三角函数经典习题

合集下载

三角函数经典题目(带答案)

三角函数经典题目(带答案)

三角函数经典题目练习1.已知α1231、已知角2、P (x ,5则sin 1、已知2、函数(f3、已知 象限1. 已知π22.设0≤α是 .sin αtan x 若<0___.53sin +-=m m θ,524cos +-=m m θ(πθπ<<2),则=θ________.1tan tan αα,是关于x 的方程2230x kx k -+-=的个实根,且παπ273<<,则ααsin cos +的值 .0)13(22=++-m x x 的两根为()πθθθ2,0,cos ,sin ∈,求(1)m =_______(2)θθθθtan 1cos cot 1sin -+-=________.α )415tan(325cos ππ-+= . θθθθcos sin cos sin -+=2,则sin(θ-5π)·sin ⎪⎭⎫⎝⎛-θπ23= α终边上P (-4,3),)29sin()211cos()sin()2cos(απαπαπαπ+---+= .已知锐角α终边上一点P 的坐标是(2sin2,-2cos2),α= . sin163°·sin223°+sin253°·sin313°= . =-+θθtan 1tan 1_________tan 20tan 4020tan 40︒+︒︒⋅︒= α∈(0,2π),若sin α=53,则2cos(α+4π)= . 336cos =⎪⎭⎫ ⎝⎛-απ,则⎪⎭⎫ ⎝⎛+απ65cos =______,)65απ--=_____..【知二求多】1、已知cos ⎪⎭⎫ ⎝⎛-2βα= -54,sin ⎪⎭⎫ ⎝⎛-2αβ=135,且0<β<2π<α<π,则cos 2βα+=____.2已知tan α=43,cos(α+β)=-1411, α、β为锐角,则cos β=______.【方法套路】1、设21sin sin =+βα,31cos cos =+βα,则)cos(βα-=___ .2.已知ββαcos 5)2cos(8++=0,则αβαtan )tan(+= .3,41)sin(,31)sin(=-=+βαβα则___tan tan =βα【给值求角】1tan α=71,tan β=31,α,β均为锐角,则α+2β= .2、若sinA=55,sinB=1010,且A,B 均为钝角, 则A+B= .【半角公式】1α是第三象限,2524sin -=α,则tan 2α= . 2、已知01342=+++a ax x (a >1)的两根为αtan ,βtan ,且α,∈β ⎝⎛-2π,⎪⎭⎫2π,则2tan βα+=______3若cos 22π2sin 4αα=-⎛⎫- ⎪⎝⎭,则cos sin αα+= . 4、若⎥⎦⎤⎢⎣⎡∈27,25ππα,则ααsin 1sin 1-++=5x 是第三象限角xx xx x x x x cos sin 1cos sin 1cos sin 1cos sin 1-++++++-+=______ 【公式链】1=+++ 89sin 3sin 2sin 1sin 2222_______ 2sin10o sin30o sin50o sin70o=_______ 3(1+tan1o )(1+tan2o )…(1+tan45o )=_______六、给值求角 已知31sin -=x ,写出满足下列关系x 取值集合 ]3,5[)3()2(]2,0[)1(πππ--∈∈∈x R x x七、函数性质 【定义域问题】 1. x x y sin 162+-=定义域为_________2、1)32tan(--=πx y 定义域为_________【值域】1、函数y =2sin ⎝⎛⎭⎫πx 6-π3(0≤x ≤9)的最大值与最小值之和为__________2、若函数g (x )=2a sin x +b 的最大值和最小值分别为6和2,则|a |+b 的值为________3、函数x xy sin 2sin 1+-=的值域4、函数xxy cos 1sin 21+-=的值域5、函数x x y sin 2cos -=的值域【解析式】1、已知函数f (x )=3sin 2ωx -cos 2ωx 的图象关于直线x =π3对称,其中ω∈⎝⎛⎭⎫-12,52.函数f (x )的解析式为________.2、已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的图象在y 轴上的截距为1,在相邻两最值点(x 0,2),⎝⎛⎭⎫x 0+32,-2(x 0>0)上f (x )分别取得最大值和最小值.则所得图像的函数解析式是________ 3.将函数sin y x =的图像上所有的点右移10π个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是___________4、()()sin f x A x h ωϕ=++(0,0,)2A πωϕ>>< 的图象如图所示,求函数)(x f 的解析式;【性质】1、已知ω>0,函数f (x )=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π递减,则ω的取值范围是( )A.⎣⎡⎦⎤12,54B.⎣⎡⎦⎤12,34C.⎝⎛⎦⎤0,12 D.(0,2] 2、若函数()sin (0)f x x ωω=>在区间π0,3⎡⎤⎢⎥⎣⎦递增,在区间ππ,32⎡⎤⎢⎥⎣⎦上单调递减,则ω=3、sin(2)3y x π=+图像的对称轴方程可能是A .6x π=- B .12x π=- C .6x π= D .4、已知函数x a x x f 2cos 2sin )(+=关于x 称,则a =_______5.()2sin()f x x ωϕ=++m 对任意x 有()6f x f π+=若()6f π=3,则m=________【图象】1、为了得到函数sin(2)3y x π=-sin(2)6y x π=+的图像向____移动____2、为了得到函数sin(2)3y x π=-y=cos2x 图像向____移动____个长度单位 3.将函数sin(2)y x ϕ=+的图象沿x 个单位后,得到一个偶函数的图象,则ϕ取值为 (A)34π (B) 4π(C)0 (D) 4π-【综合练习】1、已知定义在R 上的函数f (x )满足:当sin x f (x )=cos x ,当sin x >cos x 时,f (x )=sin x .下结论:①f (x )是周期函数;②f (x )③当且仅当x =2k π(k ∈Z)时,f (x )当且仅当2k π-π2<x <(2k +1)π(k ∈Z)时,f (⑤f (x )的图象上相邻两个最低点的距离是正确的结论序号是________.f(x)=sin(2x+x x 2cos 2)62sin()6+-+ππ)求f(x)的最小值及单调减区间; )求使f(x)=3的x 的取值集合。

三角函数大题专项(含答案)

三角函数大题专项(含答案)

三角函数专项训练1.在△ABC中,角A、B、C对应边a、b、c,外接圆半径为1,已知2(sin2A﹣sin2C)=(a﹣b)sin B.(1)证明a2+b2﹣c2=ab;(2)求角C和边c.2.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知b sin A=a cos(B﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.3.已知α,β为锐角,tanα=,cos(α+β)=﹣.(1)求cos2α的值;(2)求tan(α﹣β)的值.4.在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.5.已知函数f(x)=sin2x+sin x cos x.(Ⅰ)求f(x)的最小正周期;(Ⅱ)若f(x)在区间[﹣,m]上的最大值为,求m的最小值.6.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a sin A=4b sin B,ac=(a2﹣b2﹣c2)(Ⅰ)求cos A的值;(Ⅱ)求sin(2B﹣A)的值7.设函数f(x)=sin(ωx﹣)+sin(ωx﹣),其中0<ω<3,已知f()=0.(Ⅰ)求ω;(Ⅱ)将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数y=g(x)的图象,求g(x)在[﹣,]上的最小值.8.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a>b,a=5,c=6,sin B=.(Ⅰ)求b和sin A的值;(Ⅱ)求sin(2A+)的值.9.△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sin B sin C;(2)若6cos B cos C=1,a=3,求△ABC的周长.10.△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cos B;(2)若a+c=6,△ABC的面积为2,求b.11.已知函数f(x)=cos(2x﹣)﹣2sin x cos x.(I)求f(x)的最小正周期;(II)求证:当x∈[﹣,]时,f(x)≥﹣.12.已知向量=(cos x,sin x),=(3,﹣),x∈[0,π].(1)若,求x的值;(2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值.13.在△ABC中,∠A=60°,c=a.(1)求sin C的值;(2)若a=7,求△ABC的面积.14.已知函数f(x)=2sinωx cosωx+cos2ωx(ω>0)的最小正周期为π.(1)求ω的值;(2)求f(x)的单调递增区间.15.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2a cos B.(1)证明:A=2B;(2)若cos B=,求cos C的值.16.设f(x)=2sin(π﹣x)sin x﹣(sin x﹣cos x)2.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g()的值.17.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a sin2B=b sin A.(1)求B;(2)已知cos A=,求sin C的值.18.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2a cos B.(Ⅰ)证明:A=2B;(Ⅱ)若△ABC的面积S=,求角A的大小.19.在△ABC中,角A,B,C所对的边分别是a,b,c,且+=.(Ⅰ)证明:sin A sin B=sin C;(Ⅱ)若b2+c2﹣a2=bc,求tan B.20.在△ABC中,AC=6,cos B=,C=.(1)求AB的长;(2)求cos(A﹣)的值.21.已知函数f(x)=4tan x sin(﹣x)cos(x﹣)﹣.(1)求f(x)的定义域与最小正周期;(2)讨论f(x)在区间[﹣,]上的单调性.22.△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(a cos B+b cos A)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.参考答案1.在△ABC中,角A、B、C对应边a、b、c,外接圆半径为1,已知2(sin2A﹣sin2C)=(a﹣b)sin B.(1)证明a2+b2﹣c2=ab;(2)求角C和边c.【解答】证明:(1)∵在△ABC中,角A、B、C对应边a、b、c,外接圆半径为1,∴由正弦定理得:=2R=2,∴sin A=,sin B=,sin C=,∵2(sin2A﹣sin2C)=(a﹣b)sin B,∴2()=(a﹣b)•,化简,得:a2+b2﹣c2=ab,故a2+b2﹣c2=ab.解:(2)∵a2+b2﹣c2=ab,∴cos C===,解得C=,∴c=2sin C=2•=.2.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知b sin A=a cos(B﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.【解答】解:(Ⅰ)在△ABC中,由正弦定理得,得b sin A=a sin B,又b sin A=a cos(B﹣).∴a sin B=a cos(B﹣),即sin B=cos(B﹣)=cos B cos+sin B sin=cos B+,∴tan B=,又B∈(0,π),∴B=.(Ⅱ)在△ABC中,a=2,c=3,B=,由余弦定理得b==,由b sin A=a cos(B﹣),得sin A=,∵a<c,∴cos A=,∴sin2A=2sin A cos A=,cos2A=2cos2A﹣1=,∴sin(2A﹣B)=sin2A cos B﹣cos2A sin B==.3.已知α,β为锐角,tanα=,cos(α+β)=﹣.(1)求cos2α的值;(2)求tan(α﹣β)的值.【解答】解:(1)由,解得,∴cos2α=;(2)由(1)得,sin2,则tan2α=.∵α,β∈(0,),∴α+β∈(0,π),∴sin(α+β)==.则tan(α+β)=.∴tan(α﹣β)=tan[2α﹣(α+β)]==.4.在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.【解答】解:(1)∵∠ADC=90°,∠A=45°,AB=2,BD=5.∴由正弦定理得:=,即=,∴sin∠ADB==,∵AB<BD,∴∠ADB<∠A,∴cos∠ADB==.(2)∵∠ADC=90°,∴cos∠BDC=sin∠ADB=,∵DC=2,∴BC===5.5.已知函数f(x)=sin2x+sin x cos x.(Ⅰ)求f(x)的最小正周期;(Ⅱ)若f(x)在区间[﹣,m]上的最大值为,求m的最小值.【解答】解:(I)函数f(x)=sin2x+sin x cos x=+sin2x=sin(2x﹣)+,f(x)的最小正周期为T==π;(Ⅱ)若f(x)在区间[﹣,m]上的最大值为,可得2x﹣∈[﹣,2m﹣],即有2m﹣≥,解得m≥,则m的最小值为.6.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a sin A=4b sin B,ac=(a2﹣b2﹣c2)(Ⅰ)求cos A的值;(Ⅱ)求sin(2B﹣A)的值【解答】(Ⅰ)解:由,得a sin B=b sin A,又a sin A=4b sin B,得4b sin B=a sin A,两式作比得:,∴a=2b.由,得,由余弦定理,得;(Ⅱ)解:由(Ⅰ),可得,代入a sin A=4b sin B,得.由(Ⅰ)知,A为钝角,则B为锐角,∴.于是,,故.7.设函数f(x)=sin(ωx﹣)+sin(ωx﹣),其中0<ω<3,已知f()=0.(Ⅰ)求ω;(Ⅱ)将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数y=g(x)的图象,求g(x)在[﹣,]上的最小值.【解答】解:(Ⅰ)函数f(x)=sin(ωx﹣)+sin(ωx﹣)=sinωx cos﹣cosωx sin﹣sin(﹣ωx)=sinωx﹣cosωx=sin(ωx﹣),又f()=sin(ω﹣)=0,∴ω﹣=kπ,k∈Z,解得ω=6k+2,又0<ω<3,∴ω=2;(Ⅱ)由(Ⅰ)知,f(x)=sin(2x﹣),将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),得到函数y =sin(x﹣)的图象;再将得到的图象向左平移个单位,得到y=sin(x+﹣)的图象,∴函数y=g(x)=sin(x﹣);当x∈[﹣,]时,x﹣∈[﹣,],∴sin(x﹣)∈[﹣,1],∴当x=﹣时,g(x)取得最小值是﹣×=﹣.8.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a>b,a=5,c=6,sin B=.(Ⅰ)求b和sin A的值;(Ⅱ)求sin(2A+)的值.【解答】解:(Ⅰ)在△ABC中,∵a>b,故由sin B=,可得cos B=.由已知及余弦定理,有=13,∴b=.由正弦定理,得sin A=.∴b=,sin A=;(Ⅱ)由(Ⅰ)及a<c,得cos A=,∴sin2A=2sin A cos A=,cos2A=1﹣2sin2A=﹣.故sin(2A+)==.9.△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sin B sin C;(2)若6cos B cos C=1,a=3,求△ABC的周长.【解答】解:(1)由三角形的面积公式可得S△ABC=ac sin B=,∴3c sin B sin A=2a,由正弦定理可得3sin C sin B sin A=2sin A,∵sin A≠0,∴sin B sin C=;(2)∵6cos B cos C=1,∴cos B cos C=,∴cos B cos C﹣sin B sin C=﹣=﹣,∴cos(B+C)=﹣,∴cos A=,∵0<A<π,∴A=,∵===2R==2,∴sin B sin C=•===,∴bc=8,∵a2=b2+c2﹣2bc cos A,∴b2+c2﹣bc=9,∴(b+c)2=9+3cb=9+24=33,∴b+c=∴周长a+b+c=3+.10.△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cos B;(2)若a+c=6,△ABC的面积为2,求b.【解答】解:(1)sin(A+C)=8sin2,∴sin B=4(1﹣cos B),∵sin2B+cos2B=1,∴16(1﹣cos B)2+cos2B=1,∴16(1﹣cos B)2+cos2B﹣1=0,∴16(cos B﹣1)2+(cos B﹣1)(cos B+1)=0,∴(17cos B﹣15)(cos B﹣1)=0,∴cos B=;(2)由(1)可知sin B=,∵S△ABC=ac•sin B=2,∴ac=,∴b2=a2+c2﹣2ac cos B=a2+c2﹣2××=a2+c2﹣15=(a+c)2﹣2ac﹣15=36﹣17﹣15=4,∴b=2.11.已知函数f(x)=cos(2x﹣)﹣2sin x cos x.(I)求f(x)的最小正周期;(II)求证:当x∈[﹣,]时,f(x)≥﹣.【解答】解:(Ⅰ)f(x)=cos(2x﹣)﹣2sin x cos x,=(co2x+sin2x)﹣sin2x,=cos2x+sin2x,=sin(2x+),∴T==π,∴f(x)的最小正周期为π,(Ⅱ)∵x∈[﹣,],∴2x+∈[﹣,],∴﹣≤sin(2x+)≤1,∴f(x)≥﹣12.已知向量=(cos x,sin x),=(3,﹣),x∈[0,π].(1)若,求x的值;(2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值.【解答】解:(1)∵=(cos x,sin x),=(3,﹣),∥,∴﹣cos x=3sin x,当cos x=0时,sin x=1,不合题意,当cos x≠0时,tan x=﹣,∵x∈[0,π],∴x=,(2)f(x)==3cos x﹣sin x=2(cos x﹣sin x)=2cos(x+),∵x∈[0,π],∴x+∈[,],∴﹣1≤cos(x+)≤,当x=0时,f(x)有最大值,最大值3,当x=时,f(x)有最小值,最小值﹣2.13.在△ABC中,∠A=60°,c=a.(1)求sin C的值;(2)若a=7,求△ABC的面积.【解答】解:(1)∠A=60°,c=a,由正弦定理可得sin C=sin A=×=,(2)a=7,则c=3,∴C<A,∵sin2C+cos2C=1,又由(1)可得cos C=,∴sin B=sin(A+C)=sin A cos C+cos A sin C=×+×=,∴S△ABC=ac sin B=×7×3×=6.14.已知函数f(x)=2sinωx cosωx+cos2ωx(ω>0)的最小正周期为π.(1)求ω的值;(2)求f(x)的单调递增区间.【解答】解:f(x)=2sinωx cosωx+cos2ωx,=sin2ωx+cos2ωx,=,由于函数的最小正周期为π,则:T=,解得:ω=1.(2)由(1)得:函数f(x)=,令(k∈Z),解得:(k∈Z),所以函数的单调递增区间为:[](k∈Z).15.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2a cos B.(1)证明:A=2B;(2)若cos B=,求cos C的值.【解答】(1)证明:∵b+c=2a cos B,∴sin B+sin C=2sin A cos B,∵sin C=sin(A+B)=sin A cos B+cos A sin B,∴sin B=sin A cos B﹣cos A sin B=sin(A﹣B),由A,B∈(0,π),∴0<A﹣B<π,∴B=A﹣B,或B=π﹣(A﹣B),化为A=2B,或A=π(舍去).∴A=2B.(II)解:cos B=,∴sin B==.cos A=cos2B=2cos2B﹣1=,sin A==.∴cos C=﹣cos(A+B)=﹣cos A cos B+sin A sin B=+×=.16.设f(x)=2sin(π﹣x)sin x﹣(sin x﹣cos x)2.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g()的值.【解答】解:(Ⅰ)∵f(x)=2sin(π﹣x)sin x﹣(sin x﹣cos x)2 =2sin2x﹣1+sin2x =2•﹣1+sin2x=sin2x﹣cos2x+﹣1=2sin(2x﹣)+﹣1,令2kπ﹣≤2x﹣≤2kπ+,求得kπ﹣≤x≤kπ+,可得函数的增区间为[kπ﹣,kπ+],k∈Z.(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),可得y =2sin(x﹣)+﹣1的图象;再把得到的图象向左平移个单位,得到函数y=g(x)=2sin x+﹣1的图象,∴g()=2sin+﹣1=.17.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a sin2B=b sin A.(1)求B;(2)已知cos A=,求sin C的值.【解答】解:(1)∵a sin2B=b sin A,∴2sin A sin B cos B=sin B sin A,∴cos B=,∴B=.(2)∵cos A=,∴sin A=,∴sin C=sin(A+B)=sin A cos B+cos A sin B==.18.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2a cos B.(Ⅰ)证明:A=2B;(Ⅱ)若△ABC的面积S=,求角A的大小.【解答】(Ⅰ)证明:∵b+c=2a cos B,∴sin B+sin C=2sin A cos B,∴sin B+sin(A+B)=2sin A cos B∴sin B+sin A cos B+cos A sin B=2sin A cos B∴sin B=sin A cos B﹣cos A sin B=sin(A﹣B)∵A,B是三角形中的角,∴B=A﹣B,∴A=2B;(Ⅱ)解:∵△ABC的面积S=,∴bc sin A=,∴2bc sin A=a2,∴2sin B sin C=sin A=sin2B,∴sin C=cos B,∴B+C=90°,或C=B+90°,∴A=90°或A=45°.19.在△ABC中,角A,B,C所对的边分别是a,b,c,且+=.(Ⅰ)证明:sin A sin B=sin C;(Ⅱ)若b2+c2﹣a2=bc,求tan B.【解答】(Ⅰ)证明:在△ABC中,∵+=,∴由正弦定理得:,∴=,∵sin(A+B)=sin C.∴整理可得:sin A sin B=sin C,(Ⅱ)解:b2+c2﹣a2=bc,由余弦定理可得cos A=.sin A=,=+==1,=,tan B=4.20.在△ABC中,AC=6,cos B=,C=.(1)求AB的长;(2)求cos(A﹣)的值.【解答】解:(1)∵△ABC中,cos B=,B∈(0,π),∴sin B=,∵,∴AB==5;(2)cos A═﹣cos(π﹣A)=﹣cos(C+B)=sin B sin C﹣cos B cos C=﹣.∵A为三角形的内角,∴sin A=,∴cos(A﹣)=cos A+sin A=.21.已知函数f(x)=4tan x sin(﹣x)cos(x﹣)﹣.(1)求f(x)的定义域与最小正周期;(2)讨论f(x)在区间[﹣,]上的单调性.【解答】解:(1)∵f(x)=4tan x sin(﹣x)cos(x﹣)﹣.∴x≠kπ+,即函数的定义域为{x|x≠kπ+,k∈Z},则f(x)=4tan x cos x•(cos x+sin x)﹣=4sin x(cos x+sin x)﹣=2sin x cos x+2sin2x﹣=sin2x+(1﹣cos2x)﹣=sin2x﹣cos2x=2sin(2x﹣),则函数的周期T=;(2)由2kπ﹣<2x﹣<2kπ+,k∈Z,得kπ﹣<x<kπ+,k∈Z,即函数的增区间为(kπ﹣,kπ+),k∈Z,当k=0时,增区间为(﹣,),k∈Z,∵x∈[﹣,],∴此时x∈(﹣,],由2kπ+<2x﹣<2kπ+,k∈Z,得kπ+<x<kπ+,k∈Z,即函数的减区间为(kπ+,kπ+),k∈Z,当k=﹣1时,减区间为(﹣,﹣),k∈Z,∵x∈[﹣,],∴此时x∈[﹣,﹣),即在区间[﹣,]上,函数的减区间为∈[﹣,﹣),增区间为(﹣,].22.△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(a cos B+b cos A)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.【解答】解:(Ⅰ)∵在△ABC中,0<C<π,∴sin C≠0已知等式利用正弦定理化简得:2cos C(sin A cos B+sin B cos A)=sin C,整理得:2cos C sin(A+B)=sin C,即2cos C sin(π﹣(A+B))=sin C2cos C sin C=sin C∴cos C=,∴C=;(Ⅱ)由余弦定理得7=a2+b2﹣2ab•,∴(a+b)2﹣3ab=7,∵S=ab sin C=ab=,∴ab=6,∴(a+b)2﹣18=7,∴a+b=5,∴△ABC的周长为5+.。

