二次根式知识点归纳及题型总结-精华版
二次根式知识点详解与精点训练

次根式知识点一:二次根式的概念形如■ J (口工〔)的式子叫做二次根式。
在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须 注意:因为负数没有平方根,所以 “「一】是、・J 为二次根式的前提条件,如 , 1,■*' 1■■ ■''等是二次根式,而 J , 等都不是二次根式。
知识点二:取值范围1.二次根式有意义的条件:由二次根式的意义可知,当a ± 0时,■二 有意义,是二次根式。
所以要使二次根式有意义,只要使被开方数大于或等于零即可。
2.二次根式无意义的条件: 因负数没有算术平方根, 所以当a < 0时,■丿没有意义。
知识点三:二次根式(二二】)的非负性•“(:工〕)表示a 的算术平方根,也就是说, (山工'■)是一个非负数,即■■』 三0 ( * —)。
…三0「)这个性质和绝对值、偶次方类似。
这个性质在解答题目时应用较多, 如若 G ••八 ,则 a=0,b=0 ;若' I ' _ ,则 a=0,b=0 ;若,则a=0,b=0 。
1、不同点”与表示的意义是不同的,,'表示一个正数 a 的算术平方根的平方,而:表示一个实数a 的平方的算术平方根;在、… 中二--,而弋‘中a 可以 是正实数,0,负实数。
因而它的运算的结果是有差别的,if知识点四:二次根式(■')的性质(■—;)知识点五:二次根式的性质 知识点六:与「:一 即:一个非负数的算术平方根的平方等于这个非负数。
-a (YOj= |of| =的异同点2、相同点:都是非负数,即 — L 。
当被开方数都是非负数,即L . - L 时,知识点七:二次根式的运算(1) 因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的 算术平方根代替,从而移到根号外面; 如果被开方数是代数式和的形式,那么先分解因式,变形为积的形 式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2) 二次根式的加减法:先把二次根式化成最简二次根式,再合并同类二次根式. (3) 二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商) 仍作积(商)的被开方数并将运算结果化为最简二次根式.Vab = 4a •b ( a >0 b >0 ;(4) 有理数的加法交换律、结合律,乘法交换律及结合律,乘法对加法的分配律以及 多项式的乘法公式,都适用于二次根式的运算.本节中还要记住一些常见根式的约等数,常见的有.2 1.414; .3 1.732; ,5 2.236 ; 、7 2.646【主要题型】 二次根式有意义的条件:例:求下列各式有意义的所有 x 的取值范围。
第01讲 二次根式的概念(2个知识点+3类热点题型讲练+习题巩固)(解析版)

第01讲二次根式的概念课程标准学习目标①二次根式的定义②二次根式有无意义的条件1.掌握二次根式的定义,能够熟练判断二次根式。
2.掌握二次根式有无意义的条件,能够根据此条件熟练求值。
知识点01二次根式的定义1.二次根式的定义:一般地,我们把形如()0≥a a 的式子叫做二次根式。
其中叫做二次根号,a 叫做被开方数。
判断一个式子是不是二次根式需判断是不是含有二次根号以及被开方数是否大于等于0。
两者必须同时满足。
【即学即练1】1.下列各式中,一定是二次根式的是()A .B .C .D .【分析】根据二次根式的定义:一般地,我们把形如(a ≥0)的式子叫做二次根式.【解答】解:A .,被开方数是负数,二次根式无意义,故此选项不合题意;B .,三次根式,故此选项不合题意;C .,是二次根式,故此选项符合题意;D .,被开方数有可能是负数,二次根式无意义,故此选项不合题意;故选:C .知识点02二次根式有无意义的条件1.二次根式有意义的条件:二次根式有意义必须满足二次根式的被开方数大于等于0。
即a 中,a 。
注意:当二次根式存在在分母的位置时,被开方数只能大于零。
