大学物理习题集力学试题
大学物理力学试题及答案

大学物理力学试题及答案一、选择题(每题3分,共30分)1. 根据牛顿第二定律,下列说法正确的是:A. 力是改变物体运动状态的原因B. 力是维持物体运动状态的原因C. 力是物体运动的原因D. 力和运动状态无关答案:A2. 一个物体从静止开始做匀加速直线运动,其加速度为a,经过时间t后,其速度为:A. atB. 2atC. at^2D. 2at^2答案:A3. 两个质量相同的物体,一个从高处自由下落,另一个以初速度v向上抛出,忽略空气阻力,它们落地时的速度大小:A. 相等B. 不相等C. 无法比较D. 取决于物体的形状答案:A4. 根据能量守恒定律,下列说法正确的是:A. 能量可以被创造B. 能量可以被消灭C. 能量既不能被创造也不能被消灭D. 能量守恒定律只适用于理想情况答案:C5. 一个物体在水平面上做匀速圆周运动,下列说法正确的是:A. 物体受到的合外力为零B. 物体受到的合外力指向圆心C. 物体受到的合外力与速度方向垂直D. 物体受到的合外力与速度方向相同答案:B6. 根据动量守恒定律,下列说法正确的是:A. 动量守恒定律只适用于物体间没有外力作用的情况B. 动量守恒定律只适用于物体间相互作用力为零的情况C. 动量守恒定律只适用于物体间相互作用力为内力的情况D. 动量守恒定律适用于所有情况答案:C7. 一个物体在水平面上做匀速直线运动,下列说法正确的是:A. 物体受到的合外力为零B. 物体受到的合外力不为零C. 物体受到的合外力与速度方向相反D. 物体受到的合外力与速度方向相同答案:A8. 根据牛顿第三定律,下列说法正确的是:A. 作用力和反作用力大小相等,方向相反B. 作用力和反作用力大小不等,方向相反C. 作用力和反作用力大小相等,方向相同D. 作用力和反作用力大小不等,方向相同答案:A9. 一个物体从高处自由下落,忽略空气阻力,下列说法正确的是:A. 物体下落速度随时间增加而增加B. 物体下落速度随时间减少而增加C. 物体下落速度随时间增加而减少D. 物体下落速度与时间无关答案:A10. 一个物体在水平面上做匀减速直线运动,其加速度为a,经过时间t后,其速度为:A. atB. 2atC. at^2D. 0答案:D二、填空题(每题4分,共20分)1. 牛顿第二定律的数学表达式是________。
《大学物理》刚体力学练习题及答案解析

《大学物理》刚体力学练习题及答案解析一、选择题1.刚体对轴的转动惯量,与哪个因素无关 [ C ](A)刚体的质量(B)刚体质量的空间分布(C)刚体的转动速度(D)刚体转轴的位置2.有两个力作用在一个有固定轴的刚体上. [ B ](1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3)这两个力的合力为零时,它们对轴的合力矩也一定是零;(4)当这两个力对轴的合力矩为零时,它们的合力也一定是零.在上述说法中,(A)只有(1)是正确的;(B) (1)、(2) 正确, (3)、(4)错误;(C) (1)、(2)、(3)都正确, (4)错误;(D) (1)、(2)、(3)、(4)都正确.3.均匀细棒OA可绕通过其一端O而与棒垂直的水平固定光滑轴转动,今使棒从水平位置由静止开始自由下落,在棒摆动到竖立位置的过程中,下述说法哪一种是正确的[ A ](A) 角速度从小到大,角加速度从大到小;(B) 角速度从小到大,角加速度从小到大;(C) 角速度从大到小,角加速度从大到小;(D) 角速度从大到小,角加速度从小到大.4.如图所示,圆锥摆的小球在水平面内作匀速率圆周运动,小球和地球所组成的系统,下列哪些物理量守恒( C )(A)动量守恒,角动量守恒(B)动量和机械能守恒(C)角动量和机械能守恒(D)动量,角动量,机械能守恒5.一圆盘绕通过盘心且垂直于盘面的水平轴转动,轴间摩擦不计,如图射来两个质量相同,速度大小相同、方向相反并在一条直线上的子弹,它们同时射入圆盘并且留在盘内,在子弹射入后的瞬间,对于圆盘和子弹系统的角动量L以及圆盘的角速度ω则有( B )(A)L不变,ω增大(B)L不变,ω减小(C)L变大,ω不变(D)两者均不变6.一花样滑冰者,开始自转时,其动能为20021ωJ E =。
然后他将手臂收回,转动惯量减少为原来的1/3,此时他的角速度变为ω,动能变为E ,则下列关系正确的是( D ) (A )00,3E E ==ωω (B )003,31E E ==ωω (C )00,3E E ==ωω (D )003,3E E ==ωω1C 2.B ,3.A ,4.C ,5.B ,6.D二、填空1.当刚体受到的合外力的力矩为零时,刚体具有将保持静止的状态或_____________状态,把刚体的这一性质叫刚体___________。
大学物理力学题库及答案

7、 质点沿半径为R的圆周作匀速率运动,每T秒转一圈.在2T时间间 隔中,其平均速度大小与平均速率大小分别为 (A) 2pR/T , 2pR/T. (B) 0 , 2πR/T (C) 0 , 0. (D) 2πR/T , 0. [ ] 8、 以下五种运动形式中,保持不变的运动是 (A) 单摆的运动. (B) 匀速率圆周运动. (C) 行星的椭圆轨道运动. (D) 抛体运动. (E) 圆锥摆运动. [ ] 9、对于沿曲线运动的物体,以下几种说法中哪一种是正确的: (A) 切向加速度必不为零. (B) 法向加速度必不为零(拐点处除外). (C) 由于速度沿切线方向,法向分速度必为零,因此法向加速度必为 零. (D) 若物体作匀速率运动,其总加速度必为零. (E) 若物体的加速度为恒矢量,它一定作匀变速率运动. [ ] 10、 质点作曲线运动,表示位置矢量,表示速度,表示加速度,S表示 路程,a表示切向加速度,下列表达式中, (1) , (2) , (3) , (4) . (A) 只有(1)、(4)是对的. (B) 只有(2)、(4)是对的. (C) 只有(2)是对的. (D) 只有(3)是对的. [ ] 11、 某物体的运动规律为,式中的k为大于零的常量.当时,初速 为v0,则速度与时间t的函数关系是 (A) , (B) , (C) , (D) [ ] 12、 一物体从某一确定高度以的速度水平抛出,已知它落地时的速度 为 ,那么它运动的时间是 (A) . (B) .