三角函数练习题附答案

三角函数练习题附答案

三角函数练习题附答案一、填空题1.在锐角三角形ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且满足22b a ac -=,则11tan tan A B-的取值范围为___________. 2.设函数()sin f x x π=,()21g x x x =-+,有以下四个结论.①函数()()y f x g x =+是周期函数: ②函数()()y f x g x =-的图像是轴对称图形: ③函数()() y f x g x =⋅的图像关于坐标原点对称: ④函数()()f x yg x =存在最大值 其中,所有正确结论的序号是___________.3.法国著名的军事家拿破仑.波拿巴最早提出的一个几何定理:“以任意三角形的三条边为边向外构造三个等边三角形,则这三个三角形的外接圆圆心恰为另一个等边三角形的顶点”.在三角形ABC 中,角60A =,以,,AB BC AC 为边向外作三个等边三角形,其外接圆圆心依次为123,,O O O ,若三角形123O O O ABC 的周长最小值为___________4.已知四棱锥P ABCD -的顶点均在球O 的球面上,底面ABCD 是正方形,AB =120APB ∠=︒,当AD AP ⊥时,球O 的表面积为______.5.在ABC 中,设a ,b ,c 分别为角A ,B ,C 对应的边,记ABC 的面积为S ,且sin 2sin 4sin b B c C a A +=,则2Sa 的最大值为________.6.已知函数()()sin 0f x x x ωωω=>,若函数()f x 的图象在区间[]0,2π上的最高点和最低点共有6个,下列说法正确的是___________. ①()f x 在[]0,2π上有且仅有5个零点; ②()f x 在[]0,2π上有且仅有3个极大值点; ③ω的取值范围是3137,1212⎡⎫⎪⎢⎣⎭;④()f x 在06,π⎡⎤⎢⎥⎣⎦上为单递增函数.7.已知函数()2sin 16f x x πω⎛⎫=-- ⎪⎝⎭,其中0>ω,若()f x 在区间(4π,23π)上恰有2个零点,则ω的取值范围是____________.8.已知函数()()2sin 06f x x πωω⎛⎫=+> ⎪⎝⎭,若()f x 的图象关于直线3x π=对称,且在3,164ππ⎛⎫⎪⎝⎭上单调,则ω的最大值是______.9.如图,在边长为2的正方形ABCD 中,M ,N 分别为边BC ,CD 上的动点,以MN 为边作等边PMN ,使得点A ,P 位于直线MN 的两侧,则PN PB ⋅的最小值为______.10.已知函数()cos()(0,0,0)f x A x A ωϕωϕπ=->><<的部分图像如图所示,设函数()266g x f x f x ππ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,则()g x 的值域为___________.二、单选题11.已知函数()()2212sin 2,2212,x a x af x x a x a x a π⎧⎡⎤⎛⎫-+<⎪ ⎪⎢⎥=⎝⎭⎨⎣⎦⎪-+++≥⎩,若函数()f x 在[)0,∞+内恰有5个零点,则a 的取值范围是( ) A .75,42⎛⎫ ⎪⎝⎭B .7,24⎛⎫ ⎪⎝⎭C .75,2,342⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭D .75,22,42⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭12.在△ABC 中,24CA CB ==,F 为△ABC 的外心,则CF AB ⋅=( ) A .-6B .-8C .-9D .-1213.已知函数()|sin |(0)f x x ωω=>在区间,53ππ⎡⎤⎢⎥⎣⎦上单调递减,则实数ω的取值范围为( ) A .5,32⎡⎤⎢⎥⎣⎦B .30,2⎛⎤ ⎥⎝⎦C .8,33⎡⎤⎢⎥⎣⎦D .50,4⎛⎤ ⎥⎝⎦14.在三棱锥P ABC -中,顶点P 在底面的射影为ABC 的垂心O (O 在ABC 内部),且PO 中点为M ,过AM 作平行于BC 的截面α,过BM 作平行于AC 的截面β,记α,β与底面ABC 所成的锐二面角分别为1θ,2θ,若PAM PBM θ∠=∠=,则下列说法错误的是( )A .若12θθ=,则AC BC =B .若12θθ≠,则121tan tan 2θθ⋅= C .θ可能值为6πD .当θ取值最大时,12θθ=15.《九章算术》卷五“商功”:今有刍甍,下广3丈,袤4丈;上袤2丈,无广;高1丈.其描述的是下图的一个五面体,底面ABCD 是矩形,4AB =,3BC =,2EF =,//EF 底面ABCD 且EF 到底面ABCD 的距离为1.若DE AE BF CF ===,则该刍甍中点F 到平面EBC 的距离为( )A .15B .35C 10D 2516.已知函数()()()sin 010f x x ωϕω=+<<,若存在实数1x 、2x ,使得()()122f x f x -=,且12x x π-=,则ω的最大值为( ) A .9B .8C .7D .517.在棱长为2的正方体1111ABCD A B C D -中,N 为BC 的中点.当点M 在平面11DCC D 内运动时,有//MN 平面1A BD ,则线段MN 的最小值为( ) A .1B 6C 2D 318.已知函数()2sin 1,022sin 1,02x x f x x x ππ⎧-≥⎪⎪=⎨⎪--<⎪⎩,()11x g x x -=+,则关于x 的方程()()f x g x =在区间[]8,6-上的所有实根之和为( ) A .10-B .8-C .6-D .4-19.已知函数2log ,0,(),0,x x f x x x >⎧=⎨-≤⎩函数()g x 满足以下三点条件:①定义域为R ;②对任意x ∈R ,有()()2g x g x π+=;③当[0,]x π∈时,()sin g x x =.则函数()()y f x g x =-在区间[4,4]ππ-上零点的个数为( ) A .6B .7C .8D .920.已知函数()()sin 302f x x πϕϕ⎛⎫=-<≤ ⎪⎝⎭在0,4⎡⎤⎢⎥⎣⎦π上单调递增,现有如下三个结论:①ϕ的最小值为3π; ②当ϕ取得最大值时,将函数()f x 的图像向左平移18π个单位后,再把曲线上各点的横坐标伸长到原来的2倍,得到函数()g x 的图像,则132g π⎛⎫= ⎪⎝⎭;③函数()f x 在[]0,2π上有6个零点. 则上述结论正确的个数为( ) A .0B .1C .2D .3三、解答题21.已知函数2211()cos sin cos sin 22f x x x x x =+-.(1)求()f x 的单调递增区间;(2)求()f x 在区间,82ππ⎡⎤-⎢⎥⎣⎦的最大值和最小值.22.已知函数()()()()2cos +2cos 02f x x x x πϕϕϕϕ⎛⎫=+++<< ⎪⎝⎭.(1)求()f x 的最小正周期;(2)若13f π⎛⎫= ⎪⎝⎭,求当()2f x =时自变量x 的取值集合.23.已知函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的最大值是2,函数()f x 的图象的一条对称轴是3x π=,且与该对称轴相邻的一个对称中心是7,012π⎛⎫⎪⎝⎭. (1)求()f x 的解析式;(2)已知DBC △是锐角三角形,向量,,,2124233B B m f f n f f B ππππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+=++ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,且3,sin 5m n C ⊥=,求cos D . 24.已知函数22cos 3sin 2f x xx a 的最小值为0.(1)求a 的值及函数()y f x =图象的对称中心;(2)若关于x 的方程()0f x m -=在区间70,6π⎡⎤⎢⎥⎣⎦上有三个不相等的实数根1x ,2x ,3x ,求m的取值范围及()123tan 2x x x ++的值. 25.已知函数()sin 2coscos 2sin33f x x x ππ=+.(1)若对任意,63x ππ⎡⎤∈⎢⎥⎣⎦,都有4f x m π⎛⎫- ⎪⎝⎭成立,求实数m 的取值范围;(2)设函数()1226g x f x π⎛⎫=- ⎪⎝⎭()g x 在区间[],3ππ-内的所有零点之和.26.如图,半圆的直径2AB =,O 为圆心,C ,D 为半圆上的点.(Ⅰ)请你为C 点确定位置,使ABC ∆的周长最大,并说明理由; (Ⅱ)已知AD DC =,设ABD θ∠=,当θ为何值时, (ⅰ)四边形ABCD 的周长最大,最大值是多少 (ⅱ)四边形ABCD 的面积最大,最大值是多少?27.已知函数()sin cos cos 63f x x x x a ππ⎛⎫⎛⎫=-+-++ ⎪ ⎪⎝⎭⎝⎭的最大值为1.(1)求常数a 的值;(2)求函数()f x 的单调递增区间; (3)求使()0f x <成立的实数x 的取值集合. 28.已知函数()2cos (sin cos )f x x x x =+,x ∈R . (1)求函数()f x 的最小正周期;(2)求函数()f x 在区间ππ,44⎡⎤-⎢⎥⎣⎦上的最小值和最大值,并求出取得最值时的x 的值.29.为丰富市民的文化生活,市政府计划在一块半径为200m ,圆心角为0120的扇形地上建造市民广场,规划设计如图:内接梯形ABCD 区域为运动休闲区,其中A ,B 分别在半径OP ,OQ 上,C ,D 在圆弧PQ 上,CD //AB ;上,CD //AB ;OAB ∆区域为文化展区,AB 长为3域,且CD 长不得超过200m.(1)试确定A ,B 的位置,使OAB ∆的周长最大?(2)当OAB ∆的周长最长时,设2DOC θ∠=,试将运动休闲区ABCD 的面积S 表示为θ的函数,并求出S 的最大值.30.已知函数()()()2331?0f x cos x sin x cos x ωωωω=>,()12 1()3f x f x ==-,,且12min 2x x π-=.(1)求()f x 的单调递减区间; (2)若()237,,,sin 33235,25f ππβπαβαβ⎛⎫⎛⎫∈-=+=- ⎪ ⎪⎝⎭⎝⎭,求2f α⎛⎫⎪⎝⎭的值.【参考答案】一、填空题1.⎛ ⎝⎭2.②④ 3.64.28π56.②③7.742ω<<或91322ω<≤.8.139.14- 10.9[,4]4-二、单选题 11.D 12.A 13.A 14.C 15.C 16.A 17.B 18.B 19.A 20.C 三、解答题21.(1)3,88k k ππππ⎡⎤-++⎢⎥⎣⎦,()k Z ∈;(2)()max f x =,()min 12f x =- 【解析】【分析】(1)直接利用三角函数的恒等变换,把三角函数变形成正弦型函数.进一步求出函数的单调区间.(2)直接利用三角函数的定义域求出函数的最值. 【详解】 解:(1)2211()cos sin cos sin 22f x x x x x =+-11()cos 2sin 222f x x x ∴=+()24f x x π⎛⎫∴=+ ⎪⎝⎭ 令222242k x k πππππ-+≤+≤+,()k Z ∈解得388k x k ππππ-+≤≤+,()k Z ∈ 即函数的单调递增区间为3,88k k ππππ⎡⎤-++⎢⎥⎣⎦,()k Z ∈(2)由(1)知n ()224f x x π⎛⎫=+ ⎪⎝⎭ ,82x ππ⎡⎤∈-⎢⎥⎣⎦ 520,44x ππ⎡⎤∴+∈⎢⎥⎣⎦所以当242x ππ+=,即8x π=时,()max f x =当5244x ππ+=,即2x π=时,()min 12f x =- 【点睛】本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的单调性的应用,利用函数的定义域求三角函数的值域.属于基础型.22.(1)π;(2)12x x k ππ⎧=-+⎨⎩或()4x k k Z ππ⎫=+∈⎬⎭【解析】 【分析】(1)由辅助角公式可得()f x 2sin 2216x πϕ⎛⎫=+++ ⎪⎝⎭,再求周期即可;(2)由13f π⎛⎫= ⎪⎝⎭求出12πϕ=,再解方程2sin 2123x π⎛⎫++= ⎪⎝⎭即可.【详解】解:(1)()()()()2cos 2cos f x x x x ϕϕϕ=++++()()2cos21x x ϕϕ=++++2sin 2216x πϕ⎛⎫=+++ ⎪⎝⎭,则()f x 的最小正周期为2T ππω==.(2)因为13f π⎛⎫= ⎪⎝⎭,所以2sin 221136ππϕ⎛⎫⨯+++= ⎪⎝⎭,即()526k k Z πϕπ+=∈, 解得()5212k k Z ππϕ=-∈. 因为02πϕ<<,所以12πϕ=.因为()2f x =,所以2sin 2123x π⎛⎫++= ⎪⎝⎭,即1sin 232x π⎛⎫+= ⎪⎝⎭,则2236x k πππ+=+或()52236x k k Z πππ+=+∈, 解得12x k ππ=-+或()4x k k Z ππ=+∈.故当()2f x =时,自变量x 的取值集合为12x x k ππ⎧=-+⎨⎩或()4x k k Z ππ⎫=+∈⎬⎭.【点睛】本题考查了三角恒等变换,重点考查了解三角方程,属中档题.23.(1)()2sin 26f x x π⎛⎫=- ⎪⎝⎭;(2【解析】(1)根据函数的最值、周期、对称轴待定系数即可求解;(2)由(1)所求,可化简向量坐标,根据向量垂直得到角B ,再利用()cos cosD A B =-+求解. 【详解】(1)设()f x 的最小正周期为T , 依题意得71234T ππ-=,∴T π=,∴22πωπ==. ∵()f x 图象的一条对称轴是3x π=,∴2,32k k Z ππϕπ+=+∈, ∴,6k k Z πϕπ=-+∈.∵||2ϕπ<,∴6πϕ=-. 又∵()f x 的最大值是2,∴2A =,从而()2sin 26f x x π⎛⎫=- ⎪⎝⎭.(2)∵()(),2sin ,3,2cos ,2cos 2m n m B n B B ⊥==,∴4sin cos 22sin 22m n B B B B B ⋅=⋅+=+4sin 203B π⎛⎫=+= ⎪⎝⎭∴2,3B k k Z ππ+=∈,∴:,62kB k Z ππ=-+∈, 又∵B 是锐角,∴3B π=.∵3sin 5C =,∴4cos 5C =,∴cos cos()(cos cos sin sin )D B C B C B C =-+=--=.即cosD =. 【点睛】本题考查三角函数解析式的求解,涉及向量垂直的转换,余弦函数的和角公式.属综合基础题.24.(1)1,,2212k ππ⎛⎫- ⎪⎝⎭,k Z ∈;(2)[)3,4, 【解析】(1)由题得()2sin 216f x x a π⎛⎫=+++ ⎪⎝⎭,求出a 的值即得函数()y f x =图象的对称中心;(2)作出函数()y f x =在70,6x π⎡⎤∈⎢⎥⎣⎦上的大致图象,求出123523x x x π++=即得解.