【即学即练1】2.若二次根式有意义,则x 的取值范围是()A .x ≥6B .x ≥﹣6C .x ≤﹣6D .x ≤6【分析】根据二次根式有意义的条件可得6+x ≥0,再解不等式即可.【解答】解:由题意得:6+x ≥0,解得:x ≥﹣6,故选:B .题型01判断二次根式【典例1】下列式子是二次根式的是()A .B .C .D .【分析】根据二次根式的定义:形如(a ≥0)的式子,逐一判断即可解答.【解答】解:A 、无意义,故A 不符合题意;B 、不是二次根式,故B 不符合题意;C 、是二次根式,故C 符合题意;D 、无意义,故D 不符合题意;故选:C .【变式1】若a 为任意实数,则下列各式中是二次根式的是()A .B .C .D .【分析】根据二次根式的定义逐个判断即可.【解答】解:A.当a<0时,不是二次根式,故本选项不符合题意;B.当a<﹣1时,不是二次根式,故本选项不符合题意;C.是二次根式,故本选项符合题意;D.当﹣1<a<1时,不是二次根式,故本选项不符合题意.故选:C.【变式2】已知:a、b均为实数,下列式子:①;②;③;④;⑤.其中是二次根式是个数有()个.A.1个B.2个C.3个D.4个【分析】根据二次根式的定义(根指数是2,被开方数是非负数)判断即可.【解答】解:二次根式有①③④,共3个,故选:C.【变式3】若是二次根式,则x的取值范围是x≥﹣3.【分析】根据被开方数是非负数,建立不等式求解即可.【解答】解:∵是二次根式,∴x+3≥0,解得:x≥﹣3,故答案为:x≥﹣3.【变式4】若是二次根式,则x的取值范围是()A.x为非负数B.x≠1C.x≥1D.x>1【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.【解答】解:根据题意得:x﹣1>0,解得x>1.故选:D.题型02根据二次根式有意义的条件求取值范围【典例1】若式子在实数范围内有意义,则实数x的取值范围是x≤1.【分析】根据二次根式有意义的条件,即可求解.【解答】解:根据题意得:﹣x+1≥0,解得:x≤1.故答案为:x≤1.【变式1】若式子有意义,则x的取值范围是x≥1且x≠2.【分析】根据二次根式有意义的条件和分式有意义的条件得出x﹣1≥0且x﹣2≠0,再求出答案即可.【解答】解:要使式子有意义,必须x﹣1≥0且x﹣2≠0,解得:x≥1且x≠2.故答案为:x≥1且x≠2.【变式2】若二次根式有意义,则x的取值范围是x<2.【分析】根据二次根式被开放数为非负数,分式的分母不为零求解即可.【解答】解:∵二次根式有意义,∴2﹣x>0,解得:x<2.故答案为:x<2.【变式3】若代数式有意义,则x的取值范围是x≥﹣1且x≠3.【分析】根据分式有意义时分母不等于0,二次根式有意义时被开方数大于或等于0列式求解即可.【解答】解:∵x+1≥0,∴x≥﹣1,∵,∴x≠3,∴x的取值范围是x≥﹣1且x≠3.故答案为:x≥﹣1且x≠3.【变式4】若,则()A.a≥6B.a≥0C.0≤a≤6D.a为一切正实数【分析】由二次根式可知要使有意义,则根号里面的数不能小于0,再进行列式计算即可.【解答】解:由题可知,,解得a≥6,故选:A.【变式5】若=在实数范围内成立,则x的取值范围是()A.x≥1B.x≥4C.1≤x≤4D.x>4【分析】根据二次根式有意义和分式有意义的条件进行判断即可.【解答】解:∵=在实数范围内成立,∴x﹣1≥0,x﹣4>0,∴x>4.故选:D.题型03利用二次根式有意义的条件求值【典例1】若,则a+b的值为()A.1B.0C.﹣1D.2【分析】根据二次根式有意义的条件得出2b﹣4≥0且4﹣2b≥0,求出b=2,再代入求出a=﹣1,最后求出a+b即可.【解答】解:要使有意义,必须2b﹣4≥0且4﹣2b≥0,解得:b=2,所以a=0+0﹣1=﹣1,即a+b=﹣1+2=1.故选:A.【变式1】若x,y都是实数,且y=,则x y的值是()A.﹣B.C.2D.﹣2【分析】根据二次根式有意义的条件求出x,y的值,再代入x y计算即可.【解答】解:由题意,得,解得x=,∴y=﹣1,∴x y=.故选:C.【变式2】如果实数a满足|2021﹣a|+=a.那么a﹣20212的值是()A.2022B.2021C.2020D.2019【分析】根据二次根式(a≥0)确定a的范围,然后进行计算即可解答.【解答】解:由题意得:a﹣2022≥0,∴a≥2022,∴2021﹣a<0,∴|2021﹣a|+=a,∴a﹣2021+=a,∴=2021,∴a﹣2022=20212,∴a﹣20212=2022,故选:A.【变式3】已知:,则(﹣x)y=﹣.【分析】根据二次根式为非负数,列不等式组可得x的值,进而得到y的值,代入求值即可.【解答】解:由题意得,解得x=,∴y=3,∴(﹣x)y=(﹣)3=﹣.【变式4】已知x、y为实数,且,求y﹣x2+17的值.【分析】根据二次根式有意义的条件得出,从而得出x、y的值,代入进行计算即可.【解答】解:根据题意得:,解得:x=4,∴当x=4时,y=2023,∴y﹣x2+17=2023﹣42+17=2024.1.