可靠性降额设计规范
可靠性设计的原则与措施总结

可靠性设计的原则与措施总结对于一个复杂的产品来说,为了提高整体系统的性能,都是采用提高组成产品的每个零部件的制造精度来达到;这样就使得产品的造价昂贵,有时甚至难以实现(例如对于由几万甚至几十万个零部件组成的很复杂的产品)。
事实上可靠性设计所要解决的问题就是如何从设计中入手来解决产品的可靠性,以改善对各个零部件可靠度(表示可靠性的概率)的要求。
可靠性设计的原则(1)选择设计方案时尽量不采用还不成熟的新系统和零件,尽量采用已有经验并已标准化的零部件和成熟的技术。
(2)结构简化,零件数削减。
如日本横河记录仪表10年中无件数削减30%,大大提高了可靠性。
(3)考虑功能零件的可接近性,采用模块结构等以利于可维修性。
(4)设置故障监测和诊断装置。
(5)保证零件部设计裕度(安全系数/降额)。
(6)必要时采用功能并联、冗余技术。
如日本的液压挖掘机等,采用双泵、双发动机的冗余设计。
(7)考虑零件的互换性。
(8)失效安全设计(Failure Safe),系统某一部分即使发生故障,但使其限制在一定范围内,不致影响整个系统的功能。
(9)安全寿命设计(Safe Life),保证使用中不发生破坏而充分安全的设计。
例如对一些重要的安全性零件如汽车刹车,转向机构等要保证在极限条件下不能发生变形、破坏。
(10)防误操作设计(Fool proof)(11)加强连接部分的设计分析,例如选定合理的连接、止推方式。
考虑防振,防冲击,对连接条件的确认。
(12)可靠性确认试验,在没有现成数据和可用的经验时,这是唯一的手段。
尤其机械零部件的可靠性预测精度还很低。
主要通过试验确认。
可靠性降额设计规范

•
正向电压:±10% 稳定电压:±2%(适用于稳压二极管) 反向漏电流:+200% 恢复和开关时间:+20%
可控硅
• 可控硅又称闸流管,是以硅单晶为主要材料制成的包括三个P-N结的双 稳态半导体器件。 高温是对可控硅破坏性最强的应力,所以对可控硅的额定平均通态 电流和结温必须进行降额;电压击穿是导致可控硅失效的另一主要因 素,所以可控硅的电压也需降额。 应用指南: 不允许控制极─阳极间电位低于额定值。 超过正向最大电压或反向阻断电压,可使器件突发不应有的导通。应 保证“断态”电压与瞬态电压最大值之和不超过额定的阻断电压。 为保证电路长期可靠的工作,设计应允许可控硅主要参数的设计参数 容差为: 控制极正向电压降:±10% 漏电流:+200% 开关时间:+20%
• • •
电阻器
• • • • 合成型电阻器 合成型电阻器件体积小,过负荷能力强,但它们的阻值稳定性差,热和电流 噪声大,电压与温度系数较大。 合成型电阻器的主要降额参数是环境温度、功率和电压。 应用指南:
• 合成型电阻器为负温度和负电压系数,易于烧坏。因此限制其电压是 必须的。 • 在潮湿环境下使用的合成型电阻器,不宜过度降额。否则潮气不能挥 发将可能使电阻器变质失效。 • 热点温度过高可能导致合成型电阻器内部的电阻材料永久性损伤。 • 为保证电路长期工作的可靠性,电路设计应允许合成型电阻器有±15 %的阻值容差.
• • • • • • • • • • • • •
固定云母电容器 云母电容器具有损耗因子小,绝缘电阻大,温度、频率稳定性、耐热性好的 特点。但非密封云母电容器耐潮性差。 云母电容降额的主要参数是工作电压和环境温度。 应用指南: 使用中云母电容器的直流电压与交流峰值电压之和不得超过降额后的直流工 作电压。 在交流电路工作时,交流电压最大值不应超过元件相关详细规范的规定。 电容器在脉冲电路中工作时,脉冲电压峰值不应超过元件的额定直流工作电 压。 电容器温度为环境温度与交流负载引起的外壳温升之和。 为保证电路长期可靠的工作,设计应允许电容器电容有±0.5%的容差。 在高频电路中,通过电容器的电流不应超过公式1的计算值: 式中:I──电流,A; f──频率,; K──系数,通常K=2.