36、质量为m的质点,以不变速率v沿图中正三角形ABC的水平光滑轨道 运动.质点越过A角时,轨道作用于质点的冲量的大小为 (A) mv. (B) mv. (C) mv. (D) 2mv. [ ] 37、一炮弹由于特殊原因在水平飞行过程中,突然炸裂成两块,其 中一块作自由下落,则另一块着地点(飞行过程中阻力不计) (A) 比原来更远. (B) 比原来更近. (C) 仍和原来一样远. (D) 条件不足,不能判定. [ ] 38、 如图所示,砂子从h=0.8 m 高处下落到以3 m/s的速率水平向右 运动的传送带上.取重力加速度g=10 m/s2.传送带给予刚落到传送 带上的砂子的作用力的方向为 (A) 与水平夹角53°向下. (B) 与水平夹角53°向上. (C) 与水平夹角37°向上. (D) 与水平夹角37°向下. [ ] 39、 质量为20 g的子弹沿X轴正向以 500 m/s的速率射入一木块后,与 木块一起仍沿X轴正向以50 m/s的速率前进,在此过程中木块所受冲量 的大小为 (A) 9 N·s . (B) -9 N·s . (C)10 N·s . (D) -10 N·s . [ ]
0大学物理习题-力学

力学一、选择题1.一质点在平面上作一般曲线运动,其瞬时速度为v ,瞬时速率为v ,某一段时间内的平均速度为v ,平均速率为v ,它们之间的关系必定有 (A )v v ,v v ; (B )v v ,v v ; (C )v v ,v v ; (D )v v ,v v 。
2.一运动质点在某瞬时位于矢径 y x r ,的端点处,其速度大小为 (A )dt dr ; (B )dt r d ; (C )dt r d ; (D )22dt dy dt dx 。
3.质点作曲线运动,在时刻t 质点的位矢为r ,t 至)(t t 时间内的位移为r,路程为s ,位矢大小的变化量为r (或称r ),根据上述情况,则必有: (A )r s r; (B ),r s r 当 0 t 时有dr ds r d; (C ),r s r当 0 t 时有ds dr r d ; (D ),r s r 当 0 t 时有ds dr r d 。
4.试指出下列哪一种说法是正确的(A )在圆周运动中,加速度的方向一定指向圆心;(B )匀速率圆周运动的速度和加速度都恒定不变;(C )物体作曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒等于零,因此其法向加速度也一定等于零;(D )物体作曲线运动时,必定有加速度,加速度的法向分量一定不等于零(拐点除外)。
5.下列说法哪一条正确(A )加速度恒定不变时,物体运动方向也不变;(B )平均速率等于平均速度的大小;(C )不管加速度如何,平均速率表达式总可以写成 2/21v v v ;(D )运动物体速率不变时,速度可以变化。
6.一质点在平面上运动,已知质点位置矢量的表示式为j bt i at r 22 (其中a 、b 为常量),则该质点作(A )匀速直线运动; (B )变速直线运动;(C )抛物线运动; (D )一般曲线运动。
7.一小球沿斜面向上运动,其运动方程为245t t S (SI ),则小球运动到最高点的时刻是(A )s t 4 ; (B )s t 2 ; (C )s t 8 ; (D )s t 5 。
大学物理力学题库及答案

一、选择题:(每题3分)1、某质点作直线运动的运动学方程为x =3t -5t 3 + 6 (SI),则该质点作(A) 匀加速直线运动,加速度沿x 轴正方向.(B) 匀加速直线运动,加速度沿x 轴负方向.(C) 变加速直线运动,加速度沿x 轴正方向.(D) 变加速直线运动,加速度沿x 轴负方向. [ d ]2、一质点沿x 轴作直线运动,其v -t 曲线如图所示,如t =0时,质点位于坐标原点,则t =4、5 s 时,质点在x 轴上的位置为(A) 5m. (B) 2m.(C) 0. (D) -2 m. (E) -5 m 、 [ b ] 3、图中p 就是一圆的竖直直径pc 的上端点,一质点从p 开始分别沿不同的弦无摩擦下滑时,到达各弦的下端所用的时间相比较就是(A) 到a 用的时间最短. (B) 到b 用的时间最短. (C) 到c 用的时间最短. (D) 所用时间都一样. [ d ]4、 一质点作直线运动,某时刻的瞬时速度=v 2 m/s,瞬时加速度2/2s m a -=,则一秒钟后质点的速度(A) 等于零. (B) 等于-2 m/s.(C) 等于2 m/s. (D) 不能确定. [ d ] 5、 一质点在平面上运动,已知质点位置矢量的表示式为 j bt i at r 22+=(其中a 、b 为常量), 则该质点作(A) 匀速直线运动. (B) 变速直线运动.(C) 抛物线运动. (D)一般曲线运动. [ b ] 6、一运动质点在某瞬时位于矢径()y x r , 的端点处, 其速度大小为 (A) t r d d (B) t r d d (C) t r d d (D) 22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x [ d ]7、 质点沿半径为R 的圆周作匀速率运动,每T 秒转一圈.在2T 时间间隔中,其平均速度大小与平均速率大小分别为(A) 2πR /T , 2πR/T . (B) 0 , 2πR /T(C) 0 , 0. (D) 2πR /T , 0、 [ b ] 8、 以下五种运动形式中,a 保持不变的运动就是(A) 单摆的运动. (B) 匀速率圆周运动.(C) 行星的椭圆轨道运动. (D) 抛体运动.(E) 圆锥摆运动. [ d ]9、对于沿曲线运动的物体,以下几种说法中哪一种就是正确的:(A) 切向加速度必不为零.-12a p(B) 法向加速度必不为零(拐点处除外).(C) 由于速度沿切线方向,法向分速度必为零,因此法向加速度必为零.(D) 若物体作匀速率运动,其总加速度必为零. (E) 若物体的加速度a 为恒矢量,它一定作匀变速率运动. [ b ] 10、 质点作曲线运动,r 表示位置矢量,v 表示速度,a 表示加速度,S 表示路程,a 表示切向加速度,下列表达式中,(1) a t = d /d v , (2) v =t r d /d , (3) v =t S d /d , (4) t a t =d /d v .(A) 只有(1)、(4)就是对的.(B) 只有(2)、(4)就是对的.(C) 只有(2)就是对的.(D) 只有(3)就是对的.[ d ]11、 某物体的运动规律为t k t 2d /d v v -=,式中的k 为大于零的常量.当0=t 时,初速为v 0,则速度v 与时间t 的函数关系就是(A) 0221v v +=kt , (B) 0221v v +-=kt , (C) 02121v v +=kt , (D) 02121v v +-=kt [ b c ] 12、 一物体从某一确定高度以0v 的速度水平抛出,已知它落地时的速度为t v ,那么它运动的时间就是(A) g t 0v v -. (B) gt 20v v - . (C) ()g t2/1202v v -. (D) ()g t 22/1202v v - 、 [ c ]13、一质点在平面上作一般曲线运动,其瞬时速度为v ,瞬时速率为v ,某一时间内的平均速度为v ,平均速率为v ,它们之间的关系必定有: (A)v v v,v == (B)v v v,v =≠ (C)v v v,v ≠≠ (D)v v v,v ≠= [ d ] 14、在相对地面静止的坐标系内,A 、B 二船都以2 m/s 速率匀速行驶,A 船沿x轴正向,B 船沿y 轴正向.