【详解】(1)()cos 2212sin 216x x a x a f x π⎛⎫=++=+++ ⎪⎝⎭,由已知可得()2110a ⨯-++=,∴1a =,()2sin 226f x x π⎛⎫=++ ⎪⎝⎭,令26x k ππ+=可得()y f x =图象的对称中心为,2212k ππ⎛⎫-⎪⎝⎭,k Z ∈. (2)()y f x =在70,6x π⎡⎤∈⎢⎥⎣⎦上的大致图象如图所示,由图可得[)3,4m ∈,所以123x x π+=,2343x x π+=,所以123523x x x π++=,所以()1235tan 2tan3x x x π++==【点睛】本题主要考查三角恒等变换和三角函数的图象和性质,考查三角函数图象的综合应用,意在考查学生对这些知识的理解掌握水平和分析推理能力. 25.(1)1,2⎛⎤-∞ ⎥⎝⎦;(2)2π【解析】(1)首先根据两角和的正弦公式得到()sin 23f x x π⎛⎫=+ ⎪⎝⎭,从而得到4f x π⎛⎫- ⎪⎝⎭的解析式,根据正弦函数的性质求出其值域,从而得到参数的取值范围; (2)首先求出()g x 的解析式,根据正弦函数的对称性即可解答. 【详解】解:(1)因为()sin 2coscos 2sin33f x x x ππ=+()sin 23f x x π⎛⎫∴=+ ⎪⎝⎭, 所以sin 2sin 24436f x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫-=-+=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.又,63x ππ⎡⎤∈⎢⎥⎣⎦,所以2,662x πππ⎡⎤-∈⎢⎥⎣⎦, 故1sin 2,162x π⎛⎫⎡⎤-∈ ⎪⎢⎥⎝⎭⎣⎦,即min 142f x π⎛⎫-= ⎪⎝⎭,12m, 所以实数m 的取值范围为1,2⎛⎤-∞ ⎥⎝⎦.(2)由(1)得()1313322sin 22sin 26263g x f x x x πππ⎡⎤⎛⎫⎛⎫=-=-+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦令()0g x =,得3sin x =3sin x =[],3ππ-上有4个零点 这4个零点从小到大不妨设为1x ,2x ,3x ,4x ,则由对称性得1222x x π+=-,34322x x π+=, 从而所有零点和为12342x x x x π+++=. 【点睛】本题考查两角和的正弦公式的应用,三角函数的性质的应用,属于基础题.26.(Ⅰ)点C 是半圆的中点,理由见解析; (Ⅱ)(ⅰ)6πθ=时,最大值5(ⅱ)6πθ=时,最大面积是334【解析】(Ⅰ)设BC a =,AC b =,AB c =,法一:依题意有222+=a b c ,再利用基本不等式求得2a b c +,从而得出结论;法二:由点C 在半圆上,AB 是直径,利用三角函数求出cos a c α=⋅,sin b c α=⋅,再利用三角函数的性质求出结论;(Ⅱ)(ⅰ)利用三角函数值表示四边形ABCD 的周长p ,再求p 的最大值;(ⅱ)利用三角函数值表示出四边形ABCD 的面积s ,再结合基本不等式求s 的最大值. 【详解】(Ⅰ)点C 在半圆中点位置时,ABC ∆周长最大.理由如下: 法一:因为点C 在半圆上,且AB 是圆的直径, 所以2ACB π∠=,即ABC ∆是直角三角形,设BC a =,AC b =,AB c =,显然a ,b ,c 均为正数,则222+=a b c , 因为222a b ab +≥,当且仅当a b =时等号成立,所以()()2222222a b a b ab a b +≥++=+,所以()2222a b a b c +≤+=, 所以ABC ∆的周长为()21222a b c c ++≤+=+,当且仅当a b =时等号成立,即ABC ∆为等腰直角三角形时,周长取得最大值,此时点C 是半圆的中点. 法二:因为点C 在半圆上,且AB 是圆的直径, 所以2ACB π∠=,即ABC ∆是直角三角形,设BC a =,AC b =,AB c =,02ABC παα⎛⎫∠=<< ⎪⎝⎭,则cos a c α=⋅,sin b c α=⋅,a b c ++cos sin c c c αα=⋅+⋅+()2cos sin 2αα=++22sin 24πα⎛⎫=++ ⎪⎝⎭,因为02πα<<,所以3444πππα<+<, 所以当42ππα+=,即4πα=时, ABC ∆周长取得最大值222+,此时点C 是半圆的中点.(Ⅱ)(ⅰ)因为AD DC =,所以ABD DBC θ∠=∠=, 所以sin AD DC AB θ==⋅,cos2CB AB θ=⋅, 设四边形ABCD 的周长为p , 则p AD DC CB AB =+++2sin cos22AB AB θθ=++()2214sin 212sin 254sin 2θθθ⎛⎫=+-+=-- ⎪⎝⎭,显然0,4πθ⎛⎫∈ ⎪⎝⎭,所以当6πθ=时,p 取得最大值5;(ⅱ)过O 作OE BC ⊥于E ,设四边形ABCD 的面积为s ,四边形AOCD 的面积为1s ,BOC ∆的面积为2s ,则 121122s s s AC OD BC OE =+=⋅+⋅ 11sin 21cos 2sin 222AB AB θθθ=⋅+⋅ sin 2cos2sin 2θθθ=+⋅()sin 21cos2θθ=+, 所以()222sin 21cos2s θθ=+()()221cos 21cos 2θθ=-+()()31cos21cos2θθ=-+()()331cos 21cos 23θθ=-+()()()2231cos 21cos 211cos 232θθθ-++⎡⎤≤+⎢⎥⎣⎦()()()231cos 21cos 211cos 232θθθ-++⎡⎤=+⎢⎥⎣⎦()()()2231cos 21cos 21cos 21232θθθ⨯-++⎡⎤++⎢⎥≤⎢⎥⎢⎥⎢⎥⎣⎦()()()431cos 21cos 221cos 2134θθθ-++++⎡⎤=⎢⎥⎣⎦ 413273216⎛⎫==⎪⎝⎭; 当且仅当()31cos21cos2θθ-=+,即1cos 22θ=时,等号成立, 显然04πθ⎛⎫∈ ⎪⎝⎭,,所以202πθ⎛⎫∈ ⎪⎝⎭,,所以此时6πθ=,所以当6πθ=时,s =,即四边形ABCD 【点睛】本题考查解三角形的应用问题,考查三角函数与基本不等式的应用,需要学生具备一定的计算分析能力,属于中档题.27.(1)1a =-(2)22,2,33k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦.(3)422|,3k x k k Z x πππ-+<<∈⎧⎫⎨⎬⎩⎭【解析】(1)化简()f x ,求最大值,即可求解;(2)应用整体思想,结合正弦函数的递增区间,即可得出结论; (3)运用正弦函数图像,即可求解. 【详解】 解:()sin cos cos sincoscos sinsin cos 6633f x x x x x x a ππππ=-++++11cos cos cos 22x x x x x a =-+++cos x x a =++12cos 2x x a ⎫=++⎪⎪⎝⎭2sin 6x a π⎛⎫=++ ⎪⎝⎭. (1)函数()f x 的最大值为21a +=,所以1a =-. (2)由22,262k x k k Z πππππ-+≤+≤+∈,解得222,33k x k k Z ππππ-+≤≤+∈, 所以()f x 的单调递增区间为22,2,33k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦. (3)由(1)知()2sin 16f x x π⎛⎫=+- ⎪⎝⎭.因为()0f x <,即2sin 106x π⎛⎫+-< ⎪⎝⎭.所以1sin 62x π⎛⎫+< ⎪⎝⎭,所以722,666k x k k Z πππππ-+<+<+∈. 所以422,3k x k k Z πππ-+<<∈, 所以使()0f x <成立的x 的取值集合为422|,3k x k k Z x πππ-+<<∈⎧⎫⎨⎬⎩⎭. 【点睛】本题考查三角函数恒等变换,化简解析式,考查三角函数的性质以及三角不等式,属于中档题.28.(1)π;(2)()()min max ππ,0,,148x f x x f x =-===.【解析】(1) 函数()f x 解析式去括号后利用二倍角的正弦、余弦公式化简,整理后再利用两角和与差的正弦函数公式化为一个角的正弦函数,找出w 的值,代入周期公式即可求出最小正周期;(2)根据x 的范围求出这个角的范围,利用正弦函数的值域即可确定出()f x 的值域,进而求出()f x 的最小值与最大值.. 【详解】(1)()()π2cos sin cos sin2cos21214f x x x x x x x ⎛⎫=+=++=++ ⎪⎝⎭,因此,函数()f x 的最小正周期πT =. (2) 因为ππ44x -≤≤ 所以ππ3π2444x -≤+≤,sin 24x π⎡⎤⎛⎫∴+∈⎢⎥ ⎪⎝⎭⎣⎦,即()1f x ⎡⎤∈⎣⎦, 所以当244x ππ+=-,即4x π=-时,()min 0f x =,当242x ππ+=,即8x π=时,()max 1f x =.所以4x π=-时,()min 0f x =,8x π=时,()max 1f x .【点睛】此题考查了两角和与差的正弦函数公式,二倍角的正弦、余弦函数公式,正弦函数的定义域与值域,熟练掌握公式是解本题的关键,是中档题.29.(1)OA 、OB 都为50m ;(2)8sin 64sin cos S θθθθ=-+;0,6πθ⎛⎤∈ ⎥⎝⎦;最大值为2625(8m +. 【解析】 【分析】对于(1),设OA m =,OB n =,m ,n (0,200)∈,在△OAB 中,利用余弦定理可得22222cos3AB OA OB OA OB π=+-⋅⋅,整理得222m n mn =++,结合基本不等式即可得出结论;对于(2),当△AOB 的周长最大时,梯形ACBD 为等腰梯形,过O 作OF ⊥CD 交CD 于F ,交AB 于E ,则E 、F 分别为AB ,CD 的中点,利用已知可表示出相关线段;然后利用梯形的面积公式可知,625(83cos 8sin 64sin cos 3)S θθθθ=-+- ,0,6πθ⎛⎤∈ ⎥⎝⎦,令()83cos 8sin 64sin cos 3f θθθθθ=-+-,0,6πθ⎛⎤∈ ⎥⎝⎦,,结合导数,确定函数的单调性,即可求出S 的最大值. 【详解】解:(1)设OA m =,OB n =,m ,n (0,200)∈,在OAB ∆中,22222cos3AB OA OB OA OB π=+-⋅⋅, 即222(503)m n mn =++.所以22222()3(503)()()()44m n m n mn m n m n +=+-+-=+.所以m n 100+,当且仅当m n 50==时,m n +取得最大值, 此时OAB ∆周长取得最大值.答:当OA 、OB 都为50m 时,OAB ∆的周长最大. (2)当AOB ∆的周长最大时,梯形ABCD 为等腰梯形.如上图所示,过O 作OF CD ⊥交CD 于F ,交AB 于E ,则E 、F 分别为AB 、CD 的中点, 所以DOE θ∠=.由CD 200,得0,6πθ⎛⎤∈ ⎥⎝⎦.在ODF ∆中,DF 200sin θ=,OF 200cos θ=. 又在AOE ∆中,OE OAcos253π==,故EF 200cos 25θ=-.所以1(503400sin )(200cos 25)2S θθ=-625(38sin )(8cos 1)θθ=-625(838sin 64sin cos 3)θθθθ=-+,0,6πθ⎛⎤∈ ⎥⎝⎦.令()838sin 64sin cos 3f θθθθθ=-+0,6πθ⎛⎤∈ ⎥⎝⎦,()838cos 64cos 216sin 64cos 26f πθθθθθθ'⎛⎫=--+=-++ ⎪⎝⎭,0,6πθ⎛⎫∈ ⎪⎝⎭.又16sin 6y πθ⎛⎫=-+ ⎪⎝⎭及cos 2y θ=在0,6πθ⎛⎤∈ ⎥⎝⎦上均为单调递减函数,故()f θ'在0,6πθ⎛⎤∈ ⎥⎝⎦上为单调递减函数.因1()164062f π⎫'=-⨯>⎪⎪⎝⎭,故()0f θ'>在0,6πθ⎛⎤∈ ⎥⎝⎦上恒成立, 于是,()f θ在0,6πθ⎛⎤∈ ⎥⎝⎦上为单调递增函数.所以当6πθ=时,()f θ有最大值,此时S 有最大值为625(8+.答:当6πθ=时,梯形ABCD 面积有最大值,且最大值为2625(8m +.【点睛】本题主要考查了余弦定理、基本不等式以及导数的应用,在(2)中得到()8sin 64sin cos f θθθθθ=-+()16sin 64cos 26f πθθθ'⎛⎫=-++ ⎪⎝⎭,结合函数在公共区间上,减函数+减函数等于减函数,从而确定()f θ'在0,6πθ⎛⎤∈ ⎥⎝⎦上为单调递减函数.属于难题.30.(1) 单调递减区间为7,,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦;(2) 15. 【解析】 【分析】(1)根据题意求出函数()f x 的解析式,然后可求出它的单调递减区间.(2)结合条件求出()424sin ,cos 3525πβαβ⎛⎫-=+=- ⎪⎝⎭,然后由()2sin 12sin 1233f αππααββ⎡⎤⎛⎫⎛⎫⎛⎫=+-=+--- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦可得结果.【详解】(1)()2()1f x cos x sin x x ωωω=221sin xcos x x ωωω=+221)1sin x cos x ωω=--221sin x x ωω=-2(2)13sin x πω=+-. ∵1(2)13sin x πω-≤+≤,∴32(2)113sin x πω-≤+-≤,∴()f x 的最大值为1,最小值为3-. 又()()121,3f x f x ==-,且12min 2x x π-=,∴函数()f x 的最小正周期为22ππ⨯=,∴1ω=,∴()2(2)13f x sin x π=+-.由3222,232k x k k Z πππππ+≤+≤+∈, 得7,1212k x k k Z ππππ+≤≤+∈, ∴()f x 的单调递减区间为7[,],1212k k k Z ππππ++∈. (2)由(1)得3212335f sin βππβ⎛⎫⎛⎫-=--= ⎪ ⎪⎝⎭⎝⎭,∴4sin 35πβ⎛⎫-= ⎪⎝⎭.∵2,33ππβ⎛⎫∈ ⎪⎝⎭, ∴0,33ππβ⎛⎫-∈ ⎪⎝⎭,∴3cos 35πβ⎛⎫- ⎪⎝⎭.∵()7sin 25αβ+=-且2,,33ππαβ⎛⎫∈ ⎪⎝⎭, ∴24,33ππαβ⎛⎫+∈ ⎪⎝⎭,∴()24cos 25αβ+==-. ∴()2sin 12sin 1233f αππααββ⎡⎤⎛⎫⎛⎫⎛⎫=+-=+--- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦()()2sin cos cos sin 133ππαββαββ⎡⎤⎛⎫⎛⎫=+--+-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦7324421255255⎡⎤⎛⎫=⨯-⨯--⨯- ⎪⎢⎥⎝⎭⎣⎦15=. 【点睛】(1)解答有关三角函数性质的有关问题时,首项把函数解析式化为(x)Asin(x )f ωϕ=+的形式,然后再结合正弦函数的相关性质求解,解题时注意系数,A ω对结果的影响.(2)对于三角变换中的“给值求值”问题,在求解过程中注意角的变换,通过角的“拆”、“拼”等手段转化为能应用条件中所给角的形式,然后再利用整体思想求解.。