逆变器的可靠性之降额设计详解

逆变器的可靠性之降额设计详解降额是使元器件使用中所承受的应力低于其额定值,以达到延缓参数退化,增加工作寿命,提高使用可靠性的目的。
用比较好理解的一个比喻,一个能背100斤走路的人,让他背30斤赶路就比让他背100斤走路走的时间长,距离长,路上遇到沟沟坎坎,背30斤就能跳着走,背100斤就走的磕磕绊绊,容易摔倒。
本文首先介绍了逆变器实行降额设计的原因及原则,其次阐述了设计方案的可靠性选择,具体的跟随小编一起来了解一下。
逆变器实行降额设计的原因降额设计就是使元器件工作时承受的工作应力适当低于元器件规定的额定值,从而降低故障率,提高可靠性。
实践证明,对元器件的某些参数适当降额使用,就可以大幅度提高元器件的可靠性,温度降低10℃,元器件的失效率可降低一半以上。
因电子产品的可靠性对其电应力和温度应力比较敏感,故而降额设计技术和热设计技术对电子产品则显得尤为重要。
它是可靠性设计中必不可少的组成部分。
对于各类电子元器件,都有其最佳的降额范围,在此范围内工作应力的变化对其失效率有明显的影响,在设计上也较容易实现,并且不会在产品体积、重量和成本方面付出过大的代价。
当然,过度的降额并无益处,会使元器件的特性发生或导致元器件的数量不必要的增加或无法找到适合的元器件,反而对产品的正常工作和可靠性不利。
降额设计的三个等级降额等级:在最佳降额范围内,一般又分3个降额等级:Ⅰ级是最大的降额,适用于设备故障将会危及安全,导致任务失败和造成严重经济损失情况时的降额设计。
它是保证设备可靠性所必须的最大降额。
若采用比它还大的降额,不但设备的可靠性不会再增长多少,而且设计上是难以接受的。
Ⅱ级降额是中等降额,适用于设备故障将会使工作任务降级和发生不合理的维修费用情况的设备设计。
这级降额仍在降低工作应力可对设备可靠性增长有明显作用的范围内,它比Ⅰ级降额易于实现。
Ⅲ级降额是最小的降额,适用于设备故障只对任务完成有小的影响和可经济的修复设备的。
降额设计

系统修理
安全
尺寸、重量 寿命周期内
三、降额设计工作过程
之二:确定降额等级
♣ 为了使降额等级的确定更为合理,美国国防部RAC提出降额 等级确定的考虑因素及其计分情况准则:
降 额 等 级 I II III 总 计 分 数 11—15 7—10 6或6以下
三、降额设计工作过程
之三:确定降额参数
对元器件失效率有影响的主要降额参数和关键降额参数 对元器件失效率有影响的主要降额参数和关键降额参数
电子产品可靠性设计分析
降额设计
北京航空航天大学工程系统工程系
主要内容
一、基本概念 二、降额设计一般原则 三、降额设计工作过程 四、降额设计示例 五、各类元器件降额简述 六、元器件降额设计要求
一、基本概念
♣ 电子产品的降额设计就是使元器件或设备在使
用中所承受的应力(电、热、和机械应力等)低 于其额定值的方法。
声表面波器件
三、降额设计工作过程
之三:确定降额参数 ♣ 上述各类元器件的关键降额参数,可以用作可靠性预
计中元器件应力分析法的应力比参数。
♣ 确定降额参数时,必须注意参数的技术指标,包括参
数工作应力的性质和降额基准值的种类。
工作应力的性质是指工作应力是定值还是交变值; 降额基准值的种类指的是降额基准值是额定值还是极 限值。
混合集成电路 存储器 微处 理器
大规模集成电路 晶体管 二极管
三、降额设计工作过程
之三:确定降额参数
对元器件失效率有影响的主要降额参数和关键降额参数 对元器件失效率有影响的主要降额参数和关键降额参数
元器件类型 电阻器 电位器 电容器 电感元件 继电器 开 关 电连接器 导线与电缆 旋转电器 灯 泡 电路断路器 保险丝 晶 体 电真空 器件 阴极射线管 微波管 光源 纤维光学 器件 探测器 光纤与光缆 光纤连接器 主要降额参数和关键降额参数 电压、 功率☆ 、环境温度 电压、 功率☆ 、环境温度 直流工作电压☆、环境温度 热点温度☆、电流、瞬态电压/电流、介质耐压、扼流圈电压 触点电流☆、触点功率、温度、振动、工作寿命 触点电流☆、触点电压、功率 工作电压、工作电流☆、接插件最高温度 电压、电流☆ 工作温度☆、负载、低温极限 工作电压☆、工作电流☆ 电流☆、环境温度 电流☆ 最低温度、最高温度☆ 温度☆ 温度、输出功率☆、反射功率、占空比 输入功率☆ 输出功率、电流☆、结温 反向压降☆、结温 环境温度☆、张力、弯曲半径 环境温度☆
