条直线和向量(A,B)垂直;过定点的直线的一般式可以写为。
根据这两条推论可以快速地写出
两点的垂直平分线的方程。
关于椭圆:
3、椭圆的焦点弦弦长为
(其中α是直线的倾斜角,k是l的斜率)。
右焦点的焦点弦
中点坐标为,将横纵坐标都取相反数可得左焦点弦的中点坐标。
4、根据椭圆的第二定义,椭圆上的点到焦点的距离与到同一侧
的准线的距离之商等于椭圆的`离心率。
椭圆的准线是。
高考数学临场解题策略
一、调理思绪,提前进入数学情境
考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设数学情境,进而酝酿数学思维,提前进入“角色”,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态
准备应考。
二、“内紧外松”,集中注意,消除焦虑怯场
集中注意力是的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松。
三、沉着应战,确保旗开得胜,以利振奋精神
良好的开端是成功的一半,从考试的心理角度来说,这确实是很有道理的,拿到后,不要急于求成、立即下手解题,而应通览一遍
整套,摸透题情,然后稳操一两个易题熟题,让自己产生“旗开得胜”的快意,从而有一个良好的开端,以振奋精神,鼓舞信心,很
快进入最佳思维状态,即发挥心理学所谓的“门坎效应”,之后做
一题得一题,不断产生正激励,稳拿中低,见机攀高。
四、“六先六后”,因人因卷制宜
在通览全卷,将简单题顺手完成的情况下,情绪趋于稳定,情境趋于单一,大脑趋于亢奋,思维趋于积极,之后便是发挥临场解题
能力的黄金季节了。
这时,考生可依自己的解题习惯和基本功,结
合整套试题结构,选择执行“六先六后”的战术原则。
1。
先易后难。
就是先做简单题,再做综合题。
应根据自己的实际,果断跳过啃不动的题目,从易到难,也要注意认真对待每一道题,力求有效,不能走马观花,有难就退,伤害解题情绪。
2。
先熟后生。
通览全卷,可以得到许多有利的积极因素,也会
看到一些不利之处。
对后者,不要惊慌失措。
应想到试题偏难对所
有考生也难。
通过这种暗示,确保情绪稳定。
对全卷整体把握之后,就可实施先熟后生的策略,即先做那些内容掌握比较到家、题型结
构比较熟悉、解题思路比较清晰的题目。
这样,在拿下熟题的同时,可以使思维流畅、超常发挥,达到拿下中高档题目的目的。
3。
先同后异,就是说,先做同科同类型的题目,思考比较集中,知识和方法的沟通比较容易,有利于提高单位时间的效益。
高考题
一般要求较快地进行“兴奋灶”的转移,而“先同后异”,可以避
免“兴奋灶”过急、过频的跳跃,从而减轻大脑负担,保持有效精力,
4。
先小后大。
小题一般是信息量少、运算量小,易于把握,不
要轻易放过,应争取在大题之前尽快解决,从而为解决大题赢得时间,创造一个宽松的心理基矗
5。
先点后面,近年的高考数学解答题多呈现为多问渐难式的
“梯度题”,解答时不必一气审到底,应走一步解决一步,而前面
问题的解决又为后面问题准备了思维基础和解题条件,所以要步步
为营,由点到面
6。
先高后低。
即在考试的后半段时间,要注重时间效益,如估
计两题都会做,则先做高分题;估计两题都不易,则先就高分题实施“分段得分”,以增加在时间不足前提下的得分。
五、一“慢”一“快”,相得益彰
六、确保运算准确,立足一次成功
数学高考题的容量在120分钟时间内完成大小26个题,时间很
紧张,不允许做大量细致的解后检验,所以要尽量准确运算(关键
步骤,力求准确,宁慢勿快),立足一次成功。
解题速度是建立在
解题准确度基础上,更何况数学题的中间数据常常不但从“数量”上,而且从“性质”上影响着后继各步的解答。
所以,在以快为上
的前提下,要稳扎稳打,层层有据,步步准确,不能为追求速度而
丢掉准确度,甚至丢掉重要的得分步骤。
假如速度与准确不可兼得
的说,就只好舍快求对了,因为解答不对,再快也无意义。
七、讲求规范书写,力争既对又全
考试的又一个特点是以卷面为唯一依据。
这就要求不但会而且要对、对且全,全而规范。
会而不对,令人惋惜;对而不全,得分不高;表述不规范、字迹不工整又是造成高考数学非因素失分的一大方面。
因为字迹潦草,会使阅卷的第一印象不良,进而使阅卷认为考生不
认真、基本功不过硬、“感情分”也就相应低了,此所谓心理学上
的“光环效应”。
“书写要工整,卷面能得分”讲的也正是这个道理。
八、面对难题,讲究策略,争取得分
会做的题目当然要力求做对、做全、得,而更多的问题是对不能全面完成的题目如何分段得分。
下面有两种常用方法。
九、以退求进,立足特殊,发散一般
对于一个较一般的问题,若一时不能取得一般思路,可以采取化一般为特殊(如用特殊法解选择题),化抽象为具体,化整体为局部,化参量为常量,化较弱条件为较强条件,等等。
总之,退到一
个你能够解决的程度上,通过对“特殊”的思考与解决,启发思维,达到对“一般”的解决。
十、执果索因,逆向思考,正难则反
对一个问题正面思考发生思维受阻时,用逆向思维的方法去探求新的解题途径,往往能得到突破性的进展。
顺向推有困难就逆推,
直接证有困难就反证。
如用分析法,从肯定结论或中间步骤入手,
找充分条件;用反证法,从否定结论入手找必要条件。
十一、回避结论的肯定与否定,解决探索性问题
对探索性问题,不必追求结论的“是”与“否”、“有”与“无”,可以一开始,就综合所有条件,进行严格的推理与讨论,
则步骤所至,结论自明。
十二、应用性问题思路:面—点—线
解决应用性问题,首先要全面调查题意,迅速接受概念,此为“面”;透过冗长叙述,抓住重点词句,提出重点数据,此为“点”;综合联系,提炼关系,依靠数学方法,建立数学模型,此为“线”。
如此将应用性问题转化为纯数学问题。
当然,求解过程和结果都不
能离开实际背景。