三角函数10道大题带答案

三角函数10道大题带答案

三角函数1.函数()4cos sin()16f x x x π=+-.〔Ⅰ〕求 ()f x 的最小正周期; 〔Ⅱ〕求()f x 在区间[,]64ππ-上的最大值和最小值.2、函数.,1cos 2)32sin()32sin()(2R x x x x x f ∈-+-++=ππ〔Ⅰ〕求函数)(x f 的最小正周期; 〔Ⅱ〕求函数)(x f 在区间]4,4[ππ-上的最大值和最小值.3、函数()tan(2),4f x x =+π〔Ⅰ〕求()f x 的定义域与最小正周期; 〔II 〕设0,4⎛⎫∈ ⎪⎝⎭πα,假设()2cos 2,2f =αα求α的大小4、函数xxx x x f sin 2sin )cos (sin )(-=.〔1〕求)(x f 的定义域及最小正周期; 〔2〕求)(x f 的单调递减区间.5、设函数2())sin 24f x x x π=++. 〔I 〕求函数()f x 的最小正周期;〔II 〕设函数()g x 对任意x R ∈,有()()2g x g x π+=,且当[0,]2x π∈时,1()()2g x f x =-,求函数()g x 在[,0]π-上的解析式.6、函数()sin()16f x A x πω=-+〔0,0A ω>>〕的最大值为3,其图像相邻两条对称轴之间的距离为2π, 〔1〕求函数()f x 的解析式; 〔2〕设(0,)2πα∈,那么()22f α=,求α的值. 7、设426f (x )cos(x )sin x cos x π=ω-ω+ω,其中.0>ω 〔Ⅰ〕求函数y f (x )=的值域〔Ⅱ〕假设y f (x )=在区间322,ππ⎡⎤-⎢⎥⎣⎦上为增函数,求ω的最大值.8、函数2()6cos 3(0)2xf x x ωωω=->在一个周期的图象如下图,A 为图象的最高点,B 、C 为图象与x 轴的交点,且ABC ∆为正三角形.〔Ⅰ〕求ω的值及函数()f x 的值域;〔Ⅱ〕假设0()f x =,且0102(,)33x ∈-,求0(1)f x +的值.9、,,a b c 分别为ABC ∆三个角,,A B C 的对边,cos sin 0a C C b c --= 〔1〕求A ; 〔2〕假设2a =,ABC ∆的面积为3;求,b c .10、在∆ABC 中,角A ,B ,C 的对边分别为a ,b ,c .cos A =23,sin B cos C . (Ⅰ)求tan C 的值;(Ⅱ)假设a∆ABC 的面积.答案1、【思路点拨】先利用和角公式展开,再利用降幂公式、化一公式转化为正弦型函数,最后求周期及闭区间上的最值.【精讲精析】〔Ⅰ〕因为()4cos sin()16f x x x π=+-14cos (sin cos )122x x x =+-222cos 1x x =+-2cos 22sin(2)6x x x π=+=+, 所以()f x 的最小正周期为π.〔Ⅱ〕因为64x ππ-≤≤,所以22663x πππ-≤+≤.于是,当262x ππ+=,即6x π=时,()f x 取得最大值2;当266x ππ+=-,即6x π=-时,()f x 取得最小值-1.2、【解析】 〔1〕2()=sin (2+)+sin(2)+2cos 133f x x x x ππ--2sin 2coscos 2)34x x x ππ=+=+函数()f x 的最小正周期为22T ππ==〔2〕32sin(2)11()444444x x x f x ππππππ-≤≤⇒-≤+≤⇒≤+≤⇔-≤≤当2()428x x πππ+==时,()max f x =2()444x x πππ+=-=-时,min ()1f x =- 【点评】该试题关键在于将的函数表达式化为=sin (+)y A x ωϕ的数学模型,再根据此三角模型的图像与性质进展解题即可.3、【思路点拨】1、根据正切函数的有关概念和性质;2、根据三角函数的有关公式进展变换、化简求值.【精讲精析】〔I 〕【解析】由2,42+≠+∈x k k Z πππ, 得,82≠+∈k x k Z ππ. 所以()f x 的定义域为{|,}82∈≠+∈k x R x k Z ππ,()f x 的最小正周期为.2π 〔II 〕【解析】由()2cos 2,2f =αα得tan()2cos 2,4+=παα22sin()42(cos sin ),cos()4+=-+παααπα 整理得sin cos 2(cos sin )(cos sin ).cos sin +=+--αααααααα因为(0,)4∈πα,所以sin cos 0.+≠αα因此211(cos sin ),sin 2.22-==ααα即 由(0,)4∈πα,得2(0,)2∈πα.所以2,.612==ππαα即4、解〔1〕:sin 0()x x k k Z π≠⇔≠∈得:函数()f x 的定义域为{,}x x k k Z π≠∈(sin cos )sin 2()(sin cos )2cos sin x x xf x x x xx-==-⨯sin 2(1cos 2))14x x x π=-+=--得:)(x f 的最小正周期为22T ππ==;〔2〕函数sin y x =的单调递增区间为[2,2]()22k k k Z ππππ-+∈ 那么322224288k x k k x k πππππππππ-≤-≤+⇔-≤≤+得:)(x f 的单调递增区间为3[,),(,]()88k k k k k Z ππππππ-+∈5、此题考察两角和与差的三角函数公式、二倍角公式、三角函数的周期等性质、分段函数解析式等根底知识,考察分类讨论思想和运算求解能力. 【解析】2111())sin cos 2sin 2(1cos 2)4222f x x x x x x π=++=-+-11sin 222x =-, 〔I 〕函数()f x 的最小正周期22T ππ== 〔II 〕当[0,]2x π∈时,11()()sin 222g x f x x =-= 当[,0]2x π∈-时,()[0,]22x ππ+∈11()()sin 2()sin 22222g x g x x x ππ=+=+=- 当[,)2x ππ∈--时,()[0,)2x ππ+∈11()()sin 2()sin 222g x g x x x ππ=+=+=得函数()g x 在[,0]π-上的解析式为1sin 2(0)22()1sin 2()22x x g x x x πππ⎧--≤≤⎪⎪=⎨⎪-≤<⎪⎩.6、【解析】〔1〕∵函数()f x 的最大值是3,∴13A +=,即2A =.∵函数图像的相邻两条对称轴之间的距离为2π,∴最小正周期T π=,∴2ω=. 故函数()f x 的解析式为()2sin(2)16f x x π=-+.〔2〕∵()2f α2sin()126πα=-+=,即1sin()62πα-=,∵02πα<<,∴663πππα-<-<,∴66ππα-=,故3πα=.7、解:〔1〕()314sin sin cos 222f x x x x x ωωωω⎛⎫=++ ⎪ ⎪⎝⎭22223cos 2sin cos sin x x x x x ωωωωω=++-321x ω=+因1sin 21x ω-≤≤,所以函数()y f x =的值域为13,13⎡+⎣〔2〕因sin y x =在每个闭区间()2,222k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦上为增函数,故()3sin 21f x x ω=+()0ω>在每个闭区间(),44k k k Z ππππωωωω⎡⎤-+∈⎢⎥⎣⎦上为增函数. 依题意知3,22ππ⎡⎤-⊆⎢⎥⎣⎦,44k k ππππωωωω⎡⎤-+⎢⎥⎣⎦对某个k Z ∈成立,此时必有0k =,于是 32424ππωππω⎧-≥-⎪⎪⎨⎪≤⎪⎩,解得16ω≤,故ω的最大值为16. 8. 此题主要考察三角函数的图像与性质、同角三角函数的关系、两角和差公式,倍角公式等根底知识,考察根本运算能力,以及数形结合思想,化归与转化思想. [解析]〔Ⅰ〕由可得:2()6cos33(0)2xf x x ωωω=+->=3cosωx+)3sin(32sin 3πωω+=x x又由于正三角形ABC 的高为23,那么BC=4 所以,函数482824)(πωωπ===⨯=,得,即的周期T x f所以,函数]32,32[)(-的值域为x f .……………………6分〔Ⅱ〕因为,由538)(0=x f 〔Ⅰ〕有 ,538)34(sin 32)(00=+=ππx x f 54)34(sin 0=+ππx 即 由x 0)2,2()34x (323100ππππ-∈+-∈),得,( 所以,53)54(1)34(cos 20=-=+ππx 即 故=+)1(0x f =++)344(sin 320πππx ]4)34(sin[320πππ++x)22532254(324sin )34cos(4cos )34([sin 3200⨯+⨯=+++=ππππππx x567=………………………………………………………12分 9..解:〔1〕由正弦定理得:cos 3sin 0sin cos 3sin sin sin a C a C b c A C A C B C --=⇔=+sin cos 3sin sin()sin 13cos 1sin(30)2303060A C A C a C C A A A A A ︒︒︒︒⇔+=++⇔-=⇔-=⇔-=⇔=〔2〕1sin 342S bc A bc ==⇔=,2222cos 4a b c bc A b c =+-⇔+= 10. 此题主要考察三角恒等变换,正弦定理,余弦定理及三角形面积求法等知识点.(Ⅰ)∵cos A =23>0,∴sin A 251cos A -=又5cos C =sin B =sin(A +C )=sin A cos C +sin C cos A =5cos C +23sin C . 整理得:tan C 5(Ⅱ)由图辅助三角形知:sin C =56.又由正弦定理知:sin sin a cA C=, 故3c = (1)对角A 运用余弦定理:cos A =222223b c a bc +-=. (2)解(1) (2)得:b =(舍去).∴∆ABC 的面积为:S .。

三角函数习题及答案

三角函数习题及答案

2 fcot 2 (B) tan 2 p cot 2 (C) sin 2 f cos 2 (D) sin 2 p cos 4.若 sin θ + cos θ = - ,则θ只可能是( )6.已知 α 是第二象限角且 s in α =41. sin (π - 2)- cos - 2 ⎪ 化简结果是()2.若 sin α + cos α = ,且 0 p α p π ,则 tan α 的值为(3. 已知 sin α cos α = ,且 p α p ,则 cos α - sin α 的值为()第四章 三角函数§4-1 任意角的三角函数一、选择题:1.使得函数 y = lg(sin θ cos θ ) 有意义的角在()(A)第一,四象限 (B)第一,三象限 (C)第一、二象限 (D)第二、四象限 2.角 α、β 的终边关于 У 轴对称,(κ∈Ζ)。

则(A)α+β=2κπ (B)α-β=2κπ (C)α+β=2κπ-π (D)α-β=2κπ-π3.设θ为第三象限的角,则必有()(A) tanθθ θ θ θ θ θ θ 24 3(A)第一象限角 (B)第二象限角 (C )第三象限角 (D)第四象限角 5.若 tan θ sin θ p 0 且 0 p sin θ + cos θ p 1 ,则θ的终边在( ) (A)第一象限 (B )第二象限(C )第三象限(D )第四象限二、填空题:α则 2α 是第▁▁▁▁象限角,是第▁▁▁象限角。