今在A 船上设置与静止坐标系方向相同的坐标系(x 、y 方向单位矢用i 、j 表示),那么在A 船上的坐标系中,B 船的速度(以m/s 为单位)为 (A) 2i +2j . (B) -2i +2j . (C) -2i -2j . (D) 2i -2j . [ b ]15、一条河在某一段直线岸边同侧有A 、B 两个码头,相距1 km.甲、乙两人需要从码头A 到码头B ,再立即由B 返回.甲划船前去,船相对河水的速度为4 km/h;而乙沿岸步行,步行速度也为4 km/h.如河水流速为 2 km/h, 方向从A 到B ,则(A) 甲比乙晚10分钟回到A . (B) 甲与乙同时回到A .(C) 甲比乙早10分钟回到A . (D) 甲比乙早2分钟回到A .[ a ]16、一飞机相对空气的速度大小为 200 km/h, 风速为56 km/h,方向从西向东.地面雷达站测得飞机速度大小为 192 km/h,方向就是(A) 南偏西16、3°. (B) 北偏东16、3°.(C) 向正南或向正北. (D) 西偏北16、3°.(E) 东偏南16、3°. [ e c ]17、 下列说法哪一条正确?(A) 加速度恒定不变时,物体运动方向也不变.(B) 平均速率等于平均速度的大小.(C) 不管加速度如何,平均速率表达式总可以写成(v 1、v 2 分别为初、末速率) ()2/21v v v +=.(D) 运动物体速率不变时,速度可以变化. [ d ]18、 下列说法中,哪一个就是正确的?(A) 一质点在某时刻的瞬时速度就是2 m/s,说明它在此后1 s 内一定要经过2m 的路程.(B) 斜向上抛的物体,在最高点处的速度最小,加速度最大.(C) 物体作曲线运动时,有可能在某时刻的法向加速度为零.(D) 物体加速度越大,则速度越大. [ c ]19、 某人骑自行车以速率v 向西行驶,今有风以相同速率从北偏东30°方向吹来,试问人感到风从哪个方向吹来?(A) 北偏东30°. (B) 南偏东30°.(C) 北偏西30°. (D) 西偏南30°.c ]20、在升降机天花板上拴有轻绳,其下端系一重物,当升降机以加速度a 1上升时,绳中的张力正好等于绳子所能承受的最大张力的一半,问升降机以多大加速度上升时,绳子刚好被拉断?(A) 2a 1. (B) 2(a 1+g ).(C) 2a 1+g. (D) a 1+g. [ c ]21、 水平地面上放一物体A ,它与地面间的滑动摩擦系数为μ.现加一恒力F 如图所示.欲使物体A 有最大加速度,则恒力F 与水平方向夹角θ 应满足(A) sin θ =μ. (B) cos θ =μ. (C) tg θ =μ. (D) ctg θ =μ. [ d c ]22、 一只质量为m 的猴,原来抓住一根用绳吊在天花板上的质量为M 的直杆,悬线突然断开,小猴则沿杆子竖直向上爬以保持它离地面的高度不变,此时直杆下落的加速度为 (A) g 、 (B) g M m 、 (C) g M m M +、 (D) g mM m M -+ 、 (E) g M m M -、 [ c ] 23、如图所示,质量为m 的物体A 用平行于斜面的细线连结置于光滑的斜面上,若斜面向左方作加速运动,当物体开始脱离斜面时,它的加速度的大小为a 1(A) g sin θ. (B) g cos θ.(C) g ctg θ. (D) g tg θ. [ c ]24、如图所示,一轻绳跨过一个定滑轮,两端各系一质量分别为m 1与m 2的重物,且m 1>m 2.滑轮质量及轴上摩擦均不计,此时重物的加速度的大小为a .今用一竖直向下的恒力g m F 1=代替质量为m 1的物体,可得质量为m 2的重物的加速度为的大小a ′,则(A) a ′= a (B) a ′> a(C) a ′< a (D) 不能确定、[ b ]25、升降机内地板上放有物体A ,其上再放另一物体B ,二者的质量分别为M A、M B .当升降机以加速度a 向下加速运动时(a <g ),物体A 对升降机地板的压力在数值上等于(A) M A g 、(B) (M A +M B )g 、(C) (M A +M B )(g +a )、 (D) (M A +M B )(g -a )、 d ]26、如图,滑轮、绳子质量及运动中的摩擦阻力都忽略不计,物体A 的质量m 1大于物体B 的质量m 2.在A 、B 运动过程中弹簧秤S 的读数就是(A) .)(21g m m + (B) .)(21g m m - (C) .22121g m m m m + (D) .42121g m m m m + [ a d ] 27、如图所示,质量为m 的物体用细绳水平拉住,静止在倾角为θ的固定的光滑斜面上,则斜面给物体的支持力为(A) θcos mg 、 (B) θsin mg 、(C) θcos mg 、 (D) θsin mg 、 [ c ] 28、光滑的水平桌面上放有两块相互接触的滑块,质量分别为m 1与m 2,且m 1<m 2.今对两滑块施加相同的水平作用力,如图所示.设在运动过程中,两滑块不离开,则两滑块之间的相互作用力N 应有(A) N =0、 (B) 0 < N < F 、(C) F < N <2F 、 (D) N > 2F 、 [ b ] 29、 用水平压力F 把一个物体压着靠在粗糙的竖直墙面上保持静止.当F 逐渐增大时,物体所受的静摩擦力f(A) 恒为零.(B) 不为零,但保持不变.(C) 随F 成正比地增大.(D) 开始随F 增大,达到某一最大值后,就保持不变 [30、两个质量相等的小球由一轻弹簧相连接,再用一细绳悬挂于天花板上,处于静止状态,如图所示.将绳子剪断的瞬间,球1与球2的加速度分别为(A) a 1=g,a 2=g. (B) a 1=0,a 2=g. (C) a 1=g,a 2=0. (D) a 1=2g,a 2=0.[ b d ] 31、竖立的圆筒形转笼,半径为R ,绕中心轴OO '转动,物块A 1紧靠在圆筒的内壁上,物块与圆筒间的摩擦系数为μ,要使物块A 不下落,圆筒转动的角速度ω至少应为(A) R g μ (B)g μ(C) Rg μ (D)R g [ a c ] 32、 一个圆锥摆的摆线长为l ,摆线与竖直方向的夹角恒为θ,如图所示.则摆锤转动的周期为(A) g l 、 (B) gl θcos 、 (C) g l π2、 (D) gl θπcos 2 、 [ d ] 33、一公路的水平弯道半径为R ,路面的外侧高出内侧,并与水平面夹角为θ.要使汽车通过该段路面时不引起侧向摩擦力,则汽车的速率为(A) Rg 、 (B) θtg Rg 、(C) θθ2sin cos Rg 、 (D) θctg Rg[ b ]34、 一段路面水平的公路,转弯处轨道半径为R ,汽车轮胎与路面间的摩擦系数为μ,要使汽车不致于发生侧向打滑,汽车在该处的行驶速率(A) 不得小于gR μ. (B) 不得大于gR μ.