下列各式中,一定是二次根式的是()A.B.C.D.【分析】根据二次根式的定义分别判断即可.【解答】解:A、的被开方数﹣2<0,不是二次根式,故此选项不符合题意;B、是三次根式,故此选项不符合题意;C、的被开方数a2+1>0,是二次根式,故此选项符合题意;D、的被开方数a﹣1有可能小于0,即当a<1时不是二次根式,故此选项不符合题意;故选:C.2.若式子是二次根式,则a的值不可以是()A.0B.﹣2C.2D.4【分析】根据二次根式的定义得出a≥0,再得出选项即可.【解答】解:∵式子是二次根式,∴a≥0,即只有选项B符合,选项A、选项C、选项D都不符合,故选:B.3.当a=﹣2时,二次根式的值为()A.2B.C.D.±2【分析】把a=﹣2代入二次根式,即可解决问题.【解答】解:当a=﹣2时,二次根式===2.故选:A.4.当x=2时,下列二次根式没有意义的是()A.B.C.D.【分析】根据二次根式有意义的条件:形如(a≥0)的式子叫做二次根式,求解即可.【解答】解:当x=2时,,,,故选项A、B、C不符合题意;x﹣3=2﹣3=﹣1<0,即没有意义,选项D符合题意.故选:D.5.若有意义,则a的值可以是()A.﹣1B.0C.2D.6【分析】直接利用二次根式的定义得出a的取值范围,进而得出答案.【解答】解:有意义,则a﹣4≥0,解得:a≥4,故a的值可以是6.故选:D.6.若有意义,则x可以取()A.0B.﹣1C.﹣2D.﹣3【分析】根据二次根式有意义的条件,即被开方数为非负数进行求解即可得.【解答】解:由题意得:2x+1≥0,解得,即x可以取的值是0.故选:A.7.已知代数式在实数范围内有意义,则x的取值范围是()A.x≠1B.x≠0C.x>0且x≠1D.x≥0且x≠1【分析】根据二次根式有意义的条件以及分式有意义的条件得到x≥0且,进行计算即可得到答案.【解答】解:根据题意得:x≥0且,解得:x≥0且x≠1,故选:D.8.设x,y为实数,且,则|y﹣x|的值是()A.1B.9C.4D.5【分析】根据二次根式有题意的条件可求解x,y值,进而可求解|y﹣x|的值.【解答】解:∵,∴5﹣x≥0,5﹣x≤0,∴5﹣x=0,解得x=5,∴y=4,∴|y﹣x|=|4﹣5|=1.故选:A.9.二次根式在实数范围内有意义,则实数x的取值范围在数轴上表示为()A.B.C.D.【分析】直接利用二次根式有意义的条件得出x的取值范围,进而在数轴上表示即可.【解答】解:二次根式在实数范围内有意义,则1﹣x≥0,解得:x≤1,则实数x的取值范围在数轴上表示为:.故选:C.10.已知,则2xyz的相反数是()A.B.C.D.【分析】根据算术平方根和绝对值的非负性,得出,解之得出x、y、z的值,再把x、y、z的值代入2xyz计算,得出2xyz的值,再根据相反数的定义,即可得出答案.【解答】解:在中,∵,,|x﹣2y|≥0,|z+4y|≥0,∴可得:,解得:,∴,∴2xyz的相反数是.故选:B.11.下列各式:①②③④,其中一定是二次根式的是②④.(只填序号)【分析】根据二次根式的定义逐个判断即可.【解答】解:①(﹣2)3=﹣8<0,故不是二次根式;②(﹣2)4=16>0,故是二次根式;③的根指数是3,故不是二次根式,④a2+1>0,故是二次根式;所以一定是二次根式的是②④.故答案为:②④.12.如果是二次根式,那么x应满足的条件是x≥1.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x﹣1≥0,解得x≥1.故答案为:x≥1.13.如果,那么x y的值是100.【分析】先根据二次根式的非负性求出x的值,进而求出y的值,再代入x y计算.【解答】解:∵,,∴x=10,∴,∴x y=102=100.故答案为:100.14.如果,那么x+y的平方根为±.【分析】根据二次根式中的被开方数是非负数可得x﹣2=0,可得x和y的值,再解答即可.【解答】解:∵,∴x﹣2≥0,2﹣x≥0,∴x﹣2=0,∴x=2,∴y=3,∴x+y=2+3=5,∴x+y的平方根为±.故答案为:±.15.要使式子有意义,则实数x的取值范围是x≥1且x≠2.【分析】直接利用二次根式有意义的条件、分式有意义的条件分析得出答案.【解答】解:∵要使式子有意义,∴x﹣1≥0且x﹣2≠0,解得:x≥1且x≠2,则实数x的取值范围是x≥1且x≠2.故答案为:x≥1且x≠2.16.当x分别取下列值时,求二次根式的值.(1)x=0;(2)x=;(3)x=﹣2.【分析】直接将(1)x=0;(2)x=;(3)x=﹣2;代入二次根式求出即可,注意开方时容易出错.