527.已知锐角 α 终边上一点 A 的坐标为(2sina3,-2cos3),则 α 角弧度数为▁▁▁▁。

8.设 y = sin x +1,( x ≠ k π , k ∈ Z ) 则 Y 的取值范围是▁▁▁▁▁▁▁。

sin x9.已知 cosx-sinx<-1,则 x 是第▁▁▁象限角。

三、解答题:10.已知角 α 的终边在直线 y = 3x 上,求 sin α 及 cot α 的值。

三角函数练习题含答案

三角函数练习题含答案

三角函数练习题含答案一、填空题1.如图,点C 为某沿海城市的高速公路出入口,直线BD 为海岸线,512BAC π∠=,BD AB ⊥,BC 是以A 为圆心,半径为1km 的圆弧型小路.该市拟修建一条从C 通往海岸的观光专线CP PQ -(新建道路PQ ,对道路CP 进行翻新),其中P 为BC 上异于B C ,的一点,PQ 与AB 平行,设012PAB θθ5π⎛⎫∠=<<⎪⎝⎭,新建道路PQ 的单位成本是翻新道路CP 的单位成本的2倍.要使观光专线CP PQ -的修建总成本最低,则θ的值为____________.2.在锐角三角形ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且满足22b a ac -=,则11tan tan A B-的取值范围为___________. 3.已知球O 的表面积为16π,点,,,A B C D 均在球O 的表面上,且,64ACB AB π∠=则四面体ABCD 体积的最大值为___________.4.已知三棱锥S ABC -中,SA SB SC ==,ABC 是边长为4的正三角形,点E ,F 分别是SC ,BC 的中点,D 是AC 上的一点,且EF SD ⊥,若3FD =,则DE =___________. 5.已知向量a ,b ,c 满足0a b c ++=,()()0a b a c -⋅-=,||9b c -=,则||||||a b c ++的最大值是___________.6.已知(sin )21,22f x x x ππ⎛⎫⎡⎤=+∈- ⎪⎢⎥⎣⎦⎝⎭,那么(cos1)f =________.7.在三棱锥P ABC -中,4AB BC ==,8PC =,异面直线PA ,BC 所成角为π3,AB PA ⊥,AB BC ⊥,则该三棱锥外接球的表面积为______.8.已知函数()cos()(0,0,0)f x A x A ωϕωϕπ=->><<的部分图像如图所示,设函数()266g x f x f x ππ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,则()g x 的值域为___________.9.已知直线y m =与函数3()sin (0)42f x x πωω⎛⎫=++> ⎪⎝⎭的图象相交,若自左至右的三个相.邻交点...A ,B ,C 满足2AB BC =,则实数m =______. 10.在锐角ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2b =,2B C =,则a c +的取值范围为________.二、单选题11.在△ABC 中,24CA CB ==,F 为△ABC 的外心,则CF AB ⋅=( ) A .-6B .-8C .-9D .-1212.已知函数()sin 4f x x ωπ⎛⎫=+ ⎪⎝⎭(0)>ω在区间[0,]π上有且仅有4条对称轴,给出下列四个结论:①()f x 在区间(0,)π上有且仅有3个不同的零点; ②()f x 的最小正周期可能是2π; ③ω的取值范围是131744⎡⎫⎪⎢⎣⎭,;④()f x 在区间0,15π⎛⎫⎪⎝⎭上单调递增. 其中所有正确结论的序号是( ) A .①④B .②③C .②④D .②③④13.已知点P 是曲线e 3xy =+α为曲线在点P 处的切线的倾斜角,则α的取值范围是( ) A .0,6π⎛⎤⎥⎝⎦B .,62ππ⎡⎫⎪⎢⎣⎭C .,63ππ⎡⎤⎢⎥⎣⎦D .0,3π⎛⎤ ⎥⎝⎦14.已知,a b Z ∈,满足)98sin 50sin 50a b -︒︒=,则a b +的值为( )A .1B .2C .3D .415.在ABC ∆中,已知3sin sin ,2A C +=设2sin sin ,t A C =则91()()44t t --( )A .1B .27764C .1693192D .9816.已知函数()sin sin()f x x x π=+,现给出如下结论:①()f x 是奇函数;②()f x 是周期函数;③()f x 在区间(0,)π上有三个零点;④()f x 的最大值为2.其中所有正确结论的编号为( ) A .①③B .②③C .②④D .①④17.在三棱锥S ABC -中,侧棱SA ,SB ,SC 两两垂直,且2SA SB SC +==.设SA x =,该三棱锥的表面积为函数()y f x =,以下判断正确的是( ) A .()f x 为常数 B .()f x 有极小值 C .()f x 有极大值D .()f x 是单调函数18.如图是某市夏季某一天从6时到14时的温度变化曲线,若该曲线近似地满足函数()sin y A x B ωϕ=++,则该市这一天中午12时天气的温度大约是( )A .25C ︒B .26C ︒ C .27C ︒D .28C ︒19.已知1F ,2F 分别是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,过点1F 且垂直于x 轴的直线与双曲线交于A ,B 两点,若2ABF 是钝角三角形,则该双曲线离心率的取值范围是( ) A .(21,)+∞B .(12,)+∞C .(1,12)D .(31,)+∞20.已知函数22sin sin ,[1,1]()22,(1,)x x a a x f x x ax a x ⎧++-∈-=⎨-+∈+∞⎩若关于x 的不等式()0f x 对任意[1,)x ∈-+∞恒成立,则实数a 的范围是( )A .[0,2]B .(,0][2,)-∞+∞C .(,0][1,2]-∞D .[0,1][2,)⋃+∞三、解答题21.若函数()y f x =的图像上存在两个不同的点关于y 轴对称,则称函数()y f x =图像上存在一对“偶点”.(1)写出函数()sin f x x =图像上一对“偶点”的坐标;(不需写出过程) (2)证明:函数()ln(2)2g x x x =+-+图像上有且只有一对“偶点”;(3)若函数()2()x h x e mx m =--∈R 图像上有且只有一对“偶点”,求m 的取值范围. 22.已知()sin ,2cos a x x =,()2sin ,sin b x x =,()f x a b =⋅ (1)求()f x 的解析式,并求出()f x 的最大值;(2)若0,2x π⎡⎤∈⎢⎥⎣⎦,求()f x 的最小值和最大值,并指出()f x 取得最值时x 的值.23.如图所示,在平面四边形ABCD 中,1,2,AB BC ACD ==∆为正三角形.(1)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,若sin(2)3sin A C C +=,求角B 的大小; (2)求BCD ∆面积的最大值.24.已知(3cos ,sin ),(sin ,0),0a x x b x ωωωω==>,设()(),f x a b b k k R =+⋅+∈. (1)若()f x 图象中相邻两条对称轴间的距离不小于2π,求ω的取值范围; (2)若()f x 的最小正周期为π,且当,66x ππ⎡⎤∈-⎢⎥⎣⎦时,()f x 的最大值是12,求()f x 的解析式,并说明如何由sin y x =的图象变换得到()y f x =的图象.25.已知函数()()sin 0,2f x t x t πωϕϕ⎛⎫=+>< ⎪⎝⎭,()f x 的部分图像如图所示,点()0,3N ,,02M π⎛⎫- ⎪⎝⎭,,4P t π⎛⎫⎪⎝⎭都在()f x 的图象上.(1)求()f x 的解析式;(2)当,2x ππ⎡⎤∈-⎢⎥⎣⎦时,()33f x m --≤恒成立,求m 的取值范围.26.函数211()sin 2sin cos cos sin 222f x x x πϕϕϕ⎛⎫=⋅+⋅-+ ⎪⎝⎭,22ππϕ⎛⎫-<< ⎪⎝⎭其图像过定点1,64π⎛⎫⎪⎝⎭(1)求ϕ值;(2)将()y f x =的图像左移8π个单位后得到()y g x =,求()g x 在,44ππ⎡⎤-⎢⎥⎣⎦上的最大和最小值及此时对应的x 的取值是多少?27.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,cos 222cos 20C C ++=. (1)求角C 的大小;(2)若2b a =,ABC ∆的面积为2sin sin 2A B ,求sin A 及c 的值. 28.已知函数()f x a b =⋅,其中()3sin ,1a x =-,()1,cos b x =,x ∈R .(1)求函数()y f x =的单调递增区间; (2)求()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最值.29.已知函数()()sin ,f x A x x R ωϕ=+∈(其中0,0,02A πωϕ>><<)的图象如图所示:(1)求函数()f x 的解析式及其对称轴的方程;(2)当0,2x π⎡⎤∈⎢⎥⎣⎦时,方程()23f x a =-有两个不等的实根12,x x ,求实数a 的取值范围,并求此时12x x +的值.30.已知函数2()2cos 23cos f x x x x =+. (Ⅰ)求()f x 的单调递增区间;(Ⅱ)若()f x 在区间,6m π⎡⎤-⎢⎥⎣⎦上的值域为[]0,3,求m 的取值范围.【参考答案】一、填空题1.6π2.23⎛ ⎝⎭33(21)+ 475.3+36.1π-##1π-+7.80π 8.9[,4]4-9.1或2##2或110.( 二、单选题 11.A 12.B 13.A 14.B 15.B 16.A 17.A 18.C 19.B 20.C 三、解答题21.(1)()(),0,0ππ-(2)见解析(3)()1,+∞ 【解析】(1)根据题意即正弦函数的性质即可直接求解;(2)要证:函数数()2x h x e mx =--图象上有且只有一对“偶点”,只需证:())()()y Q x g x g x ==--=在(0,2)上有且只有一个零点,结合导数及函数的性质即可证明;(3)由题意,问题可转化为函数()()y h x h x =--只有一个零点,结合函数的性质及导数可求. 【详解】(1)函数()sin f x x =图像上一对“偶点”的坐标为()(),0,0ππ-, (2)设()()()()()ln 2ln 22Q x g x g x x x x =--=+--+-, 因为()y Q x =的定义域为()2,2-,且()()Q x Q x -=-, 所以函数()y Q x =为奇函数,要证:函数()ln(2)2g x x x =+-+图像上有且只有一对“偶点”, 只需证:()y Q x =在()0,2上有且只有一个零点,令()()222204x Q x x-'==-,得x =所以,函数()Q x 在(上为单调减函数,在)2上为单调增函数,(ln 30Q=+-<,4441122ln 40Q e e e ⎛⎫⎛⎫-=-+> ⎪ ⎪⎝⎭⎝⎭,所以函数()Q x 在41e ⎫-⎪⎭上有且只有一个零点,所以函数()ln(2)2g x x x =+-+图像上有且只有一对“偶点”,(3)设()()()2x xF x h x h x e e mx -=--=--,()00F =,因为()y F x =的定义域为R ,且()()F x F x -=-, 所以函数()y F x =为奇函数,因为函数()2()x h x e mx m =--∈R 图像上有且只有一对“偶点”, 所以函数()y F x =在()0,∞+有且只有一个零点, ()12x xF x e m e '=+-,()0,x ∈+∞, ①当1m 时,因为()220F x m '>-≥,所以函数()y F x =在()0,∞+上为单调增函数,所以()()00F x F >=, 所以函数()F x 在()0,∞+无零点,②当1m 时,由()212120x x xx xe me F x e m e e-+'=+-==,得:(0ln x m =,所以函数()y F x =在()00,x 上单调减函数,在()0,x +∞上单调增函数, 所以()()000F x F <=, 设()ln H x x x =-,()1xH x x-'=, 所以函数()H x 在()0,1上单调增函数,在()1,+∞上单调减函数, 所以()()110H x H ≤=-<,所以ln x x <,所以(ln ln 22m m m +<<,设()()211x m x e x x =-->,设()()2xM x m x e x '==-, 因为()220xM x e e '=->->,所以函数()M x 在()1,+∞单调增函数,所以()()120M x M e >=->,所以函数()m x 在()1,+∞单调增函数, 所以()()120m x m e >=->,所以当1x >时,21x e x >+,()22222124140m m m F m e m e m e=-->-->, 因为函数()y F x =在()0,x +∞上单调增函数,所以函数()F x 在()0,2x m 上有且仅有一个1x ,使得()10F x =, 综上:m 的取值范围为()1,+∞. 【点睛】本题中综合考查了函数的性质及导数的综合应用,体现了分类讨论思想的应用,试题具有一定的综合性.22.(1)()f x 214x π⎛⎫=-+ ⎪⎝⎭1.(2)0x =时,最小值0.38x π=1. 【解析】 【分析】(1)利用数量积公式、倍角公式和辅助角公式,化简()f x ,再利用三角函数的有界性,即可得答案; (2)利用整体法求出32444x πππ-≤-≤,再利用三角函数线,即可得答案. 【详解】(1)()22sin 2sin cos f x x x x =+1cos2sin2x x =-+214x π⎛⎫=-+ ⎪⎝⎭∴sin 214x π⎛⎫-≤ ⎪⎝⎭,()f x ∴1.(2)由(1)得()214f x x π⎛⎫=-+ ⎪⎝⎭,∵0,2x π⎡⎤∈⎢⎥⎣⎦,32444x πππ∴-≤-≤.sin 214x π⎛⎫≤-≤ ⎪⎝⎭, ∴当244x ππ-=-时,即0x =时,()f x 取最小值0.当242x ππ-=,即38x π=时,()f x 1. 【点睛】本题考查向量数量积、二倍角公式、辅助角公式、三角函数的性质,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意整体法的应用.23.(1)23B π=;(21. 【解析】 【分析】(1)由正弦和角公式,化简三角函数表达式,结合正弦定理即可求得角B 的大小;(2)在ABC ∆中,设,ABC ACB αβ∠=∠=,由余弦定理及正弦定理用,αβ表示出CD .再根据三角形面积公式表示出∆BCD S ,即可结合正弦函数的图像与性质求得最大值. 【详解】 (1)由题意可得:sin2cos cos2sin 3sin A C A C C +=∴()22sin cos cos 12sin sin 3sin A A C A C C +-=整理得sin (cos cos sin sin )sin A A C A C C -= ∴sin cos()sin A A C C += ∴sin cos sin A B C -= ∴sin 1cos sin 2C c B A a =-=-=- 又(0,)B π∈ ∴23B π=(2)在ABC ∆中,设,ABC ACB αβ∠=∠=,由余弦定理得:22212212cos 54cos AC αα=+-⨯⨯=-, ∵ACD ∆为正三角形, ∴2254cos CD C A α=-=, 在ABC ∆中,由正弦定理得:1sin sin ACβα=, ∴sin sin AC βα=, ∴sin sin CD βα=,∵()222222(cos )1sin sin 54cos sin CD CD CD ββααα=-=-=--2(2cos )α=-,∵BAC β<∠,∴β为锐角,cos 2cos CD βα=-, 12sin sin 233BCD S CD CD ππββ∆⎛⎫⎛⎫=⨯⨯⨯+=+ ⎪ ⎪⎝⎭⎝⎭1cos sin 2CD ββ=+,1cos )sin sin 23πααα⎛⎫=-+=- ⎪⎝⎭, ∵(0,)απ∈∴当56πα=时,()max 1BCD S ∆=. 【点睛】本题考查了三角函数式的化简变形,正弦定理与余弦定理在解三角形中的应用,三角形面积的表示方法,正弦函数的图像与性质的综合应用,属于中档题.24.(1)01ω<≤;(2)()sin 26f x x π⎛⎫=- ⎪⎝⎭;平移变换过程见解析.【解析】 【分析】(1)根据平面向量的坐标运算,表示出()f x 的解析式,结合辅助角公式化简三角函数式.结合相邻两条对称轴间的距离不小于2π及周期公式,即可求得ω的取值范围; (2)根据最小正周期,求得ω的值.代入解析式,结合正弦函数的图象、性质与()f x 的最大值是12,即可求得()f x 的解析式.再根据三角函数图象平移变换,即可描述变换过程.【详解】∵(3cos ,sin ),(sin ,0)a x x b x ωωω== ∴(3cos sin ,sin )a b x x x ωωω+=+∴2()()3sin cos sin f x a b b k x x x k ωωω=+⋅+=++1cos21122cos2222x x k x x k ωωωω-=++=-++ 1sin 262x k πω⎛⎫=-++ ⎪⎝⎭(1)由题意可知222T ππω=≥, ∴1ω≤ 又0>ω, ∴01ω<≤ (2)∵T πω=, ∴1ω=∴1()sin 262f x x k π⎛⎫=-++ ⎪⎝⎭∵,66x ππ⎡⎤∈-⎢⎥⎣⎦,∴2,626x πππ⎡⎤-∈-⎢⎥⎣⎦∴当266x ππ-=即6x π=时max 11()sin 16622f x f k k ππ⎛⎫==++=+= ⎪⎝⎭∴12k =-∴()sin 26f x x π⎛⎫=- ⎪⎝⎭将sin y x =图象上所有点向右平移6π个单位,得到sin 6y x π⎛⎫=- ⎪⎝⎭的图象;再将得到的图象上所有点的横坐标变为原来的12倍,纵坐标不变,得到sin 26y x π⎛⎫=- ⎪⎝⎭的图象(或将sin y x =图象上所有点的横坐标变为原来的12倍,纵坐标不变,得到sin 2y x =的图象;再将得到的图象上所有点向右平移12π个单位,得到sin 26y x π⎛⎫=- ⎪⎝⎭的图象) 【点睛】本题考查了正弦函数图像与性质的综合应用,根据最值求三角函数解析式,三角函数图象平移变换过程,属于中档题.25.(1)()22sin 33x f x π⎛⎫=+ ⎪⎝⎭;(2)[]1,0-【解析】 【分析】(1)由三角函数图像,求出,,t ωϕ即可; (2)求出函数()f x m -的值域,再列不等式组32m m +≥⎧⎪⎨≤⎪⎩.【详解】解:(1)由()f x 的图象可知34424T πππ⎛⎫=--= ⎪⎝⎭,则3T π=, 因为23T ππω==,0>ω,所以23ω=,故()2sin 3t x f x ϕ⎛⎫=+ ⎪⎝⎭.因为,02M π⎛⎫- ⎪⎝⎭在函数()f x 的图象上,所以sin 023f t ππϕ⎛⎫⎛⎫-=-+= ⎪ ⎪⎝⎭⎝⎭, 所以()3k k Z πϕπ-+=∈,即()3k k Z πϕπ=+∈,因为2πϕ<,所以3πϕ=.因为点(N 在函数()f x 的图象上,所以()0sin 3f t π==解得2t =,故()22sin 33x f x π⎛⎫=+ ⎪⎝⎭.(2)因为,2x ππ⎡⎤∈-⎢⎥⎣⎦,所以22,3333x πππ⎡⎤+∈-⎢⎥⎣⎦,所以2sin 33x π⎡⎤⎛⎫+∈⎢⎥ ⎪⎝⎭⎣⎦,则()2f x ≤.因为()33f x m -≤-≤,所以()3m f x m ≤+, 所以32m m +≥⎧⎪⎨⎪⎩10m -≤≤.故m 的取值范围为[]1,0-.【点睛】本题考查了利用三角函数图像求解析式,重点考查了三角函数值域的求法,属中档题. 26.(1)0ϕ=(2)当4x π=时,min ()g x =;当8x π=-时,max 1()2g x =【解析】 【分析】(1)先将函数表达式结合降幂公式化简可得()1cos(2)2f x x ϕ=-,结合函数过点1,64π⎛⎫⎪⎝⎭和,22ππϕ⎛⎫∈- ⎪⎝⎭即可求解具体ϕ值;(2)根据函数图像平移法则先求得1()cos 224g x x π⎛⎫=+ ⎪⎝⎭,由,44x ππ⎡⎤∈-⎢⎥⎣⎦求得32,444x πππ⎡⎤+∈-⎢⎥⎣⎦,再结合余弦函数性质即可求解 【详解】(1)11cos 21()sin 2sin cos cos 222x f x x ϕϕϕ+=⋅+⋅- 11sin 2sin cos 2cos 22x x ϕϕ=⋅+⋅ 1cos(2)2x ϕ=- 又图像过点1,64π⎛⎫ ⎪⎝⎭,11cos 423πϕ⎛⎫∴=- ⎪⎝⎭233k ππϕπ∴-=+或2()3k k Z ππ-+∈又,22ππϕ⎛⎫∈- ⎪⎝⎭,0ϕ∴=(2)由(1)知 1()cos 22f x x =, 11()cos 2cos 22824g x x x ππ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭ 32,444x πππ⎡⎤+∈-⎢⎥⎣⎦当3244x ππ+=时,即4x π=时,min ()4g x = 当204x π+=时,即8x π=-时,max 1()2g x = 【点睛】本题考查三角函数表达式的化简求值,降幂公式的使用,两角差的余弦公式的逆用,在具体区间函数最值的求解,属于中档题27.(1)34C π=(2)sin A =1c = 【解析】 【分析】(1)化简等式,即可求出角C .(2)利用角C 的余弦公式,求出c 与a 的关系式,再由正弦定理求出角A 的正弦值,再结合面积公式求出c 的值. 【详解】(1)∵cos 220C C ++=,∴22cos s 10C C +=+,即)210C +=,∴cos C = 又()0,C π∈,∴34C π=. (2)∵2222222cos 325c a b ab C a a a =+-=+=,∴c =,即sin C A =,∴sinA C =∵1sin 2ABC S ab C ∆=,且in sin ABC S A B ∆=,∴1sin sin 2ab C A B =,∴sin sin sin abC A B=2sin sin c C C ⎛⎫= ⎪⎝⎭1c =. 【点睛】本题考查利用解三角形,属于基础题. 28.(1)2[2,2],33k k k Z ππππ-++∈;(2)最小值为1- 【解析】 【分析】(1)先利用平面向量数量积的坐标运算律以及辅助角公式得出()2sin 6f x x π⎛⎫=- ⎪⎝⎭,然后解不等式()22262k x k k Z πππππ-+≤-≤+∈可得出函数()y f x =的单调递减区间;(2)由0,2x π⎡⎤∈⎢⎥⎣⎦得出6x π-的取值范围,然后再利用正弦函数的性质得出函数()y f x =的最大值和最小值.【详解】 (1)()3sin ,1a x =-,()1,cos b x =,()1cos 2cos 2sin cos cos sin 266f x x x x x x x ππ⎫⎛⎫∴=-=-=-⎪ ⎪⎪⎝⎭⎝⎭2sin 6x π⎛⎫=- ⎪⎝⎭,解不等式()2222k x k k Z ππππ-+≤≤+∈,得()22233k x k k Z ππππ-+≤≤+∈, 因此,函数()y f x =的单调递增区间为2[2,2],33k k k Z ππππ-++∈; (2)02x π≤≤,663x πππ∴-≤-≤,所以,函数()y f x =在区间0,2π⎡⎤⎢⎥⎣⎦上单调递增,则()min 2sin 16f x π⎛⎫=-=- ⎪⎝⎭,()max 2sin 2sin 263f x πππ⎛⎫=-== ⎪⎝⎭因此,函数()y f x =在区间0,2π⎡⎤⎢⎥⎣⎦上的最小值为1-【点睛】本题考查三角函数的单调性与最值,考查平面数量积的坐标运算,解这类问题首先要利用三角三角恒等变换公式将三角函数解析式化简,并将角视为一个整体,利用正弦函数或余弦函数的基本性质求解,考查分析问题和解题问题的能力,属于中等题.29.(1)()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,()62k x k Z ππ=+∈;(2)522a ≤<,3π.【解析】 【分析】(1)根据图像得A=2,利用412562T πππω=-=,求ω值,再利用6x π=时取到最大值可求φ,从而得到函数解析式,进而求得对称轴方程;(2)由0,2x π⎡⎤∈⎢⎥⎣⎦得72,666x πππ⎡⎤+∈⎢⎥⎣⎦,方程f (x )=2a ﹣3有两个不等实根转为f (x )的图象与直线y =2a ﹣3有两个不同的交点,从而可求得a 的取值范围,利用图像的性质可得12x x +的值. 【详解】(1)由图知,2,A =4156242=T ππππω=-=,解得ω=2,f(x)=2sin(2x+φ), 当6x π=时,函数取得最大值,可得2sin 226πϕ⎛⎫⨯+= ⎪⎝⎭,即sin 13πϕ⎛⎫+= ⎪⎝⎭,2,32k k Z ππϕπ+=+∈,解得2,6k k Z πϕπ=+∈ ,又(0,)2πϕ∈所以6π=ϕ, 故()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,令262x k πππ+=+则()62k x k Z ππ=+∈, 所以()f x 的对称轴方程为()62k x k Z ππ=+∈; (2)70,2,2666x x ππππ⎡⎤⎡⎤∈∴+∈⎢⎥⎢⎥⎣⎦⎣⎦,所以方程()23f x a =-有两个不等实根时,()y f x =的图象与直线23y a =-有两个不同的交点,可得1232,a ≤-<522a ∴≤<, 当0,2x π⎡⎤∈⎢⎥⎣⎦时,()()12f x f x =,有122266x x πππ+++=,故123x x π+=.【点睛】本题考查由y =A sin (ωx +φ)的部分图象确定函数解析式,考查函数y =A sin (ωx +φ)的图象及性质的综合应用,属于中档题.30.(Ⅰ) (),,36ππππ⎡⎤-+∈⎢⎥⎣⎦k k k Z (Ⅱ) 62ππ≤≤m【解析】 【分析】(Ⅰ)利用二倍角的正弦公式、二倍角的余弦公式以及两角和与差的正弦公式将函数()f x 化为π2sin 216x ⎛⎫++ ⎪⎝⎭,利用正弦函数的单调性解不等式,可得到函数()f x 的递增区间;(Ⅱ) 要使得()f x 在π,6m ⎡⎤-⎢⎥⎣⎦上的值域为[]0,3,即πsin 26x ⎛⎫+ ⎪⎝⎭在π,3m ⎡⎤-⎢⎥⎣⎦上的值域为112⎡⎤-⎢⎥⎣⎦,,可得7 2266m πππ≤+≤,从而可得结果.【详解】(Ⅰ)()22f x cos x =+πcos212sin 216x x x ⎛⎫=+=++ ⎪⎝⎭,由()222,262k x k k Z πππππ-≤+≤+∈得(),36k x k k Z ππππ-≤≤+∈所以,()f x 的单调递增区间是(),,36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦(Ⅱ)由(Ⅰ)知()π2sin 216f x x ⎛⎫=++ ⎪⎝⎭.因为π,6x m ⎡⎤∈-⎢⎥⎣⎦,所以π2,2666x m ππ⎡⎤+∈-+⎢⎥⎣⎦.要使得()f x 在π,6m ⎡⎤-⎢⎥⎣⎦上的值域为[]0,3,即πsin 26x ⎛⎫+ ⎪⎝⎭在π,3m ⎡⎤-⎢⎥⎣⎦上的值域为112⎡⎤-⎢⎥⎣⎦,. 所以72266m πππ≤+≤,即62m ππ≤≤. 【点睛】本题主要考查二倍角公式、辅助角公式的应用以及三角函数的单调性、三角函数的值域,属于中档题. 函数sin()y A x ωϕ=+的单调区间的求法:若0,0A ω>>,把x ωϕ+看作是一个整体,由22k x ππωϕ+≤+≤()322k k Z ππ+∈求得函数的减区间,2222k x k πππωϕπ-+≤+≤+求得增区间.。