(C) 必须等于gR 2. (D) 还应由汽车的质量M 决定. [ b ]35、 在作匀速转动的水平转台上,与转轴相距R 处有一体积很小的工件A ,如图所示.设工件与转台间静摩擦系数为μs ,若使工件在转台上无滑动,则转台的角速度ω应满足(A) Rg s μω≤、 (B) R g s 23μω≤、 (C) R g s μω3≤、 (D) Rg s μω2≤、 [ a ] 36、质量为m 的质点,以不变速率v 沿图中正三角形ABC的水平光滑轨道运动.质点越过A 角时,轨道作用于质点的冲量的大小为 (A) m v . (B) m v .(C) m v . (D) 2m v . [ a c ]37、一炮弹由于特殊原因在水平飞行过程中,突然炸裂成两块,其中一块作自由下落,则另一块着地点(飞行过程中阻力不计)(A) 比原来更远. (B) 比原来更近.(C) 仍与原来一样远. (D) 条件不足,不能判定. 38、 如图所示,砂子从h =0.8 m 高处下落到以3 m /s的速率水平向右运动的传送带上.取重力加速度g =10 m /s 2.传送带给予刚落到传送带上的砂子的作用力的方向为(A) 与水平夹角53°向下. (B) 与水平夹角53°向上.(C) 与水平夹角37°向上.θ l ωO R A Ah 1v v 23(D) 与水平夹角37°向下. [ b ]39、 质量为20 g 的子弹沿X 轴正向以 500 m/s 的速率射入一木块后,与木块一起仍沿X 轴正向以50 m/s 的速率前进,在此过程中木块所受冲量的大小为(A) 9 N·s 、 (B) -9 N·s .(C)10 N·s . (D) -10 N·s . [ a ] 40、质量分别为m A 与m B (m A >m B )、速度分别为A v 与B v (v A > v B )的两质点A 与B ,受到相同的冲量作用,则(A) A 的动量增量的绝对值比B 的小.(B) A 的动量增量的绝对值比B 的大.(C) A 、B 的动量增量相等.(D) A 、B 的速度增量相等. [ c ]41、在水平冰面上以一定速度向东行驶的炮车,向东南(斜向上)方向发射一炮弹,对于炮车与炮弹这一系统,在此过程中(忽略冰面摩擦力及空气阻力)(A) 总动量守恒.(B) 总动量在炮身前进的方向上的分量守恒,其它方向动量不守恒.(C) 总动量在水平面上任意方向的分量守恒,竖直方向分量不守恒.(D) 总动量在任何方向的分量均不守恒.42、 质量为20 g 的子弹,以400 m/s 的速率沿图示方向射入一原来静止的质量为980 g 的摆球中,摆线长度不可伸缩.子弹射入后开始与摆球一起运动的速率为(A) 2 m/s. (B) 4 m/s.(C) 7 m/s . (D) 8 m/s. [ b ] 43、A 、B 两木块质量分别为m A 与m B ,且m B =2m A ,两者用一轻弹簧连接后静止于光滑水平桌面上,如图所示.若用外力将两木块压近使弹簧被压缩,然后将外力撤去,则此后两木块运动动能之比E KA /E KB 为(A) 21. (B) 2/2. (C) 2. (D) 2. [ d ]44、质量为m 的小球,沿水平方向以速率v 与固定的竖直壁作弹性碰撞,设指向壁内的方向为正方向,则由于此碰撞,小球的动量增量为(A) m v . (B) 0.(C) 2m v . (D) –2m v . [ d45、机枪每分钟可射出质量为20 g 的子弹900颗,子弹射出的速率为800 m/s,则射击时的平均反冲力大小为(A) 0、267 N. (B) 16 N.(C)240 N. (D) 14400 N. [ d c ]46、人造地球卫星,绕地球作椭圆轨道运动,地球在椭圆的一个焦点上,则卫星的(A)动量不守恒,动能守恒.(B)动量守恒,动能不守恒.(C)对地心的角动量守恒,动能不守恒.(D)对地心的角动量不守恒,动能守恒. [ c ]47、一质点作匀速率圆周运动时,(A) 它的动量不变,对圆心的角动量也不变.(B) 它的动量不变,对圆心的角动量不断改变.(C) 它的动量不断改变,对圆心的角动量不变.(D) 它的动量不断改变,对圆心的角动量也不断改变. [ c ]48、一个质点同时在几个力作用下的位移为: k j i r 654+-=∆ (SI)其中一个力为恒力k j i F 953+--= (SI),则此力在该位移过程中所作的功为(A) -67 J. (B) 17 J.(C) 67 J. (D) 91 J. [ c ]49、质量分别为m 与4m 的两个质点分别以动能E 与4E 沿一直线相向运动,它们的总动量大小为 (A) 2mE 2 (B) mE 23. (C) mE 25. (D) mE 2)122(- [ b ]50、如图所示,木块m 沿固定的光滑斜面下滑,当下降h 高度时,重力作功的瞬时功率就是: (A)21)2(gh mg . (B)21)2(cos gh mg θ. (C)21)21(sin gh mg θ. (D)21)2(sin gh mg θ. [ d ]51、已知两个物体A 与B 的质量以及它们的速率都不相同,若物体A 的动量在数值上比物体B 的大,则A 的动能E KA 与B 的动能E KB 之间(A) E KB 一定大于E KA . (B) E KB 一定小于E KA .(C) E KB =E KA . (D) 不能判定谁大谁小. [ d ]52、对于一个物体系来说,在下列的哪种情况下系统的机械能守恒?(A) 合外力为0.(B) 合外力不作功.(C) 外力与非保守内力都不作功.(D) 外力与保守内力都不作功. [ d ]53、下列叙述中正确的就是(A)物体的动量不变,动能也不变.(B)物体的动能不变,动量也不变.(C)物体的动量变化,动能也一定变化.(D)物体的动能变化,动量却不一定变化. [ d ]54、作直线运动的甲、乙、丙三物体,质量之比就是 1∶2∶3.若它们的动能相等,并且作用于每一个物体上的制动力的大小都相同,方向与各自的速度方向相反,则它们制动距离之比就是(A) 1∶2∶3. (B) 1∶4∶9.(C) 1∶1∶1. (D) 3∶2∶1.(E) 3∶2∶1. [ d ]55、 速度为v 的子弹,打穿一块不动的木板后速度变为零,设木板对子弹的阻力就是恒定的.那么,当子弹射入木板的深度等于其厚度的一半时,子弹的速度就是(A) v 41. (B) v 31. θ h m(C) v 21. (D) v 21. [ d ] 56、 考虑下列四个实例.您认为哪一个实例中物体与地球构成的系统的机械能不守恒?(A) 物体作圆锥摆运动.(B) 抛出的铁饼作斜抛运动(不计空气阻力).(C) 物体在拉力作用下沿光滑斜面匀速上升.(D) 物体在光滑斜面上自由滑下. [ c ]57、一竖直悬挂的轻弹簧下系一小球,平衡时弹簧伸长量为d .现用手将小球托住,使弹簧不伸长,然后将其释放,不计一切摩擦,则弹簧的最大伸长量(A) 为d . (B) 为d 2.(C) 为2d . (D) 条件不足无法判定. [ c ]58、A 、B 两物体的动量相等,而m A <m B ,则A 、B 两物体的动能(A) E KA <E K B . (B) E KA >E KB .