元器件降额准则GJBZ 35-1993

元器件降额准则编号:WI-TE-006版次:V01编制:审核:批准:目录1.0目的--------------------------------------------------------------------------------42.0适用范围--------------------------------------------------------------------------43.0引用文件--------------------------------------------------------------------------44.0一般要求--------------------------------------------------------------------------45.0详细要求--------------------------------------------------------------------------56.0应用指南-------------------------------------------------------------------------131.0目的为了满足客户对产品可靠性和使用寿命的要求,本标准规定了电子、电气元器件(以下简称元器件)在不同应用情况下应降额的参数及其量值,同时提供了若干与降额使用有关的应用指南。
2.0适用范围本准则适用于我司研发的所有电源产品3.0引用文件GJB/Z 35-1993元器件降额准则4.0一般要求4.1降额等级的划分我司降额等级分别从两方面来划分,一个主要从产品性能方面来考虑,另一个主要从产品经济效益方面来考虑。
首先,为适合我司对产品工作应力从稳态与瞬态两方面来进行要求和评估,从而制定两个降额等级:S—稳态应力降额,T—瞬态应力降额。
稳态应力是指在产品规格书中所规定的全电压输入范围、各种输出条件及环境条件下,产品稳定工作时,器件在某种组合条件下所承受的最大应力。
电子电路中电阻电容器件降额规范

电子电路中电阻电容等器件降额规范电阻器降额规范稳态功率与瞬态功率稳态功率功率降额是在相应的工作温度下的降额,即是在元件符合曲线所规定环境温度下的功率的进一步降额,采用P=V²/R公式进行计算。
为了保证电阻器的正常工作,各种型号的电阻厂家都通过试验确定了相应的降功率曲线,因此在使用过程中,必须严格按照降功率曲线使用电阻器。
当环境温度定于额定温度时(T<Ts)可以施加60%额定功率,不需要考虑温度降额。
当环境温度高于额定温度的时候,需要考虑温度降额,应该进一步降额功耗使用,P=PR(0.6+(Ts-T)/(Tmax-Ts))PR是额定功耗;T是环境温度;Tmax是零功耗时最高环境温度。
瞬态功耗不同厂家,电阻脉冲功耗和稳态功率的转换曲线不同,具体应用时,要查询转换缺陷,将瞬态功率转换为稳态功率,然后在此基础上降额。
厂家额定环境温度为70℃,低于这个温度的时候,直接按照60%进行降额。
当超过这个温度的时候,额定曲线是一个斜线。
降额曲线也按照,最大温度的降额为121℃,然后绘制一条红色的斜线,按照斜线进行降额。
瞬态降额只要时间足够短,电阻可以承受比额定功率大得多的瞬态功率。
要参考厂家资料中的最高过负荷电压参数,再在此基础上降额。
瞬态功耗,又要按照单脉冲和多脉冲,分别进行讨论和分析。
单脉冲:多脉冲:1、合成型电阻器1.1 概述合成型电阻器件体积小,过负荷能力强,但它们的阻值稳定性差,热和电流噪声大,电压与温度系数较大。
合成型电阻器的主要降额参数是环境温度、功率和电压。