三角函数10道大题(带答案)

三角函数10道大题(带答案)

三角函数10道大题(带答案)三角函数1.已知函数$f(x)=4\cos x\sin(x+\frac{\pi}{6})+\sin(2x-\frac{\pi}{4})+2\cos2x-1,x\in R$。

Ⅰ)求$f(x)$的最小正周期;Ⅱ)求$f(x)$在区间$[-\frac{\pi}{4},\frac{\pi}{4}]$上的最大值和最小值。

2.已知函数$f(x)=\tan(2x+\frac{\pi}{4}),x\in R$。

Ⅰ)求$f(x)$的定义域与最小正周期;II)设$\alpha\in(\frac{\pi}{4},\frac{\pi}{2})$,若$f(\alpha+\frac{\pi}{4})=2\cos2\alpha$,求$\alpha$的大小。

3.已知函数$f(x)=\frac{(sinx-cosx)\sin2x}{\sin x}$。

1)求$f(x)$的定义域及最小正周期;2)求$f(x)$的单调递减区间。

4.设函数$f(x)=\frac{2\pi\cos(2x+\frac{\pi}{4})+\sin2x}{24}$。

Ⅰ)求函数$f(x)$的最小正周期;II)设函数$g(x)$对任意$x\in R$,有$g(x+\pi)=g(x)$,且当$x\in[0,\frac{\pi}{2}]$时,$2\pi g(x)=1-f(x)$,求函数$g(x)$在$[-\pi,0]$上的解析式。

5.函数$f(x)=A\sin(\omega x-\frac{\pi}{6})+1(A>0,\omega>\frac{\pi}{6})$的最大值为3,其图像相邻两条对称轴之间的距离为$\frac{\pi}{2}$。