(C) E KA =E K B . (D) 孰大孰小无法确定. [ b ]59、如图所示,一个小球先后两次从P 点由静止开始,分别沿着光滑的固定斜面l 1与圆弧面l 2下滑.则小球滑到两面的底端Q 时的(A) 动量相同,动能也相同. (B) 动量相同,动能不同.(C) 动量不同,动能也不同.(D) 动量不同,动能相同. [ a ]60、一物体挂在一弹簧下面,平衡位置在O 点,现用手向下拉物体,第一次把物体由O 点拉到M 点,第二次由O 点拉到N 点,再由N 点送回M 点.则在这两个过程中(A) 弹性力作的功相等,重力作的功不相等. (B) 弹性力作的功相等,重力作的功也相等. (C) 弹性力作的功不相等,重力作的功相等. (D) 弹性力作的功不相等,重力作的功也不相等. [ b ]61、物体在恒力F 作用下作直线运动,在时间∆t 1内速度由0增加到v ,在时间∆t 2内速度由v 增加到2 v ,设F 在∆t 1内作的功就是W 1,冲量就是I 1,在∆t 2内作的功就是W 2,冲量就是I 2.那么,(A) W 1 = W 2,I 2 > I 1. (B) W 1 = W 2,I 2 < I 1.(C) W 1 < W 2,I 2 = I 1. (D) W 1 > W 2,I 2 = I 1. [ c ]62、两个质量相等、速率也相等的粘土球相向碰撞后粘在一起而停止运动、 在此过程中,由这两个粘土球组成的系统,(A) 动量守恒,动能也守恒.(B) 动量守恒,动能不守恒.(C) 动量不守恒,动能守恒.(D) 动量不守恒,动能也不守恒. [ c ]63、 一子弹以水平速度v 0射入一静止于光滑水平面上的木块后,随木块一起运动.对于这一过程正确的分析就是(A) 子弹、木块组成的系统机械能守恒.(B) 子弹、木块组成的系统水平方向的动量守恒.(C) 子弹所受的冲量等于木块所受的冲量.(D) 子弹动能的减少等于木块动能的增加. [ b ]64、一光滑的圆弧形槽M 置于光滑水平面上,一滑块m 自槽的顶部由静止释放后沿槽滑下,不计空气阻力.对于这一过程,以下哪种分析就是对的?(A) 由m 与M 组成的系统动量守恒.(B) 由m 与M 组成的系统机械能守恒.(C) 由m 、M 与地球组成的系统机械能守恒.(D) M 对m 的正压力恒不作功.65、两木块A 、B 的质量分别为m 1与m 2,用一个质量不计、劲度系数为k 的弹簧连接起来.把弹簧压缩x 0并用线扎住,放在光滑水平面上,A 紧靠墙壁,如图所示,然后烧断扎线.判断下列说法哪个正确.(A) 弹簧由初态恢复为原长的过程中,以A 、B 、弹簧为系统,动量守恒.(B) 在上述过程中,系统机械能守恒.(C) 当A 离开墙后,整个系统动量守恒,机械能不守恒.(D) A 离开墙后,整个系统的总机械能为2021kx ,总动量为零. [ c ] 66、两个匀质圆盘A 与B 的密度分别为A ρ与B ρ,若ρA >ρB ,但两圆盘的质量与厚度相同,如两盘对通过盘心垂直于盘面轴的转动惯量各为J A 与J B ,则(A) J A >J B . (B) J B >J A .(C) J A =J B . (D) J A 、J B 哪个大,不能确定. [ b ]67、 关于刚体对轴的转动惯量,下列说法中正确的就是(A)只取决于刚体的质量,与质量的空间分布与轴的位置无关.(B)取决于刚体的质量与质量的空间分布,与轴的位置无关.(C)取决于刚体的质量、质量的空间分布与轴的位置.(D)只取决于转轴的位置,与刚体的质量与质量的空间分布无关.[ c ]68、 均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示.今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种就是正确的? (A) 角速度从小到大,角加速度从大到小.(B) 角速度从小到大,角加速度从小到大.(C) 角速度从大到小,角加速度从大到小.(D) 角速度从大到小,角加速度从小到大. [ b ]69、 一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度ω按图示方向转动、若如图所示的情况那样,将两个大小相等方向相反但不在同一条直线的力F 沿盘面同时作用到圆盘上,则圆盘的角速度ω (A) 必然增大. (B) 必然减少. 6568、69、(C) 不会改变. (D) 如何变化,不能确定. [ b ]70、 有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度ω0转动,此时有一质量为m 的人站在转台中心.随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为(A) 02ωmRJ J +. (B) ()02ωR m J J +. (C) 02ωmRJ . (D) 0ω. [ a ] 71、 如图所示,一水平刚性轻杆,质量不计,杆长l =20cm ,其上穿有两个小球.初始时,两小球相对杆中心O 对称放置,与O 的距离d =5 cm ,二者之间用细线拉紧.现在让细杆绕通过中心O 的竖直固定轴作匀角速的转动,转速为ω0,再烧断细线让两球向杆的两端滑动.不考虑转轴的与空气的摩擦,当两球都滑至杆端时,杆的角速度为(A) 2ω0. (B)ω 0.(C) 21 ω 0. (D)041ω. [ ] 72、 刚体角动量守恒的充分而必要的条件就是(A) 刚体不受外力矩的作用.(B) 刚体所受合外力矩为零.(C) 刚体所受的合外力与合外力矩均为零.(D) 刚体的转动惯量与角速度均保持不变. [ ]73、 一块方板,可以绕通过其一个水平边的光滑固定轴自由转动.最初板自由下垂.今有一小团粘土,垂直板面撞击方板,并粘在板上.对粘土与方板系统,如果忽略空气阻力,在碰撞中守恒的量就是(A) 动能. (B) 绕木板转轴的角动量.(C) 机械能. (D) 动量. [ ]74、如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴O 旋转,初始状态为静止悬挂.现有一个小球自左方水平打击细杆.设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统(A) 只有机械能守恒.(B) 只有动量守恒.(C) 只有对转轴O 的角动量守恒.(D) 机械能、动量与角动量均守恒. [ ]75、质量为m 的小孩站在半径为R 的水平平台边缘上.平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J .平台与小孩开始时均静止.当小孩突然以相对于地面为v 的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度与旋转方向分别为(A) ⎪⎭⎫ ⎝⎛=R J mR v 2ω,顺时针. (B) ⎪⎭⎫ ⎝⎛=R J mR v 2ω,逆时针. (C) ⎪⎭⎫ ⎝⎛+=R mR J mR v 22ω,顺时针. (D) ⎪⎭⎫ ⎝⎛+=R mR J mR v 22ω,逆时针.