【解答】解:(1)把x=0,代入二次根式==3;(2)把x=,代入二次根式==;(3)把x=﹣2,代入二次根式==5.17.已知实数x,y满足等式,求3x+4y的立方根.【分析】先根据二次根式有意义的条件求出x的值,进而求出y的值,再求出3x+4y的值,即可求出对应的立方根.【解答】解:∵要有意义,∴,∴x=5,∴,∴3x+4y=3×5+4×3=27,∵27的立方根是3,∴3x+4y的立方根是3.18.若x,y是实数,且.(1)求x,y的值;(2)求的值.【分析】(1)根据二次根式有意义的条件进行解题即可;(2)将求出的x与y代入进行求解即可.【解答】解:(1)由题可知,,解得x=,将x=代入,解得y=.故x=,y=.(2)将x与y代入得==.19.(1)已知一个正数的两个不同平方根分别是a+3与2a﹣15,求这个数.(2)已知x,y为实数,且,求的平方根.【分析】(1)先根据正数的两个平方根互为相反数,得出a+3+2a﹣15=0,求出a的值,得出这个数的一个平方根,即可得出这个正数;(2)先根据二次根式有意义的条件得出x=9,从而求出y=4,代入求出,即可得出答案.【解答】解:(1)∵一个正数的两个不同平方根分别是a+3与2a﹣15,∴a+3+2a﹣15=0,解得a=4,∴这个数一个平方根为4+3=7,∴这个数为72=49;(2)∵x,y为实数,,∴,∴,∴x=9,∴y=4,∴==6,∴的平方根为.20.(1)已知2b+1的平方根为±3,3a+2b﹣1的算术平方根为4,求a+2b的平方根.(2)若x、y都是实数,且y=++8,求x+y的值.【分析】(1)根据平方根的定义列式求出b,再根据算术平方根的定义列式求出a,然后求出a+2b的值,再根据平方根的定义解答即可;(2)由二次根式有意义的条件得到关于x的不等式组,解不等式组即可求出x的值,进一步即可求得结果.【解答】解:(1)∵2b+1的平方根为±3,∴2b+1=9,解得b=4,∵3a+2b﹣1的算术平方根为4,∴3a+2b﹣1=16,解得a=3,∴a+2b=3+2×4=11,∴a+2b的平方根是±.(2)由题意得:,解得,所以x=3,当x=3时,y=8,所以x+y=3+8=11.。
(完整版)八年级下册数学--二次根式知识点整理

二次根式1、算术平方根的定义:一般地,如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根。
2、解不等式(组):尤其注意当不等式两边乘(除以)同一个负数,不等号方向改变。
如:-2x>4,不等式两边同除以-2得x<-2。
不等式组的解集是两个不等式解集的公共部分。
如{3、分式有意义的条件:分母≠04、绝对值:|a|=a (a≥0);|a|= - a (a<0)一、二次根式的概念一般地,我们把形如 a (a≥0)的式子叫做二次根式,“”称为二次根号。
★正确理解二次根式的概念,要把握以下五点:(1)二次根式的概念是从形式上界定的,必须含有二次根号“”,“”的根指数为2,即“2”,我们一般省略根指数2,写作“”。
如25 可以写作 5 。
(2)二次根式中的被开方数既可以是一个数,也可以是一个含有字母的式子。
(3)式子 a 表示非负数a的算术平方根,因此a≥0, a ≥0。
其中a≥0是 a 有意义的前提条件。
(4)在具体问题中,如果已知二次根式 a ,就意味着给出了a≥0这一隐含条件。
(5)形如b a (a≥0)的式子也是二次根式,b与 a 是相乘的关系。
要注意当b是分数时不能写成带分数,例如832 可写成8 23,但不能写成 2232 。
练习:一、判断下列各式,哪些是二次根式?(1) 6 ;(2)-18 ;(3)x2+1 ;(4)3-8 ;(5)x2+2x+1 ;(6)3|x|;(7)1+2x (x<-12)X≥-2X<5的解集为-2≤x<5。
二、当x 取什么实数时,下列各式有意义?(1)2-5x ;(2)4x 2+4x+1二、二次根式的性质:二次根式的性质符号语言文字语言应用与拓展注意a (a ≥0)的性质a ≥0 (a ≥0)一个非负数的算术平方根是非负数。
(1)二次根式的非负性(a ≥0,a ≥0)应用较多,如:a+1 +b-3 =0,则a+1=0,b-3=0,即a= -1,b=3;又如x-a +a-x ,则x 的取值范围是x-a ≥0,a-x ≥0,解得x=a 。
《二次根式》知识点总结-题型分类-复习专用.doc