1)求函数$f(x)$的解析式;2)设$\alpha\in(0,\frac{\pi}{2})$,则$f(\alpha)=2$,求$\alpha$的值。

6.设$f(x)=4\cos(\omega x-\frac{\pi}{6})\sin\omegax+\cos2\omega x$,其中$\omega>0$。

三角函数公式练习题及答案详解

三角函数公式练习题及答案详解

三角函数公式1. 同角三角函数基本关系式sin 2α+cos 2α=1sin αcos α=tan α tan αcot α=12. 诱导公式 (奇变偶不变,符号看象限)(一) sin(π-α)=___________ sin(π+α)= ___________cos(π-α)=___________ cos(π+α)=___________tan(π-α)=___________ tan(π+α)=___________sin(2π-α)=___________ sin(2π+α)=___________cos(2π-α)=___________ cos(2π+α)=___________tan(2π-α)=___________ tan(2π+α)=___________(二) sin(π2 -α)=____________ sin(π2+α)=____________ cos(π2 -α)=____________ cos(π2+α)=_____________ tan(π2 -α)=____________ tan(π2+α)=_____________ sin(3π2 -α)=____________ sin(3π2+α)=____________ cos(3π2 -α)=____________ cos(3π2+α)=____________ tan(3π2 -α)=____________ tan(3π2+α)=____________ sin(-α)=-sin α cos(-α)=cos α tan(-α)=-tan α公式的配套练习sin(7π-α)=___________ cos(5π2-α)=___________ cos(11π-α)=__________ sin(9π2+α)=____________ 3. 两角和与差的三角函数cos(α+β)=cos αcos β-sin αsin βcos(α-β)=cos αcos β+sin αsin βsin (α+β)=sin αcos β+cos αsin βsin (α-β)=sin αcos β-cos αsin βtan(α+β)= tan α+tan β1-tan αtan βtan(α-β)=tan α-tan β1+tan αtan β 4. 二倍角公式sin2α=2sin αcos αcos2α=cos 2α-sin 2α=2 cos 2α-1=1-2 sin 2αtan2α=2tan α1-tan 2α5. 公式的变形(1) 升幂公式:1+cos2α=2cos 2α 1—cos2α=2sin 2α(2) 降幂公式:cos 2α=1+cos2α2 sin 2α=1-cos2α2(3) 正切公式变形:tan α+tan β=tan(α+β)(1-tan αtan β)tan α-tan β=tan(α-β)(1+tan αtan β)(4) 万能公式(用tan α表示其他三角函数值)sin2α=2tan α1+tan 2α cos2α=1-tan 2α1+tan 2α tan2α=2tan α1-tan 2α6. 插入辅助角公式asinx +bcosx=a 2+b 2 sin(x+φ) (tan φ= b a) 特殊地:sinx ±cosx = 2 sin(x ±π4) 7. 熟悉形式的变形(如何变形)1±sinx ±cosx 1±sinx 1±cosx tanx +cotx1-tan α1+tan α 1+tan α1-tan α若A 、B 是锐角,A+B =π4 ,则(1+tanA )(1+tanB)=2 cos αcos2αcos22α…cos2 n α= sin2 n+1α 2 n+1sin α8. 在三角形中的结论(如何证明)若:A +B +C=π A+B+C 2 =π2tanA +tanB +tanC=tanAtanBtanCtan A 2 tan B 2 +tan B 2 tan C 2 +tan C 2 tan A 2=19.求值问题(1)已知角求值题如:sin555°(2)已知值求值问题常用拼角、凑角如:1)已知若cos(π4 -α)=35 ,sin(3π4 +β)=513, 又π4 <α<3π4 ,0<β<π4,求sin(α+β)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数经典练习题1.在直角三角形中,两锐角为A 、B ,则B A sin sin (B ) A .有最大值21和最小值0 B .有最大值21,但无最小值 C .既无最大值也无最小值 D .有最大值1,但无最小值提示:A A A B A 2sin 21cos sin sin sin ==,注意到角度的取值范围,所以选B . 2.已知集合{|cos sin 02}E θθθθπ=<≤≤,,}sin tan |{θθθ<=F ,则F E I 是区间(A ) A .)2(ππ,B .)434(ππ,C .)23(ππ,D .)4543(ππ,提示:即}sin tan |{}454|{θθθπθπθ<<<I ,所以选A . 3.函数22()sin ()sin ()44f x x x ππ=+--是(B ) A .周期为π的偶函数 B .周期为π的奇函数 C .周期为2π的偶函数D .周期为2π的奇函数 提示:2222()sin ()sin ()cos ()sin ()cos(2)44442f x x x x x x πππππ=+--=---=-=sin 2x ,所以选B . 4.函数)22cos(π+=x y 的图象的一条对称轴方程为(B )A .2π-=xB .4π-=xC .8π=xD .π=x提示:对应的x 的值应该使得函数取得最值,所以选B .5.函数)323)(arccos(sin ππ<<-=x x y 的值域为(B )A .)656(ππ,B .5[0)6π,C .)323(ππ,D .)326(ππ,提示:sin (1]2x ∈-,再由arccos (1]2u u ∈-,得,所以选B . 6.下列函数中以2π为周期的函数是(D ) A .x x y 4cos 2sin += B .x x y 4cos 2sin = C .x x y 2cos 2sin += D .x x y 2cos 2sin =提示:D 中x x x y 4sin 212cos 2sin ==,且用定义可以检验得其余都不满足,所以选D . 7.在直角坐标系中,曲线C 的方程是x y cos =,将曲线C 沿向量)22(ππ,-=→a 平移,则平移后的曲线方程是(B ) A .2sin //π+=x y B .2sin //π+-=x y C .2sin //π-=x y D .2sin //π--=x y提示:2/π-=x x ,2/π+=y y ,解出y x 、代入已知式化简得,所以选B .8.函数)43cos(3)43sin(4ππ+++=x x y 的最小正周期是(C )A .π6B .π2C .32π D .3π提示:)43sin(5ϕπ++=x y ,所以选C .9.已知θ是第三象限的角,且95cos sin 44=+θθ,那么=θ2sin (A ) A .322 B .322-C .32 D .32-提示:θ2在第一.二象限,∴02sin >θ,由95cos sin 2)cos (sin 22222=-+θθθθ,解得982sin 2=θ,取算术根即得,所以选A . 10.使得33)32tan(=+πx 成立,且∈x )20[π,的x 个数是(B ) A .5B .4C .3D .2提示:函数tan(2)3y x π=+的周期为2π,因此在4个周期长的区间里使33)32tan(=+πx 的x 必有4个,所以选B .11.若α是第三象限的角,且2524sin -=α,则=2tan α(D )A .34B .43 C .43-D .34-提示:257cos -=α,ααααααcos 1sin 2cos 22cos2sin22tan 2+==,代入求得,所以选D .12.当22ππ≤≤-x 时,函数x x x f cos 3sin )(+=的(D )A .最大值是1,最小值是1-B .最大值是1,最小值是21-C .最大值是2,最小值是2-D .最大值是2,最小值是1-提示:)3sin(2)(π+=x x f ,且22ππ≤≤-x ,所以选D .13.函数x x y 2cos )23sin(+-=π的最小正周期是(B )A .2π B .πC .π2D .π4提示:用诱导公式.和.差角公式得12cos)122cos(22cos )62cos(πππ+=++=x x x y ,所以选B .14.已知点P (αααtan cos sin ,-)在第一象限,则在]20[π,内α的取值范围是(B ) A )45()432(ππππ,,Y B .)45()24(ππππ,,Y C .)2345()432(ππππ,,Y D .)43()24(ππππ,,Y提示:0tan cos sin >>ααα,,且在指定范围内,利用三角函数线分析,选B .15.若)22(cot tan sin παπααα<<->>,则∈α(B )A .)42(ππ--,B .)04(,π-C .)40(π,D .)24(ππ,提示:即在)02(,π-内ααcot tan >,所以选B .16.已知βαsin sin >,那么下列命题成立的是(D )A .若βα、是第一象限的角,则βαcos cos >B .若βα、是第二象限的角,则βαtan tan >C .若βα、是第三象限的角,则βαcos cos >D .若βα、是第四象限的角,则βαtan tan >提示:当βα、是第四象限的角时,由已知可设112απα-=k ,212k βπβ=-,其中1102παβ<<<,由诱导公式和正切函数的单调性知11tan tan αβ>,即βαtan tan >,所以选D .17.函数xx y cos sin 21++=的最大值是(B )A .122- B .122+ C .221-D .221--提示:)4sin(221π++=x y ,所以选B .18.设βα、是一个钝角三角形的两个锐角,下列四个不等式中不正确的是(D )A 1tan tan <βαB .2sin sin <+βαC .1cos cos >+βαD .2tan )tan(21βαβα+<+提示:20πβα<+<,∴12tan 0<+<βα,=+-+2tan 2)tan(βαβα02tan 12tan 2tan 2)12tan 11(2tan 2222>+-+⨯+=-+-+βαβαβαβαβα,所以选D . 19.振动量)32sin(3π+=x y 的周期.振幅依次是(A )A .34,πB .34-,πC .3,πD .3-,π提示:由概念知振幅为3,由212π得周期,所以选A .20.若A .B 是锐角△ABC 的两个内角,则点P )cos sin sin (cos A B A B --,在(B ) A .第一象限 B .第二象限C .第三象限D .第四象限提示:2π>+B A ,∴022>->>A B ππ,∴A A B cos )2sin(sin =->π,同理B A cos sin >,所以选B . 21.若40πβα<<<,a =+ααcos sin ,b =+ββcos sin ,则(B )A .b a >B .b a <C .1<abD .1>ab提示:)4sin(2πα+=a ,)4sin(2πβ+=b ,由正弦函数的单调性得,所以选B .22.下列命题中正确的命题是(D )A .若点P )0)(2(≠a a a ,为角α终边上的一点,则552sin =αB .同时满足1sin cos 2αα==, C .当1||<a 时,)tan(arcsin a 的值恒正 D .满足条件3)3tan(=+πx 的角的集合是∈=k k x x ,π|{Z }提示:由3)3tan(=+πx ,得33πππ+=+k x ,所以选D .23.若0cos sin >θθ,则θ在(B )A .第一.二象限B .第一.三象限C .第一.四象限D .第二.四象限提示:θsin 与θcos 同号,所以选B .24.在△ABC 中,若C A B sin sin cos 2=,则△ABC 的形状一定是(C ) A .等腰直角三角形 B .直角三角形 C .等腰三角形 D .等边三角形提示:∵π=++C B A ,∴)sin(sin cos 2B A A B +=,展开化简得0)sin(=-B A ,所以选C .25.设)(t f y =是某港口水的深度y (米)关于时间t (时)的函数,其中240≤≤t .下表是该港口某经长期观察,函数)(t f y =的图象可以近似地看成函数)sin(ϕω++=t A k y 的图象.下面的函数中,最能近似表示表中数据间对应关系的函数是(A )A .]24,0[,6sin 312∈+=t t y πB .]24,0[),6sin(312∈++=t t y ππC .]24,0[,12sin312∈+=t t y πD .]24,0[),212sin(312t t y ππ++=提示:当0=t 时,有12y =,3=t 时,15≈y ,这只有A 适合,故选A .26.已知⎪⎭⎫ ⎝⎛+==4tan ,2cos ,2sin πααα则b a 的值为(D )A .b a b a +-+11+ B .11-++-b a b a C .ba +1 D .a b-1提示:已知条件中的角度是欲求式中角度的2倍,能否整体利用已知条件进行变换是解题的一个思考点:⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+4cos 24cos 4sin 24cos 4sin 4tan 2παπαπαπαπαπα=ααπαπα2sin 12cos 42cos 142sin -=⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+.1a b -=27.00165cos 15sin 的值等于(B ) A .41 B .41-C .21D .21-提示:即00030sin 21)15cos (15sin -=-.28.下列等式正确的是(D )A .ααsin )180sin(-=+-oB .ααπ22sin )(sin -=+C .)cos()cos(βαβα--=+-D .απαtan )tan(=-提示:)tan()tan(αππα--=-.29.若ΔABC 内角满足0sin tan <-A A ,0cos sin >+A A ,则角A 的取值范围是(C ) A .)40(π,B .)24(ππ,C .)432(ππ,D .)43(ππ,提示:已知0)cos 1(tan <-A A ,∴0tan <A ,又0)4sin(2>+πA ,综合得.30.函数)3cos(3)(θ-=x x f 是奇函数,则θ的一个值是(D ) A .πB .6π C .3π D .2π-提示:x x 3sin 3))2(3cos(3-=--π.31.函数x x y tan cos =)(ππ<<-x 的大致图像是(C )提示:02≤<-x π时,x y sin -=,20π<<x 时,x y sin =.32.给出下列三角函数:①)34sin(ππ+n ; ②)62cos(ππ+n ;③)32sin(ππ+n ; ④]6)12cos[(ππ-+n ;⑤)](3)12sin[(Z n n ∈-+ππ;其中函数值为3sin π的是(C )A .①②B .①③④C .②③⑤D .①③⑤提示:根据诱导公式逐一检验得,或对于n 取一系列特殊值检验.33.若θθπ,53)sin(-=+是第二象限角,φφπ,552)2sin(-=+是第三象限的角,则)cos(φθ-的值是(B ) A .55- B .55 C .25511 D .5提示:即53sin =θ,552cos -=φ,求得54cos -=θ,55sin -=φ.34.设一个半径为10的水轮,水轮的圆心距水面为7,已知水轮每分钟旋转4圈,水轮上的点P 到水面的距离y 与时间x (秒)之间满足函数关系7)sin(++=ϕωx A y ,若0>ω,则其中的(A ) A .10152==A ,πω B .10215==A ,πω C .171522==A ,ωD .17152==A ,πω提示:A=10,转动的频率为151=f (圈/秒),∴周期151==f T ,而ωπ2=T ,故得.35.函数)0)(cos()sin()(>++=ωφωφωx x x f 以2为最小正周期,且能在x=2时取最大值,则φ的一个值是(A ) A .43π-B .45π-C .47π D .2π提示:)22sin(21)(φω+=x x f ,且222=ωπ,∴2πω=,反代即得. 36.函数22sin =x 是1tan =x 成立的(D )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分又不必要条件提示:注意角的取值范围变化.37.函数25cos 32cos 21+-=x x y 的最小值为(B ) A .2B .0C .41D .41-提示:25cos 3)1cos 2(212+--=x x y ,∴2cos 3cos 2+-=x x y ,且1|cos |≤x . 38.将函数))(6sin(R x x y ∈+=π的图像上所有的点向左平行移动4π个单位长度,再把图像上各点的横坐标扩大到原来的2倍(纵坐标不变),则所得到的解析式为(B )A .)1252sin(π+=x y B .)1252sin(π+=x y C .)122sin(π-=x y D .)2452sin(π+=x y提示:左移得)64sin(ππ++=x y ,即)125sin(π+=x y ,再将x 变为2x.39.函数44()tan (cos sin )22x xf x x =-的最小正周期是(A ) A .2πB .πC .2πD .4π提示:()tan cos sin (,)2f x x x x x k k Z ππ==≠+∈,选A .40.已知,1)cos(,31sin -=+=βαα则=+)2sin(βα _______.[答案]31-提示:)](sin[)2sin(βααβα++=+.41.设x x t sin cos +=,若0cos sin 33<+x x ,则实数t 的取值范围是___________.[答案]02<≤-t 提示:对已知的第一式平方,变形得21cos sin 2-=t x x ,且22≤≤-t ,而第二式即0)cos sin 1)(cos (sin <-+x x x x ,∴0)211(2<--t t ,即0)3(2>-t t ,∴03<<-t ,或3>t ;综合得02<≤-t .42.函数x x y 2cos )23cos(--=π的最小正周期为 __________.[答案]π提示:)32cos(2sin 232cos 212cos 2sin 232cos 21π-=+=-+=x x x x x x y . 43.关于三角函数的图像,有下列命题:①x y sin =与x y sin =的图像关于y 轴对称; ②)cos(x y -=与x y cos =的图像相同;③x y sin = 与)sin(x y -=的图像关于y 轴对称;④ x y cos =与)cos(x y -=的图像关于轴对称;其中正确命题的序号是 ___________.[答案]②④ 提示:逐一作图判断. 44.已知一扇形的中心角为α,其所在的圆的半径为R .(1)若060α=,R=10cm ,求扇形的弧长及该弧所在的弓形的面积;(2)若扇形的周长为定值p ,当α为多少弧度时,该扇形有最大的面积?这一最大面积是多少?[解析]计算弧长和扇形面积都存在有由角度和弧度制表示的两种公式,显然,用弧度表示的相应公式易于记忆、便于使用,其核心公式是周长公式(2)C r π=和圆的面积公式21(2)2S r π=,对于一般扇形,作相应的计算只需将两个核心公式中的2π换之以扇形的圆心角的弧度数α即可:(1)设弧长为l ,弓形面积为S 弓,则∵0603πα==,R=10,∴10()3l cm π=,211011010sin 2323S S S ππ∆=-=⨯⨯-⨯弓扇250()3cm π=;(2)∵扇形周长22p R l R R α=+=+,∴2pR α=+, ∴222111()422224p p S R ααααα===⨯+++扇,由44αα+≥,得216p S ≤扇,∴当且仅当4αα=,即2α=时,扇形取得最大面积216p .45.