大学物理力学题库及答案[ ]76、 一水平圆盘可绕通过其中心的固定竖直轴转动,盘上站着一个人、把人与圆盘取作系统,当此人在盘上随意走动时,若忽略轴的摩擦,此系统(A) 动量守恒.(B) 机械能守恒.(C) 对转轴的角动量守恒.(D) 动量、机械能与角动量都守恒.(E) 动量、机械能与角动量都不守恒. [ ]77、光滑的水平桌面上有长为2l 、质量为m 的匀质细杆,可绕通过其中点O 且垂直于桌面的竖直固定轴自由转动,转动惯量为231ml ,起初杆静止.有一质量为m 的小球在桌面上正对着杆的一端,在垂直于杆长的方向上,以速率v 运动,如图所示.当小球与杆端发生碰撞后,就与杆粘在一起随杆转动.则这一系统碰撞后的转动角速度就是(A) 12v l . (B) l32v . (C) l 43v . (D) lv 3. [ ] 78、如图所示,一静止的均匀细棒,长为L 、质量为M ,可绕通过棒的端点且垂直于棒长的光滑固定轴O 在水平面内转动,转动惯量为231ML .一质量为m 、速率为v 的子弹在水平面内沿与棒垂直的方向射出并穿出棒的自由端,设穿过棒后子弹的速率为v 21,则此时棒的角速度应为 (A) ML m v . (B) MLm 23v . (C) ML m 35v . (D) MLm 47v . [ ] 79、光滑的水平桌面上,有一长为2L 、质量为m 的匀质细杆,可绕过其中点且垂直于杆的竖直光滑固定轴O 自由转动,其转动惯量为31mL 2,起初杆静止.桌面上有两个质量均为m 的小球,各自在垂直于杆的方向上,正对着杆的一端,以相同速率v 相向运动,如图所示.当两小球同时与杆的两个端点发生完全非弹性碰撞后,就与杆粘在一起转动,则这一系统碰撞后的转动角速度应为 (A) L 32v . (B) L54v . (C) L 76v . (D) L98v . (E) L712v . [ ] 80、花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0,角速度为ω0.然后她将两臂收回,使转动惯量减少为31J 0.这时她转动的角速度变为 (A) 31ω0. (B) ()3/1 ω0.78、v 俯视图79、O v俯视图大学物理力学题库及答案 (C) 3 ω0. (D) 3 ω0.[ ]二、填空题: 81、一物体质量为M ,置于光滑水平地板上.今用一水平力F 通过一质量为m 的绳拉动物体前进,则物体的加速度a =______________,绳作用于物体上的力T =_________________.82、图所示装置中,若两个滑轮与绳子的质量以及滑轮与其轴之间的摩擦都忽略不计,绳子不可伸长,则在外力F 的作用下,物体m 1与m 2的加速度为a =______________________,m 1与m 2间绳子的张力T=________________________.83、在如图所示的装置中,两个定滑轮与绳的质量以及滑轮与其轴之间的摩擦都可忽略不计,绳子不可伸长,m 1与平面之间的摩擦也可不计,在水平外力F 的作用 下,物体m 1与m 2的加速度a =______________,绳中的张力T =_________________. 84、如果一个箱子与货车底板之间的静摩擦系数为μ,当这货车爬一与水平方向成θ角的平缓山坡时,要不使箱子在车底板上滑动,车的最大加速度a max =_______________________________________. 85、一物体质量M =2 kg,在合外力i t F )23(+= (SI )的作用下,从静止开始运动,式中i 为方向一定的单位矢量, 则当t=1 s 时物体的速度1v =__________.86、设作用在质量为1 kg 的物体上的力F =6t +3(SI).如果物体在这一力的作用下,由静止开始沿直线运动,在0到2、0 s 的时间间隔内,这个力作用在物 体上的冲量大小I=__________________.87、一质量为m 的小球A ,在距离地面某一高度处以速度v 水平抛出,触地后反跳.在抛出t 秒后小球A 跳回原高度,速度仍沿水平方向,速度大小也与抛出时相同,如图.则小球A 与地面碰撞过程中,地面给它的冲量的方向为 ________________,冲量的大小为____________________.88、两个相互作用的物体A 与B ,无摩擦地在一条水平直线上运动.物体A 的动量就是时间的函数,表达式为 P A = P 0 – b t ,式中P 0 、b 分别为正值常量,t 就是时间.在下列两种情况下,写出物体B 的动量作为时间函数的表达式:(1) 开始时,若B 静止,则 P B 1=______________________;(2) 开始时,若B的动量为 – P 0,则P B 2 = _____________.89、有两艘停在湖上的船,它们之间用一根很轻的绳子连接.设第一艘船与人的总质量为250 kg , 第二艘船的总质量为500 kg,水的阻力不计.现在站在第一艘船上的人用F = 50 N 的水平力来拉绳子,则5 s 后第一艘船的速度大小为_________;第二艘船的速度大小为______. 81 83、87 2大学物理力学题库及答案90、质量为m 的小球自高为y 0处沿水平方向以速率v 0抛出,与地面碰撞后跳起的最大高度为21y 0,水平速率为21v 0,则碰撞过程中 (1) 地面对小球的竖直冲量的大小为 ________________________; (2) 地面对小球的水平冲量的大小为________________________. 91、质量为M 的平板车,以速度v 在光滑的水平面上滑行,一质量为m 的物 体从h 高处竖直落到车子里.两者一起运动时的速度大小为_______________.92、如图所示,质量为M 的小球,自距离斜面高度为h 处自由下落到倾角为30°的光滑固定斜面上.设碰撞就是完全弹性的,则小球对斜面的冲量的大小为________,方向为____________________________. 93、一质量为m 的物体,以初速0v 从地面抛出,抛射角θ=30°,如忽略空气阻力,则从抛出到刚要接触地面的过程中(1) 物体动量增量的大小为________________,(3) 物体动量增量的方向为________________. 94、如图所示,流水以初速度1v 进入弯管,流出时的速度为2v ,且v 1=v 2=v .设每秒流入的水质量为q ,则在管子转弯处,水对管壁的平均冲力大小就是______________,方向__________________.(管内水受到的重力不考虑)95、质量为m 的质点,以不变的速率v 经过一水平光滑轨道的︒60弯角时,轨道作用于质点的冲量大小I=________________.96、质量为m 的质点,以不变的速率v 经过一水平光滑轨道的︒60弯角时,轨道作用于质点的冲量大小I=________________.97、质量为M 的车以速度v 0沿光滑水平地面直线前进,车上的人将一质量为m 的物体相对于车以速度u 竖直上抛,则此时车的速度v =______.98、一质量为30 kg 的物体以10 m·s -1的速率水平向东运动,另一质量为20 kg 的物体以20 m·s -1的速率水平向北运动。