《二次根式》题型分类知识点一:二次根式的概念 【知识要点】二次根式的定义:形如五的戎子叫二次根式,其中么叫被开 方数,只有当么是一个非负数时,石才有意义.【典型例题】题型一:二次根式的判定【例1】下列各式1)卫,2)底,3)-存714)扬,5)』(-A 6)举一反三:1、 使代数式有意义的X 的取值范围是x-4( )A 、x>3 B. x > 3C 、 x>4D 、 x 》3且XH 42、 若式子丁鼻有意义,则x 的取值范围\l x — 3是 _____________ .题型去二次根式定义的运用【例 31 若 y= Qx-5 +』5-x ,则 x+y= _______________7)J/著换三:若x 、y 都是实数,且yr 求xy 的值1、下列各式中,一定是二次根式的是( )A 、乔B 、V^IOC 、yfa + lD 、题型二:二次根式有意义【例2】J 兀-2有意义的x 的取值范围是 ---------已知a 是亦整数部分,b 是 亦的小数部分, 求a-b 的值。
V5V 3,其中是二次根式的是 ------------ (填序号). 举一反三: 2、在丽、Vl + x 2 、的中是二次根式的个数有 ------- 个3、当。
取什么值时,代数式血 + 1+1取值最小, 并求出这个最小值。
知识点二:二次根式的性质【知识要点】1.非负性:V^(a>0)是一个非负数.2. (V^)2 =a(a>0).注意:此性质既可正用,也可反用,反用的意义在于,可以把任意一个非负数或非负代数式写成完全 平方的形式:a = (7a)2(a>0)4.公式=\a\=l a^~^ 与(Va)2 =a(a>0)的区别与联系-a(a < 0)(1) 品表示求一个数的平方的算术根,a 的范围是一切实数. (2) (需尸表示一个数的算术平方根的平方,a 的范围是非负数. (3) Q 和(石尸的运算结果都是非负的.【典型例题】題型二:二次根式的牲廣2(公式(石)2二a(a > 0)的运用)注意:此性质可作公式记住,后面根式运算中经常用到.f 例5】化简:卜一1| + (丁^二5)2的结果为()A 、4-2aB 、0C 、2a —4D 、4举一反三:在实数范围内分解因式:才-3二 _________________ ; 題型去二次根式餉濒3(公式7^? = |a| = J a(a ~0)的应用)注意:(1)字母不一定是正数.-a(a < 0)(2) 能开得尽方的因式移到根号外时,必须用它的算术平方根代替.(3) 可移到根号内的因式,必须是非负因式,如果因式的值是负的,应把负号留在根号外.f 例6】已知x<2,则化简J(x —2)2的结果是A % x — 2B 、兀+ 2C. —X — 2D. 2 — x3.=|a|= <a(a > 0)-a(a < 0)举一反三:1、根式J(-3)2的值是()A. -3B. 3 或-3C. 3D. 9那么|疑-2a |可化简为()2、已知a<0,A. - aB. aC. 一3aD. 3a【例71如果表示a, b两个实数的点在数轴上的位置如图所示,那么化简| a-b | + J(a + b)2的结果等于() ---- ----- -- --- Ab a oA. -2bB. 2bC. -2aD. 2a举一反三:实数a在数轴上的位置如图所示:化简:0-1| +J(Q-2)2= ______________ . 寸—()j-*-I:例811、把二次根式agl化简,正确的结果是( )A. J—aB. — J-aC. — -VaD.2、__________________________________________________________ 把根号外的因式移到根号内:当b>0时,-V7 = ; (。
二次根式知识点归纳及题型总结

二次根式知识点及题型归纳1. 二次根式的概念二次根式的定义: 形如)0(≥a a 的式子叫二次根式,其中a 叫被开方数,只有当a 是一个非负数时,a 才有意义.2. 二次根式的性质1. 非负性:)0(≥a a 是一个非负数.注意:此性质可作公式记住,后面根式运算中经常用到.2.)0()(2≥=a a a注意:此性质既可正用,也可反用,反用的意义在于,可以把任意一个非负数或非负代数式写成完全平方的形式:)0()(2≥=a a a3. ⎩⎨⎧<-≥==)0()0(2a a a a a a 注意:(1)字母不一定是正数. (2)能开得尽方的因式移到根号外时,必须用它的算术平方根代替.4. 二次根式混合运算二次根式的混合运算与实数中的运算顺序一样,先乘方,再乘除,最后加减,有括号的先算括号里的(或先去括号)。