1.2 应用指南a) 合成型电阻为负温度和负电压系数,易于烧坏。
因此限制其电压是必须的。
b) 在潮湿环境下使用的合成型电阻器,不宜过度降额。
否则潮气不能挥发将可能使电阻器变质失效。
c) 热点温度过高可能导致合成型电阻器内部的电阻材料永久性损伤。
d) 为保证电路长期工作的可靠性,电路设计应允许合成型电阻器有±15%的阻值容差。
5-可靠性设计-降额设计

1 概述
施加在电子元器件上的电应力,热应力大小直接影响电子元 器件的失效率高低。 爱林(Erying)模型,用来描述承受两种不同应力的寿命模 型,其中一种应力为温度。其一般形式为
寿命 τ=A/SnB exp(Ea/kT)
许多物理现象和化学反应过程,除了温度有关外,还与很多 非温度应力如电压、湿度、机械应力等密切相关,这时,需要 用Eyring模型。它是一种反应速度论模型,它描述了温度、电 压等多种应力和寿命之间的关系。
1.0
2.14×10-1 2.9×10-2 8.26×10-3 1.76×10-3 2.4×10-4
1.0
3.44×10-1 8.68×10-2 3.16×10-2 1.24×10-2 3.15×10-3
CA固定钽电容器
1.0
1.5×10-1 6.9×10-3 2.3×10-3 1.38×10-3
-
2.3 半导体光电器件
•高结温和结点高电压是影响可靠性最重要应力,结温受结点电 流或功率的影响。 •应对其结温、电压、电流进行降额。 •如同上述器件一样,如不满足结温降额要求,可对其电压、电 流进一步降额。
2 主要电子元器件降额应力选取
2.4 集成电路
•在集成电路芯片导体断面上的电流密度很大,致使结温很高,加 速了金属迁移过程及化学反应。 •其降额应从降低结温方面考虑。诸如减少实用功率、瞬态电流, 工作频率应低于额定频率,同时应考虑实施有效的热传递。 •对于线性电路主要降低电源电压(容差)、频率、输出电流、结 温。 •对于大规模集成电路,由于内部参数通常允许的变化范围很小, 应着重改进其封装散热方式,以降低器件的结温,尽可能降低其输 入电平及输出电流和工作频率。
1 概述
降额是有限度的。 超过最佳范围的更大降额,可靠性改善的相对效益下降。而 设备的重量、体积和成本会较快增加。 过度降额会使元器件的正常特性发生变化。 过度降额还可能引入新的失效机理,反而使设备的可靠性下 降。 不能用降额补偿的方法解决低质量元器件的使用问题。
元器件降额准则

元器件降额准则元器件降额准则概述元器件降额是指在保证电路性能稳定的前提下,将电子元器件的额定数值减小一定比例,用更小的元器件来实现同样的功能。
元器件降额的工程应用主要是针对电源电路和信号处理电路,通过降低元器件的容值、电阻值、电感值等参数,使得相应的电路成本减少,同时对整个系统的运行稳定性没有影响。
在电子设计中,通常采用元器件降额的方法来缩小电路的体积、降低成本和提高效率。
而与此相应的,元器件降额准则就成了电子工程师需了解的重要知识之一。
元器件降额准则1. 电容器降额准则电容器降额准则是指将标称容量为C1的电容器,根据电路实际工作要求,选用容量为C2的电容器代替,C2 < C1。
一般的,当C2<0.1C1时,不会对电路性能产生显著的影响。
当C2<0.01C1时,可能会影响电路的稳定性,因此需要进行适当的补偿和设计。
2. 电阻器降额准则电阻器降额准则是指选用电阻值小于标称值的电阻器,来代替标称值为R的电阻器。
一般来说,选用与标称值相比小于10%的电阻器不会影响电路性能。
但是需要注意的是,如果电阻值太小会降低电路负载能力,导致电路不稳定,因此选用时需要根据具体情况进行权衡。
3. 电感器降额准则电感器降额准则是指选用低于标称值的电感器,来代替标称值为L的电感器。
一般来说,选用电感值小于标称值10%的电感器不会对电路性能产生明显的影响。
但是,对于高频电路或对电感器性能有严格要求的场景,需要进行详细的电路仿真和测试,以确保电路的稳定性和性能。
4. 半导体器件降额准则半导体器件降额准则是指选用与标称值相比小于10%的电流、电压值的半导体器件替换标称值为I或V的器件。