大学物理力学试题 (1)

大学物理 力学测试题一、选择题(每小题3分,共30分)1.一物体沿直线的运动规律是x = t ³- 40t ,从t1到t 2这段时间内的平均速度是( )A .(t 1²+t 1t 2+t 2² )– 40B .3t 1²–40C .3(t 2–t 1)²-40D .(t 2–t 1)²-40 2.一质点作匀速率圆周运动时,( )A .它的动量不变,对圆心的角动量也不变.B .它的动量不变,对圆心的角动量不断改变.C .它的动量不断改变,对圆心的角动量不变.D .它的动量不断改变,对圆心的角动量也不断改变.3质量为m 的质点在外力作用下,其运动方程为j t B i t A rωωsin cos +=式中A 、B 、ω都是正的常量.由此可知外力在t =0到t =π/(2ω)这段时间内所作的功为( )A . )(21222B A m +ω B . )(222B A m +ωC . )(21222B A m -ωD . )(21222A B m -ω4.用细绳系一小球使之在竖直平面内作圆周运动,当小球运动到最高点时:( )A 它将受重力、绳的拉力和向心力的作B .它将受重力、绳的拉力和离心力的作用C .绳子中的拉力可能为零D .小球所受的合力可能为零5.如图所示,湖中有一小船,有人用绳绕过岸上一定高度处定滑轮拉湖中的船向岸边运动.设该人以匀速率0v 收绳,绳不伸长、湖水静止,则小船的运动是( )A.匀加速运动B. 变加速运动C. 匀速直线运动D. 变减速运动6.如图3所示,一静止的均匀细棒,长为L 、质量为绕通过棒的端点且垂直于棒长的光滑固定轴,O 面内转动,转动惯量为231ML ,一质量为m 、速率为v 的子弹在水平面 内沿与棒垂直的方向射入并 穿出棒的自由端,设穿过棒后子弹的速率为v 21,则此 时棒的角速度应为( )A .ML mv ; B .MLmv 23; C .ML mv 35; D .ML mv47。
大学物理力学考试题及答案

大学物理力学考试题及答案一、选择题(每题3分,共30分)1. 一个物体的质量为2kg,受到的力为10N,那么它的加速度是多少?A. 5 m/s²B. 10 m/s²C. 15 m/s²D. 20 m/s²答案:B2. 根据牛顿第二定律,力F、质量m和加速度a之间的关系是:A. F = m * aB. F = m / aC. F = a * mD. F = a + m答案:A3. 一个物体从静止开始自由下落,忽略空气阻力,其下落的加速度为:A. 9.8 m/s²B. 19.6 m/s²C. 0 m/s²D. 1 g答案:A4. 一个物体在水平面上以10 m/s的速度做匀速直线运动,它的动量大小为:A. 10 kg·m/sB. 20 kg·m/sC. 无法确定,因为物体的质量未知D. 5 kg·m/s答案:C5. 根据能量守恒定律,一个物体的动能和势能之和:A. 随时间增加而增加B. 随时间减少而减少C. 在没有外力作用下保持不变D. 总是大于物体的动能答案:C6. 一个弹簧的劲度系数为1000 N/m,如果挂上一个1kg的物体,弹簧伸长的长度是多少?A. 0.1 mB. 1 mC. 10 mD. 无法确定,因为缺少物体的加速度答案:A7. 两个物体之间的万有引力与它们的质量乘积成正比,与它们之间的距离的平方成反比。
这个定律是由哪位科学家提出的?A. 牛顿B. 爱因斯坦C. 伽利略D. 库仑答案:A8. 一个物体在斜面上下滑,斜面倾角为30°,物体与斜面之间的摩擦系数为0.1,那么物体受到的摩擦力大小为:A. mg sin(30°)B. mg cos(30°)C. μ(mg cos(30°))D. μ(mg sin(30°))答案:D9. 一个物体在水平面上以恒定的加速度加速运动,已知它的初速度为3 m/s,末速度为15 m/s,经过的时间为4秒,那么它的加速度是多少?A. 2.25 m/s²B. 4 m/s²C. 5 m/s²D. 10 m/s²答案:B10. 一个物体在竖直上抛运动中,达到最高点时,它的加速度为:A. 0 m/s²B. g (重力加速度)C. -g (重力加速度)D. 2g (重力加速度)答案:C二、填空题(每题4分,共20分)11. 牛顿第三定律指出,作用力和反作用力大小________,方向________,作用在________的物体上。
大学物理力学部分选择题及填空题及标准答案

力学部分选择题及填空题练习1 位移、速度、加速度一、选择题:1.一运动质点在某瞬时位于矢径r(x ,y )的端点,其速度大小为:(A )dtr d dt dr (B) (C )22(D) ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛dt dy dt dx dt |r |d ( ) 2.某质点的运动方程为6533+-=t t x (SI ),则该质点作(A )匀加速直线运动,加速度沿X 轴正方向;(B )匀加速直线运动,加速度沿X 轴负方向;(C )变加速直线运动,加速度沿X 轴正方向;(D )变加速直线运动,加速度沿X 轴负方向。
( ) 3.一质点作一般的曲线运动,其瞬时速度为v ,瞬时速率为v ,某一段时间内的平均速度为v ,平均速率为v ,它们之间的关系必定有:(A )v |v |,v |v |== (B )v |v |,v |v |=≠(C )v |v |,v |v |≠≠ (D )v |v ||,v ||v |≠=( )二、填空题 1.一电子在某参照系中的初始位置为k .i .r 01030+=,初始速度为0v 20j =,则初始时刻其位置矢量与速度间夹角为 。
2.在表达式tr lim v t ∆∆=→∆ 0中,位置矢量是 ;位移矢量是 。
3.有一质点作直线运动,运动方程为)(25.432SI t t x -=,则第2秒内的平均速度为 ;第2秒末的瞬间速度为 ,第2秒内的路程为 。
练习2 自然坐标、圆周运动、相对运动班级 姓名 学号一、选择题1.质点沿半径为R 的圆周作匀速率运动,每t 秒转一圈,在2t 时间间隔中,其平均速度大小与平均速率大小分别为:(A )tR t R ,t R πππ2 0, (B) 2 2 (C )0 2 (D) 0 0,t R ,π ( ) 2.一飞机相对于空气的速率为200km/h ,风速为56km/h ,方向从西向东,地面雷达测得飞机速度大小为192km/h ,方向是(A )南偏西︒3.16 (B )北偏东︒3.16 (C )向正南或向正北;(D )西偏东︒3.16 (E )东偏南︒3.16 ( )3.在相对地面静止的坐标系内,A 、B 二船都以21-⋅s m 的速率匀速行驶,A 船沿x 轴正向,B 船沿y 轴正向,今在A 船上设与静止坐标系方向相同的坐标系,(x, y )方向单位矢量用j ,i 表示,那么在A 船上的坐标系中B 船的速度为(SI )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练习一 质点运动的描述
一. 选择题
1. 以下四种运动,加速度保持不变的运动是( ) (A) 单摆的运动; (B) 圆周运动; (C) 抛体运动; (D) 匀速率曲线运动.