3. 最简二次根式和同类二次根式1、最简二次根式:(1)最简二次根式的定义:①被开方数是整数,因式是整式;②被开方数中不含能开得尽方的数或因式;分母中不含根号.2、同类二次根式(可合并根式):几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫做同类二次根式,即可以合并的两个根式4. 二次根式计算——分母有理化1.分母有理化定义:把分母中的根号化去,叫做分母有理化。
2.有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,就说这两个代数式互为有理化因式。
有理化因式确定方法如下:①单项二次根式:利用a a a =⋅来确定,如:a 与a ,b a +与b a +,b a -与b a -等分别互为有理化因式。
②两项二次根式:利用平方差公式来确定。
如b a +与b a -,b a +与b a -,y b x a +与y b x a -分别互为有理化因式。
3.分母有理化的方法与步骤:①先将分子、分母化成最简二次根式;②将分子、分母都乘以分母的有理化因式,使分母中不含根式;5. 二次根式计算——二次根式的乘除1.积的算术平方根的性质:积的算术平方根,等于积中各因式的算术平方根的积。
二次根式的知识点、典型例题、练习

第十六章 二次根式的知识点、典型例题及相应的练习1、二次根式的概念:1、定义:一般地,形如a (a≥0)的代数式叫做二次根式。
当a≥0时,a 表示a 的算术平方根,当a 小于0时,非二次根式(在一元二次方程中,若根号下为负数,则无实数根)概念:式子a (a≥0)叫二次根式。
a (a≥0)是一个非负数。
题型一:判断二次根式(1)下列式子,哪些是二次根式,哪些不是二次根式:2、33、1x 、x (x>0)、0、42、-2、1x y+、x y +(x≥0,y ≥0). (2)在式子()()()230,2,12,20,3,1,2x x y y x x x x y+=--++中,二次根式有( )A. 2个B. 3个C. 4个D. 5个(3)下列各式一定是二次根式的是( )A. 7-B. 32mC. 21a +D. a b2、二次根式有意义的条件题型二:判断二次根式有没有意义1、写出下列各式有意义的条件:(1)43-x (2)a 831- (3)42+m (4)x 1- 2、21x x --有意义,则 ; 3、若x x x x --=--3232成立,则x 满足_______________。
典型练习题:1、当x 是多少时, 23x ++11x +在实数范围内有意义?2、当x 是多少时,23x x++x 2在实数范围内有意义? 3、当__________时,212x x ++-有意义。
4、使式子2(5)x --有意义的未知数x 有( )个.A .0B .1C .2D .无数 5、已知y=2x -+2x -+5,求x y的值. 6、若3x -+3x -有意义,则2x -=_______.7、若11m m -++有意义,则m 的取值范围是 。
8、已知()222x x -=-,则x 的取值范围是 。
9、使等式()()1111x x x x +-=-+成立的条件是 。
10、已知233x x +=-x 3+x ,则( )(A )x ≤0 (B )x ≤-3 (C )x ≥-3 (D )-3≤x ≤011、若x <y <0,则222y xy x +-+222y xy x ++=( )(A )2x (B )2y (C )-2x (D )-2y12、若0<x <1,则4)1(2+-x x -4)1(2-+xx 等( ) (A )x 2 (B )-x2 (C )-2x (D )2x 13、化简aa 3-(a <0)得( ) (A )a - (B )-a (C )-a - (D )a3、最简二次根式的化简最简二次根式是特殊的二次根式,他需要满足:(1)被开方数的因数是整数,字母因式是整式;(2)被开方数中不含能开的尽方的因数或因式。
(完整版)二次根式知识点归纳及题型总结精华版

二次根式知识点归纳和题型归类一、知识框图二、知识要点梳理知识点一、二次根式的主要性质:1.;2.;3.;4.积的算术平方根的性质:;5. 商的算术平方根的性质:.6.假设,那么.知识点二、二次根式的运算1.二次根式的乘除运算(1) 运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号.(2)注意每一步运算的算理;2.二次根式的加减运算先化简,再运算,3.二次根式的混杂运算(1) 明确运算的序次,即先乘方、开方,再乘除,最后算加减,有括号先算括号里;(2) 整式、分式中的运算律、运算法那么及乘法公式在二次根式的混杂运算中也同样适用.一. 利用二次根式的双重非负性来解题〔a0 〔a≥0〕,即一个非负数的算术平方根是一个非负数。