已知)35tan(1)35tan(1)]104tan(31[sin )(000---++-+=x x x x x f ,求)50(0f .[解答]015tan 115tan 1)190tan 31(50sin )50(-+++=f000015tan 45tan 115tan 45tan )10tan 60tan 1(50sin -+++=0000000060tan )10cos 60cos 10sin 60sin 10cos 60cos (50sin ++= =31310cos 50cos 50sin 2310cos 2150cos 50sin 000000+=+=+. 46.已知函数)0(3cos >-=b x b a y 的最大值为23,最小值为21-,求函数bx a y 3sin 4-=的单调区间、最大值和最小正周期.[解答]由已知条件得⎪⎪⎩⎪⎪⎨⎧-=-=+;,2123b a b a 解得⎪⎩⎪⎨⎧==;,121b a ∴x y 3sin 2-=,其最大值为2,最小正周期为32π, 在区间[326326ππππk k ++-,](Z k ∈)上是增函数,在区间[322326ππππk k ++,](Z k ∈)上是减函数. 47.已知,32tan ,31tan -==βα求βαβαβα22cos sin )sin()sin(-+的值. [解答]利用和角、差角公式展开,并借助分式的性质,分子分母同除以βα22cos cos 可得原式=αβαβαβαβα2222222tan tan tan cos sin )sin (cos )cos sin -=-(=1)2(1)3132(1)tan tan (1222-=--=--=-αβ.48.已知βαtan ,tan 是方程0342=--mx x 的两个根. (1)证明对于任意实数m ,都有βαβαcos cos 4)cos(=+; (2)若32)tan(2-=+m βα,求实数m 的值. [解答](1)3tan tan ,4tan tan -==+βαβαm Θ,3cos sin cos sin ,4cos sin cos sin -=⨯=+∴ββααββααm , 即βαβαβααββαcos cos 3sin sin ,4cos cos cos sin cos sin -==+m ,βαβαβαβαβαcos cos 4sin sin cos cos ,cos cos 4)sin(=-=+m ,即βαβαcos cos 4)cos(=+;(2)由(1)可得m =+)tan(βα,∴m m =-322,即0322=--m m ,∴1-=m ,或23=m . 49.已知R a a x x x f ∈++=.(2sin 3cos 2)(2为常数) (1)若,R x ∈求)(x f 的单调递增区间;(2)若]20[π,∈x 时,)(x f 最大值为4,求a 的值.[解答](1)1)62sin(22sin 32cos 1)(+++=+++=a x a x x x f π,当时,226222πππππ+≤+≤-k x k 为单调增函数)(x f , 即当)(63x f k x k 时,ππππ+≤≤-为单调增函数, 同理,当为单调减函数时,+)(326x f k x k ππππ+≤≤;(2)当1,412)(6=∴=++=a a x f x 有最大值时,π.50.如图扇形AOB 的半径为1,中心角为060,PQRS 是扇形的内接矩形,问P 在怎样位置时,矩形PQRS的面积最大?并求出这个最大值.[解答]设∠)60,0((,00∈=x x AOP ), 则060cot sin cos ,sin x x RS x PS -==,x x x x x S 20sin 332sin 21sin )60cot sin (cos -=-=∴ 63)2sin(3322cos 1332sin 21-+=--=φx x x ,其中33tan =φ,所以当,9020=+φx 即030=x 时S 有最大值6333-. 51.判定函数⎪⎭⎫ ⎝⎛-+=x x y sin sin 1log 221的奇偶性,并求函数的最值.[解析] 判断函数的奇偶性,先看定义域,然后考查f(x)同f(-x)是否具有相等或相反的关系,为方便运算,常常根据题目本身的特点而转化,为考查)()(x f x f -±是否为0,甚至也可考查)(x f 与)(x f -的比值,观察本题的特点是对数函数,不妨先考查)()(x f x f +-,求最值时若注意到sin x 的有界性以及函数的单调性,则最值易求:Θ函数⎪⎭⎫ ⎝⎛-+=x x x f sin sin 1log )(221的定义域为R ,又⎪⎭⎫ ⎝⎛++=+-x x x f x f sinsin 1log )()(221+.01log sinsin 1log 21221==⎪⎭⎫ ⎝⎛-+x x .)(),()(为奇函数即函数x f x f x f -=-∴令],1,1[sin -∈=x t上是单调递减函数,在是单调递减函数]1,1[1,log 221--+==t t u u y Θ ⎪⎭⎫⎝⎛-+=t t y 2211log 则在[-1,1]上是增函数.()()12log 12log 1221max +=-==∴y t 时,当,()()12log 12log 1221min -=+=-=y t 时,当.[点评] (1)函数定义域关于原点对称是判定函数奇偶性的必要条件;(2)要掌握利用函数单调性求函数最值的方法. 52.已知函数()().,0,2sin225sin21πθθθθ∈+-=f (1)将()θf 表示为θcos 的多项式;(2)求曲线k k y +=θcos 与()θf y =至少有一个公共点的实数k 的取值.(注)sin 4sin 33sin :3θθθ-=.[解析] 这是一道带指令性的三角形问题,欲()θf 为关于θcos 的多项式,必须考虑去分母,这就需要在做出一定变换之后,能够约分,注意到,2225,3225,22θθθθθθθθθ=-=+=+有下列解法:(1)()θθθθθθθθθθsin 225sin 225sin 21212cos 2sin 22cos 25sin21⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛++-=+-=f ()θθθsin 2sin 3sin 2121++-θθθθθθθcos sin 22321sin 2cos sin 2sin 4sin 32123+-+-=+-+-=• ();1cos cos 2cos cos 12122-+=+--=θθθθ(2)令()()1,1,,0,cos -∈∈=t t πθθ .122-+=+t t k kt Θ ()()t k t k t ,01122=+--+∴=-1(舍),或.21+=k t 则-1<21+k <1,-3<k <1.[点评]第(1)问的求解方程不止上面给出的一种,还可以尝试通分后用和差化积变分子的方法去做;而第(2)问也可以由一元二次方程的实根分布理论来指导求解.53.如图,在矩形ABCD 中,1AB =,BC =,此矩形沿地面上一直线滚动,在滚动过程中始终与地面垂直,设直线BC 与地面所成角为θ,矩形周边上最高点离地面的距离为()f θ.求:(1)θ的取值范围; (2)()f θ的解析式; (3)()f θ的值域.[解答](1)BC 与地面所成的角,就是直线与平面所成的角的范围为[0,]2π.(2)连BD ,则6DBC π∠=,过D 作地面的垂线,垂足为E ,在Rt BDE ∆中,6DBE πθ∠=+,2DB =,()2sin()(0)62f ππθθθ∴=+≤≤.(3)()2sin()(0)62f ππθθθ=+≤≤,2663πππθ≤+≤Q,1sin()126πθ∴≤+≤,即()f θ的值域为[1,2].54.已知奇函数()f x 的定义域为实数集R ,且()f x 在[)0,+∞上是增函数.是否存在这样的实数m ,使()()()cos2342cos 0f f m m f θθ-+->对所有的0,2πθ⎡⎤∈⎢⎥⎣⎦均成立?若存在,求出适合条件的实数m 的值或范围;若不存在,说明理由. [解答]()f x Q 为奇函数,()00f ∴=.()()()cos2342cos 0f f m m f θθ-+->Q ,()()cos2342cos f f m m θθ∴->--,即()()cos232cos 4f f m m θθ->-. ()f x Q 在[)0,+∞上是增函数,且()f x 为奇函数, ()f x ∴在(),-∞+∞上也为增函数.cos232cos 4m m θθ∴->-,即22cos 42cos 4m m θθ->-,即2cos cos 220m m θθ-+->.[]0,,cos 0,12πθθ⎡⎤∈∴∈⎢⎥⎣⎦Q .令[]cos ,0,1t t θ=∈,则满足条件的m 应该使不等式2220t mt m -+->对任意的[]0,1t ∈均成立.设()222222224m mg t t mt m t m ⎛⎫=-+-=--+- ⎪⎝⎭,则()0,200,m g ⎧<⎪⎨⎪>⎩或01,20,2m m g ⎧≤≤⎪⎪⎨⎛⎫⎪> ⎪⎪⎝⎭⎩或()1,210,m g ⎧>⎪⎨⎪>⎩,解之得42m -<≤,或2m >,故满足条件的m存在,取值范围是()4-+∞.55.在∆ABC 中,0,,,CB AC a b c =u u u r u u u rg 为角A,B,C 所对的三条边.(1)求t=sinA+sinB 时,t 的取值范围;(2)化简()()()222a b c b c a c a b abc+++++(用(1)中t 表示).[解答](1)0,,CB AC CB AC ABC =∴⊥∴∆u u u r u u u r u u u r u u u r Q g 为直角三角形,2A B π∴∠+∠=,又sin sin sin cos 4A B A A A π⎛⎫+=+=+ ⎪⎝⎭,30,,124444A A A πππππ⎛⎫<<∴<+<∴<+≤ ⎪⎝⎭Q .(2)cos ,sin ,b c A a c A ==Q()()()222a b c b c a c a b abc+++++∴()()()222223sin cos cos sin sin cos sin cos c A c A c c A c A c c c A c A c A A+++++=2222sin cos sin cos sin cos sin cos sin cos A A A A A A A A A A+++++=1sin cos sin cos sin cos A AA A A A++=++(22122,1112t t t t t t t t t +-+=+=+=∈--- . 56.等比数列{}n a 中,23sin cos ,1sin 2a a ααα=+=+,其中2παπ<<.(1)问:132sin 2cos 422αα-+是数列{}n a 的第几项? (2)若()4tan 3πα-=,求数列{}n a 的前n 项和n S .[解答](1)设数列{}n a 的公比是q ,则有()2sin cos 1sin 2sin cos sin cos sin cos q ααααααααα++===+++所以211a a q==, 从而通项()1sin cos n n a αα-=+.又()()21312sin 2cos44sin 2cos431sin 2222ααααα-+=-+=+()45sin cos a αα=+=, 故132sin 2cos 422αα-+是数列{}n a 的第5项.(2)()44tan ,tan 33παα-=∴=-Q ,又2παπ<<,可得43sin ,cos 55αα==-,于是1sin cos 5q αα=+=,即115n n a -⎛⎫= ⎪⎝⎭,1111511155445n n n S --⎛⎫⎛⎫∴=+++=- ⎪⎪⎝⎭⎝⎭L .57.已知函数sin cos y a x b x c =++的图像上有一个最低点11,16π⎛⎫⎪⎝⎭,如果图像上每点纵坐标不变,横坐标缩短到原来的3π倍,然后向左平移1个单位可得()y f x =的图像,又知()3f x =的所有正根依次为一个公差为3的等差数列,求()f x 的解析式,最小正周期和单调减区间.[解答]()sin cos .y a x b x c x c ϕ=++=++(其中ϕ满足tan ,abϕϕ=与点(),a b 同象限),由于11,16π⎛⎫ ⎪⎝⎭是图像上最低点,所以1172,2.,6231. 1.k k k Z c c ππϕπϕππ⎧⎧+=-=-∈⎪⎪⇒⎨⎪==-⎩所以()()71sin 21sin 33y c x k c c x c πππ⎛⎫⎛⎫=-+-+=--+ ⎪ ⎪⎝⎭⎝⎭, 将上述函数图像上每点纵坐标不变,横坐标缩短到原来的3π倍,然后向左平移1个单位可得()()()21sin 11sin ,63333y c x c c x c T πππππ⎡⎤=-+-+=-+∴==⎢⎥⎣⎦.由于()3f x =的所有正根依次成等差数列,即曲线()y f x =与直线3y =的相邻交点间的距离都相等,根据三角函数的图像和性质,直线3y =要么与曲线()y f x =相切,即过()f x 的最高点或最低点,要么过曲线的拐点,又11,16π⎛⎫⎪⎝⎭是图像上的最低点,故3y =与曲线()y f x =在最高点相切.当sin13x π=时,()213f x c =-=,所以2c =,此时周期应为公差3,这与上面已知周期6矛盾,故舍去.若过曲线的拐点,当sin 03x π=时,()3f x c ==,此时周期6恰为公差3的2倍,符合题意.所以()2sin33f x x π=+,由322,232k x k k Z πππππ+≤≤+∈得396622k x k +≤≤+,即函数()y f x =的减区间为396,6,22k k k Z ⎡⎤++∈⎢⎥⎣⎦.58.设函数=)(x f )4(sin )4tan(221cos 2cos 2224x x x x +-+-ππ,求函数)(x f 的最大值和最小正周期.[解析]虽然本题并没有要求我们化简所给函数的解析式,但可以看出化简是解决问题的一条必由之路.同样我们也不能预测化简的具体结果,但总的目标应该是相对清楚的,那就是设法不断地“化繁为简”.从函数解析式的结构看,首先可以想到的方法是“降低解析式的次数,减少所含的三角函数的名数”.原式)4cos()4sin(4)1cos 2()4(cos )4cos()4sin(2)1cos 4cos 4(2122224x x x x x x ---=-⋅--+-=πππππ x x x 2cos 21)22sin(22cos 2=-=π, 即最大值为21,最小正周期为π. 59.证明:x 2tan xx x 4cos 1)4cos 3(2cot 2-+=+.[解析]观察欲证等式两边,可以考虑遵循从左到右的“化切为弦”的证明路线,也可以考虑运用从右到左的“化倍角关系为单角关系”的证明思路.方法一:左边xx x x x x x x 22442222cos sin cos sin sin cos cos sin +=+=x xx x x 2sin 41cos sin 2)cos (sin 222222-+=)4cos 1(812sin 2112sin 412sin 211222x x x x --=-= x x x x 4cos 12cos 444cos 12sin 4822-+=--==-+=-++=xx x x 4cos 1)4cos 3(24cos 1)4cos 1(24右边;方法二:右边xx x x 2sin 2)2cos 22(22sin 2)4cos 12(2222+=++=xx x x x x x x x 2222222222cos sin 2)sin (cos )cos (sin cos sin 4)2cos 1(2--+=+==+=+=x x xx x x 222244cot tan cos sin 2)cos (sin 2左边. 60.已知函数2222)2tan 1(8sin )2tan 1(2tan 44sin 3sin 2)(x x x x x x x f +--+=,求该函数的定义域、最小正周期和最大、最小值.[解答]xx xx x x x f 2sec 8sin 4cos 2tan 44sin 34cos 1)(2-+-=)64sin(24sin 2cos 2sin 2)64sin(21ππ-=--+=x x x x x ,由sin80x ≠和tan2x 有意义知8()x k k Z π≠∈且2()2x l l Z ππ≠+∈,即函数的定义域为{|,}8k x R x k Z π∈≠∈,且)(x f 的最小正周期是2π,最大值是2,最小值是2-. 61.设0≥a ,π20<≤x ,已知函数b x a x x f +-=sin cos )(2的最小值和最大值分别是4-和0,求实数b a 、的值.[解析]这是一道三角函数最值问题的逆问题,可以按照求函数最值的思路求解,用b a 、表示出所求函数的最大值和最小值后,对照已知条件建立方程组求解.14)2(sin sin sin 1)(222++++-=+--=b a a x b x a x x f ,令x t sin =,则11≤≤-t ,且02≤-a,有14)2((22++++-=b a a t y ,10当021≤-≤-a,即20≤≤a 时,01422max =++==-=b a yy a t ,41min -=+-===b a y y t , 此时解得2=a ,2-=b ;20当12-<-a,即2>a 时,01max =+==-=b a y y t ,41min -=+-===b a y y t ,此时的解应该舍去;∴2=a ,2-=b 即为所求.62.有一农民在自留地里建造了一个长10m ,深0.5m ,横截面为等腰梯形的封闭式引水槽(如图所示).已知该引水槽侧面材料每m 2造价40元,底面材料每m 2造价50元,顶盖材料每m 2造价10元.(1)把建造引水槽的费用y (元)表示为引水槽的侧面与地面所成角∠DAE θ=的函数;(2)引水槽的侧面与地面所成的角θ为多大时,其材料费最低?最低的材料费是多少(精确到0.01,且取732.13=)?(3)按照题设条件,在引水槽的深度和横截面积及所用的材料不改变的情况下,将引水槽的横截面形状改变为正方形时的材料费与(2)中所求得的材料费相比较,哪一种设计所用的材料费更省?省多少?[解析]利用角θ逐一表示出引水槽的底、侧、盖的面积,再乘以相应的单位费用数即能得到总费用y .(1)作AH ⊥CD 于H ,则AH 21=,且∠ADH θ=,设AB x =,由AD=BC=θsin 21,DH 2cot θ=,∴)(2141CD AB AH S +⋅==,即12cot 2=⨯++θx x ,∴1010402105010⨯+⨯⨯+⨯=CD AD AB y2cot 1100sin 14002cot 1500θθθ+++-=θθθθsin cos 2200300)sin 42cot 46(100-⨯+=+-=, 即所求函数为θθθsin cos 2200300)(-⨯+=f ;(2)令θθsin cos 2-=u ,则2cos sin =+θθu ,D CθE A B62题图∴2)sin(12=++ϕθu ,由正弦函数的有界性得212≥+u ,∴412≥+u ,故3≥u ,从而3200300min +=y ,此时1)sin(=+ϕθ,由623arccos1arccos2πϕ==+=u u , 知∠EAD=3πθ=时,所用材料费最低,最低费用为4.646元;(3)若截面为正方形时,材料费7001002150021400)2121(1=⨯+⨯+⨯+=y 元, 两相比较知横截面为等腰梯形时所用材料费比横截面为正方形时所用的材料费要省53.6元.63.如图,ABCD 是一块边长为100m 正方形地皮,其中ATPS 是一半径为90m 的扇形小山,P 是弧TS上的一点,其余部分都是平地.现有一开发商想有平地上建造一个有边落在BC 与CD 上的长方形停车场PQCR ,求长方形停车场的面积的最大值和最小值. [解答]连结AP ,设∠PAB=θ,(0)2πθ<<,延长RP 交AB 于M ,则AM θcos 90=,MP θsin 90=,PQ=MB=AB-AM θcos 90100-=,PR=MR-MP θsin 90100-=,故矩形面积)cos 90100)(sin 90100()(θθθ--==f S θθθθcos sin 8100)cos (sin 900010000++-=,令t =+θθcos sin ,由21≤<t ,故得950)910(281002+-=t S , ∴当910=t 时,)(9502min m S =, 而当2=t 时,)(29000140502max m S -=.。

相关文档
最新文档