但是,需要注意的是,在选用低于标称值的半导体器件时,也需要考虑其安装和工作温度等特殊因素,以保证电路的可靠性。
5. 变压器降额准则变压器降额准则是指将标称值为N1:N2的变压器,选用变比N3:N4的变压器代替,通常有N3/N1=n4/N2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
降额准则 •
a.电源电压从额定值降额; b.输入电压从额定值降额; c.输出电流从额定值降额; d.功率从最大允许值降额; e.结温降额给出了最高允许结温。 降额具体参数见表
•
其中
• 1)电源电压降额后不应小于推荐的正常工作电压。 • 2)输入电压在任何情况下不得超过电源电压。 • 3)电压调整器的输入电压在一般情况下即为电源电压。
• • • • • • • • • •
线绕电位器 按线绕电位器的结构和功率额定值,可将其分为功率电位器、普通电位器和 精密微调电位器。 线绕电位器降额的主要参数是电压、功率和环境温度。 由于线绕电位器是部分接入负载,其功率额定值应根据使用阻值按比例作相 应的降额。 应用指南: 随大气压力的减小,电位器可承受的最高工作电压减小,使用时应按元件相 关详细规范要求作进一步降额。 线绕电位器额定功率值的确定均已考虑一定的工作温度和散热面积。对不同 的应用,应考虑其安装技术。 线绕电位器在实际使用中与“地”间电位差大于额定值时,应考虑附加的绝 缘措施。 不推荐使用电阻合金线直径小于0.025mm的电位器。 为保证电路长期可靠的工作,设计应允许线绕电位器有一定的阻值容差:精 密线绕电位器为±0.4%,功率型线绕电位器为±1.5%。
模拟电路
• 主要参数的设计容差 • 为保证设备长期可靠的工作,设计应允许集成电路参数 • 容差为 : 模拟 电路: 电压增益:-25%(运算放大器) -20%(其他) 输入失调电压:+50%(低失调器件可达300%) 输入失调电流:+50%或+5nA 输入偏置电压:±1mV(运算放大器和比较器) 输出电压:±0.25%(电压调整器) 负载调整率:±0.20%(电压调整器)
应用指南
• 所有为维持最低结温的措施都应考虑。可采取以下措施 : a.器件应在尽可能小的实用功率下工作; b.为减少瞬态电流冲击应采用去耦电路; c.当工作频率接近器件的额定频率时,功耗将会迅速增加,因此器件 的实际工作频率应低于器件的额定频率; d.应实施最有效的热传递,保证与封装底座间的低热阻,避免选用高 热阻底座的器件。
•
正向电压:±10% 稳定电压:±2%(适用于稳压二极管) 反向漏电流:+200% 恢复和开关时间:+20%
Байду номын сангаас
可控硅
• 可控硅又称闸流管,是以硅单晶为主要材料制成的包括三个P-N结的双 稳态半导体器件。 高温是对可控硅破坏性最强的应力,所以对可控硅的额定平均通态 电流和结温必须进行降额;电压击穿是导致可控硅失效的另一主要因 素,所以可控硅的电压也需降额。 应用指南: 不允许控制极─阳极间电位低于额定值。 超过正向最大电压或反向阻断电压,可使器件突发不应有的导通。应 保证“断态”电压与瞬态电压最大值之和不超过额定的阻断电压。 为保证电路长期可靠的工作,设计应允许可控硅主要参数的设计参数 容差为: 控制极正向电压降:±10% 漏电流:+200% 开关时间:+20%
• • •
电阻器
• • • • 合成型电阻器 合成型电阻器件体积小,过负荷能力强,但它们的阻值稳定性差,热和电流 噪声大,电压与温度系数较大。 合成型电阻器的主要降额参数是环境温度、功率和电压。 应用指南:
• 合成型电阻器为负温度和负电压系数,易于烧坏。因此限制其电压是 必须的。 • 在潮湿环境下使用的合成型电阻器,不宜过度降额。否则潮气不能挥 发将可能使电阻器变质失效。 • 热点温度过高可能导致合成型电阻器内部的电阻材料永久性损伤。 • 为保证电路长期工作的可靠性,电路设计应允许合成型电阻器有±15 %的阻值容差.