〕1.〕。
A、3;B、x ;C、x21;D、x1以下各式中必然是二次根式的是〔2.等式(x 1)2=1- x 成立的条件是 _____________ .3.当 x____________ 时,二次根式2x 3 有意义.4.x 取何值时,以下各式在实数范围内有意义。
〔 1〕〔 2〕1〔3〕5x 2 x1x4〔 4〕假设x( x1)x x1,那么 x 的取值范围是〔 5〕假设x3x3,那么 x 的取值范围是。
x1x16.假设3m 1 有意义,那么m能取的最小整数值是;假设 20m 是一个正整数,那么正整数m的最小值是________.7.当 x 为何整数时,10x11有最小整数值,这个最小整数值为。
8. 假设2004 a a2005a ,那么a2004 2=_____________;假设y x33x 4 ,那么x y9.设 m、n 满足n m299m22mn =。
m 3,那么10. 假设三角形的三边a、 b、 c 满足a24a 4 b 3 =0,那么第三边c的取值范围是11. 假设|4x8 |x y m0 ,且 y 0 时,那么〔〕 A 、0m1 B 、m2C、m 2 D、 m 2利用二次根式的性质2a(a b)(即一个数的平方的算术平方根等于这个数的绝对值)来解题二. a =|a|=0(a0)a(a0)1.x33x2=-x x 3 ,那么〔〕 A.x≤0 B. x≤- 3C. x≥- 3 D.- 3≤x≤ 02.. a<b,化简二次根式 a 3b 的正确结果是〔〕A.a ab B .a ab C. a ab D .a ab3.假设化简 | 1-x |-28x16 的结果为2x-5 那么〔〕 A 、 x 为任意实数B、1≤ x≤ 4C、 x≥1 D 、x≤ 4 x4. a, b, c 为三角形的三边,那么(a b c)2(b c a) 2(b c a) 2=5.当 -3<x<5 时,化简26921025 =。
二次根式知识点归纳及题型总结-精华版

二次根式知识点归纳与题型归类一、知识框图二、知识要点梳理知识点一、二次根式得主要性质:1、; 2、; 3、;ﻫ4、积得算术平方根得性质:;ﻫ5、商得算术平方根得性质:、6、若,则、知识点二、二次根式得运算1.二次根式得乘除运算(1) 运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号、(2)注意每一步运算得算理;2.二次根式得加减运算先化简,再运算, ﻫ3.二次根式得混合运算(1)明确运算得顺序,即先乘方、开方,再乘除,最后算加减,有括号先算括号里;ﻫ(2)整式、分式中得运算律、运算法则及乘法公式在二次根式得混合运算中也同样适用、一、利用二次根式得双重非负性来解题((a≥0),即一个非负数得算术平方根就是一个非负数。
)1、下列各式中一定就是二次根式得就是()。
A、; B、;C、; D、2.等式=1-x成立得条件就是_____________.3.当x____________时,二次根式有意义.4、x取何值时,下列各式在实数范围内有意义。
(1) (2) (3) ﻫ(4)若,则x得取值范围就是(5)若,则x得取值范围就是。
6、若有意义,则m能取得最小整数值就是 ;若就是一个正整数,则正整数m得最小值就是________.7、当x为何整数时,有最小整数值,这个最小整数值为。
8、若,则=_____________;若,则9.设m、n满足,则=。
10、若三角形得三边a、b、c满足=0,则第三边c得取值范围就是11、若,且时,则( ) A、B、ﻩC、D、二.利用二次根式得性质=|a|=(即一个数得平方得算术平方根等于这个数得绝对值)来解题1、已知=-x,则( ) A、x≤0 B、x≤-3 C、x≥-3 D、-3≤x≤02、.已知a<b,化简二次根式得正确结果就是()A. B. C.D.3、若化简|1-x|-得结果为2x-5则( ) A、x为任意实数B、1≤x≤4 C、x≥1 D、x≤44、已知a,b,c为三角形得三边,则=5、当-3<x<5时,化简= 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次根式知识点归纳和题型归类
一、知识框图
二、知识要点梳理
知识点一、二次根式的主要性质:
1.;
2.;
3.;
4.积的算术平方根的性质:;
5.商的算术平方根的性质:.