2. 质点在y 轴上运动,运动方程为y =4t 2-2t 3,则质点返回原点时的速度和加速度分别为: ( ) (A) 8m/s, 16m/s 2. (B) -8m/s, -16m/s 2. (C) -8m/s, 16m/s 2. (D) 8m/s, -16m/s 2.
3. 物体通过两个连续相等位移的平均速度分别为v 1=10m/s ,v 2=15m/s ,若物体作直线运动,则在整个过程中物体的平均速度为( )
(A) 12 m/s . (B) 11.75 m/s . (C) 12.5 m/s . (D) 13.75 m/s .
4. 质点沿X 轴作直线运动,其v - t 图象为一曲线,如图1.1,则以下说法正确的是( )
(A) 0~t 3时间内质点的位移用v - t 曲线与t 轴所围面积绝对值之和表示, 路程用v - t 曲线与t 轴所围面积的代数和表示;
(B) 0~t 3时间内质点的路程用v - t 曲线与t 轴所围面积绝对值之和表示, 位移用v - t 曲线与t 轴所围面积的代数和表示;
(C) 0~t 3时间内质点的加速度大于零; (D) t 1时刻质点的加速度不等于零.
5. 质点沿XOY 平面作曲线运动,其运动方程为:x =2t , y =19-2t 2. 则质点位置矢量与速度矢量恰好垂直的时刻为( )
(A) 0秒和3.16秒. (B) 1.78秒. (C) 1.78秒和3秒. (D) 0秒和3秒. 二. 填空题
1. 一小球沿斜面向上运动,其运动方程为s =5+4t -t 2 (SI),则小球运动到最高点的时刻为 t = 秒.
2. 一质点沿X 轴运动, v =1+3t 2 (SI), 若t =0时,质点位于原点.
则质点的加速度a = (SI);质点的运动方程为x = (SI).
3. 一质点的运动方程为r=A cos ω t i+B sin ω t j , 其中A , B ,ω为常量.则质点的加速度矢量
为
图1.1
a= , 轨迹方程为.
三.计算题
1. 湖中有一条小船,岸边有人用绳子通过岸上高于水面h的滑轮拉船,设人收绳的速率为v0,求船的速度u 和加速度a.
2. 一人站在山脚下向山坡上扔石子,石子初速为v0,与水平夹角为θ(斜向上),山坡与水平面成α角.
(1) 如不计空气阻力,求石子在山坡上的落地点对山脚的距离s;
(2) 如果α值与v0值一定,θ取何值时s最大,并求出最大值s max.
练习二圆周运动相对运动
一.选择题
1. 下面表述正确的是()
(A) 质点作圆周运动,加速度一定与速度垂直;
(B) 物体作直线运动,法向加速度必为零;
(C) 轨道最弯处法向加速度最大;
(D) 某时刻的速率为零,切向加速度必为零.
2. 由于地球自转,静止于地球上的物体有向心加速度,下面说法正确的是()
(A) 静止于地球上的物体,其向心加速度指向地球中心;
(B) 荆州所在地的向心加速度比北京所在地的向心加速度大;
(C) 荆州所在地的向心加速度比北京所在地的向心加速度小;
(D) 荆州所在地的向心加速度与北京所在地的向心加速度一样大小.
3. 下列情况不可能存在的是()
(A) 速率增加,加速度大小减少;
(B) 速率减少,加速度大小增加;
(C) 速率不变而有加速度;
(D) 速率增加而无加速度;
(E) 速率增加而法向加速度大小不变.
4. 质点沿半径R=1m的圆周运动,某时刻角速度ω=1rad/s,角加速度α=1rad/s2,则质点速度和加速度的大小为()
(A) 1m/s, 1m/s2.
(B) 1m/s, 2m/s2.
(C) 1m/s, 2m/s2.
(D) 2m/s, 2m/s2.
5. 一抛射体的初速度为v0,抛射角为θ,抛射点的法向加速度,最高点的切向加速度以及最高点的曲率半径分别为()
(A) g cosθ ,0 , v02 cos2θ/g.
(B) g cosθ ,g sinθ, 0.
(C) g sinθ, 0, v02/g.
(D) g ,g ,v02sin2θ/g.
二.填空题
1. 一人骑摩托车跳越一条大沟,他能以与水平成30°角,其值为30m/s的初速从一边起跳,刚好到达另一边,则
可知此沟的宽度为 .
2. 任意时刻a t =0的运动是 运动;任意时刻a n =0的运动是 运动;任意时刻a =0的运动是 运动;任意时刻a t =0, a n =常量的运动是 运动.
3. 已知质点的运动方程为r =2t 2i +cos πt j (SI), 则其速度v = ;加速度
a = ;当t =1秒时,其切向加速度τa = ;法向加速度n a = .
三.计算题
1. 一轻杆CA 以角速度ω绕定点C 转动,而A 端与重物M 用细绳连接后跨过定滑轮B ,如图
2.1.试求重物M 的速度.(已知CB =l 为常数,ϕ=ωt,在t 时刻∠CBA =α,
计算速度时α作为已知数代入).
2. 升降机以a =2g 的加速度从静止开始上升,机顶有一螺帽在t 0=2.0s 时因松动而落下,设升降机高为h =2.0m,试求螺帽下落到底板所需时间t 及相对地面下落的距
离s .。