集成电路
• 概述:集成电路分模拟电路和数字电路两类。根据其制造工艺的不同, 可按双极型和MOS(CMOS)型,以及混合集成电路分类。 集成电路芯片的电路单元很小,在导体断面上的电流密度很大, 因此在有源结点上可能有很高的温度。高结温是对集成电路破坏性最 大的应力。集成电路降额的主要目的在于降低高温集中部分的温度, 降低由于器件的缺陷而可能诱发失效的工作应力。延长器件的工作寿 命。 中、小规模集成电路降温的主要参数是电压、电流或功率,以及 结温。大规模集成电路主要是降低结温 。
晶体管应用指南
功率晶体管在遭受由于多次开关过程所致的温度变化冲击后会产 生“热疲劳”失效。使用时要根据功率晶体管的相关详细规范要求限 制壳温的最大变化值。 • 为了防止二次击穿,对功率晶体管还应进行安全工作区降额。根据 晶体管最大安全工作区的特性曲线及降额因子,可用作图法求得功率 晶体管降额后的安全工作区。 预计的瞬间电压峰值和工作电压峰值之和不得超过降额电压的限 定值。 为保证电路长期可靠的工作,设计应允许晶体管主要参数的设计容 差为: 电流放大系数:±15%(适用于已经筛选的晶体管) ±30%(适用于未经筛选的晶体管) 漏电流:+200% 开关时间:+20% 饱和压降:+15% •
• 非线绕电位器 • 非线绕电位器包括合成型电位器和薄膜型电位器。合成型电位器包括 实心电位器、合成碳膜电位器、金属玻璃釉电位器和导电塑料电位器。 薄膜型电位器主要有金属膜电位器和金属氧化膜电位器。 • 非线绕电位器降额的主要参数是电压、功率和环境温度。 • 由于非线绕电位器是部分接入负载,其功率的额定值应根据作用阻值 按比例作相应的降额。 • 应用指南 • 随大气压力的减小,电位器可承受的最高工作电压也减小,使用时应 按元件相关详细规范的要求作进一步降额。 • 在电位器重迭使用时,其使用功率应减小,以防温度过高。 • 为保证电路长期工作的可靠性,设计应允许电位器阻值有±10%的漂 移。
半导体光电器件
• 半导体光电器件主要有三类:发光、光敏器件或两者的组合。发光类器件主 要有发光二极管、发光数码管;光敏类器件有光敏二极管、光敏三极管;常 有的光电组合器件是光电耦合器,它由发光二极管和光敏三极管组成。 高结温和结点高电压是半导体光电器件主要的破坏性应力,结温受结点电 流或功率的影响,所以对半导体光电器件的结温、电流或功率均需进行降额。 应用指南: 发光二极管驱动电路必须限制电流,通常用一个串联的电阻来实现。 一般不应采用经半波或全波整流的交流正弦波电流作为发光二极管的驱动电 流。如果确要使用,则不允许其电流峰值超过发光二极管的最大直流允许值。 在整个寿命期内,驱动电路应允许光电耦合器电流传输比在降低15%的情况 下仍能正常工作.