6.若,则.
知识点二、二次根式的运算
1.二次根式的乘除运算
(1) 运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号.
(2) 注意每一步运算的算理;
2.二次根式的加减运算先化简,再运算,
3.二次根式的混合运算(1)明确运算的顺序,即先乘方、开方,再乘除,最后算加减,有括号先算括号里;
(2)整式、分式中的运算律、运算法则及乘法公式在二次根式的混合运算中也同样适用.
一. 利用二次根式的双重非负性来解题(0≥a (a ≥0),即一个非负数的算术平方根是一个非负数。
)
1.下列各式中一定是二次根式的是( )。
A 、3-; B 、x ; C 、12+x ; D 、1-x
2.等式2)1(-x =1-x 成立的条件是_____________.
3.当x ____________时,二次根式32-x 有意义.
4.x 取何值时,下列各式在实数范围内有意义。
(1)
(2)121+-x (3)45++x x
(4)若1)1(-=-x x x x ,
则x 的取值范围是 (5)若1
313++=++x x x x ,则x 的取值范围是 。
6.若13-m 有意义,则m 能取的最小整数值是 ;若20m 是一个正整数,则正整数m 的最小值是________.
7.当x 为何整数时,1110+-x 有最小整数值,这个最小整数值为 。
8. 若20042005a a a -+-=,则22004a -=_____________;若433+-+-=x x y ,则=+y x
9.设m 、n 满足3
29922-+-+-=m m m n ,则mn = 。
10. 若三角形的三边a 、b 、c 满足3442-++-b a a =0,则第三边c 的取值范围是
11.若0|84|=--+-m y x x ,且0>y 时,则( ) A 、10<<m B 、2≥m C 、2<m D 、2≤m
二.利用二次根式的性质2a =|a |=⎪⎩
⎪⎨⎧<-=>)0()
0(0)(a a a b a a (即一个数的平方的算术平方根等于这个数的绝对值)来解题 1.已知233x x +=-x 3+x ,则( ) A.x ≤0 B.x ≤-3 C.x ≥-3 D.-3≤x ≤0
2..已知a<b ,化简二次根式b a 3-的正确结果是( )A .ab a -- B .ab a - C .ab a D .ab a -
3.若化简|1-x |-1682+-x x 的结果为2x-5则( ) A 、x 为任意实数 B 、1≤x ≤4 C 、x ≥1 D 、x ≤4
4.已知a ,b ,c 为三角形的三边,则222)()()(a c b a c b c b a -++--+-+=
5. 当-3<x<5时,化简25109622+-+++x x x x = 。
6、化简)0(||2<<--y x x y x 的结果是( ) A .x y 2- B .y C .y x -2 D .y -
7、已知:221a a a +-+=1,则a 的取值范围是( )。
A 、0=a ; B 、1=a ; C 、0=a 或1; D 、1≤a
8、化简21)2(---x x 的结果为( ) A 、x -2; B 、2-x ;C 、2--
x D 、x --2
19. 已知:1
a
a
+=+2
2
a
a
+的值。
20. 已知:,x y为实数,且13
y x-+,化简:3
y-
21. 已知
()1
1
3
9
3
2
2
+
+
=
+
-
+
-
y
x
x
x
y
x
,求的值。