• • • • • • • • • • • • •
固定云母电容器 云母电容器具有损耗因子小,绝缘电阻大,温度、频率稳定性、耐热性好的 特点。但非密封云母电容器耐潮性差。 云母电容降额的主要参数是工作电压和环境温度。 应用指南: 使用中云母电容器的直流电压与交流峰值电压之和不得超过降额后的直流工 作电压。 在交流电路工作时,交流电压最大值不应超过元件相关详细规范的规定。 电容器在脉冲电路中工作时,脉冲电压峰值不应超过元件的额定直流工作电 压。 电容器温度为环境温度与交流负载引起的外壳温升之和。 为保证电路长期可靠的工作,设计应允许电容器电容有±0.5%的容差。 在高频电路中,通过电容器的电流不应超过公式1的计算值: 式中:I──电流,A; f──频率,; K──系数,通常K=2.
• • • • • • •
热敏电阻器 热敏电阻器具有很高的电阻──温度系数(正或负的)。 热敏电阻器降额的主要参数是额定功率和环境温度。 应用指南: 负温度系数型热敏电阻器,应采用限流电阻器,防止元件热失控。 任何情况下,即使是短时间也不允许超过电阻器额定最大电流和功率。 为保证电路长期可靠性的工作,设计应允许热敏电阻器阻值有±5% 的容差。
• 固定玻璃釉电容器 • 玻璃釉电容器具有损耗因子低,温度稳定性好,绝缘电阻 高的特点。 • 固定玻璃釉电容器降额的主要参数是工作电压和环境温 度。 • 应用指南: • 使用中电容器直流电压与交流峰值之和不得超过降额后的 直流工作电压。 • 在交流电路中工作时,电容器交流电压最大值不应超过元 件相关详细规范规定的限值。 • 电容器温度为环境温度与交流负载引起的外壳温升之和。 为保证电路长期可靠的工作,设计应允许电容器电容有 ±0.2%或0.5pF的容差(取其较大值)。
二极管
• 二极管按功能可分为普通、开关、稳压等类型二极管;按工作频率可分为低 频、高频和微波二极管;按耗散功率(或电流)可分为小功率(小电流)和 大功率(大电流)二极管。所有二极管需要降额的参数是基本相同的。 高温是对二极管破坏性最强的应力,所力对二极管的功率和结温必须进行 降额;电压击穿是导致二极管失效的另一主要因素,所以二极管的电压也需 降额。 应用指南: 为保证电路长期可靠的工作,设计应允许二极管主要参数的设计容差为:
• 固定陶瓷电容器 • 固定陶瓷电容器绝缘电阻高,对温度、频率稳定性较好。 • 固定陶瓷电容器降额的主要参数是工作电压和环境温度。 • 应用指南: • 使用中电容器的直流电压与交流峰值电压之和不得超过降额后的直流 工作电压。 • 陶瓷电容器耐热性能较差。焊接温度过高可能损伤密封或使电极与引 出线连接变差,温度突变也可能使密封与介质破损。 • 穿心电容器电流应限制在内电极额定电流(与内电极直径有关)的80 %。 • 电容器温度为环境温度与交流负载引起外壳温升之和。 • 为保证电路长期可靠的工作,设计应允许瓷介电容器有±0.2%或 0.5pF(取较大值)的电容容差;普通陶瓷电容器有±25%的电容容 差;温度补偿陶 • 瓷电容器有±1.5%的电容容差。
可靠性降额设计规范
之器件分类说明
器件可靠应用的基本方法:降额
• 降额(Derating):元器件使用中承受的应力低于其额定值,以达到延缓其 参数退化,提高使用可靠性的目的,通常用应力比和环境温度(或结温)来 表示。 • 额定值(Rating):元器件允许的最大使用应力值,一般器件手册中都有明 确的规定。 • 应力(Stress):影响元器件失效率的电、热等负载,典型的过应力有:温度、 浪涌、ESD、噪音和辐射应力。 • 应力比(Stress tatio):元器件的工作应力与额定应力比,应力比又 称作降额因子。