5 土压平衡盾构与泥水平衡盾构的结构原理-傅德明
“土压+泥水”双模式盾构机原理及应用分析

“土压+泥水”双模式盾构机原理及应用分析摘要:进入21世纪以来,我国各大城市出现地铁修建的高潮,尤其是一线城市及新一线城市地铁修建速度特别快。
但是,由于国内各地地质水文情况差别较大,对盾构设备的技术、功能以及规格参数要求不一致,尤其是我国华南地区具有硬岩地层,岩石强度高、地下水含量丰富,地层内裂隙水多等特点。
本论文主要探讨了土压+泥水双模式盾构机的工作原理,通过对双模式盾构机在工程应用中的分析,发现土压+泥水双模式盾构机具有更高的施工效率和更好的适应性,可以满足复杂地质环境下的建设需求,是一种值得推广使用的盾构机。
同时,通过分析其优缺点,提出了未来发展方向及相关建设建议,为该领域的研究和应用提供一定的指导意义。
关键词:双模盾构机;工作原理;应用分析前言随着城市化进程的加速和基础设施建设的加强,地下隧道建设的需求越来越大。
作为地下隧道建设的核心设备之一,盾构机的发展也愈加迅速。
在现有的盾构机种类中,土压和泥水模式盾构机是主流类型之一。
然而,这两种盾构机各自都存在一些使用的局限性,因而提出了土压+泥水双模式盾构机。
该盾构机既具有土压模式和泥水模式的特点,又克服了两种盾构机单一模式的弱点,在实际工程中有着广泛的应用前景和发展空间。
因此,本论文将详细地介绍土压+泥水双模式盾构机的工作原理和优点,并通过应用案例分析与比较分析,探讨了其未来的发展趋势,为该领域的研究和应用提供一定的参考意义。
一、研究背景和意义随着城市化进程的不断加速,交通网络的布局和构建变得越来越丰富和复杂,因此地下隧道建设显得尤为重要。
而盾构机作为地下隧道建设的核心设备之一,在隧道建设中扮演着举足轻重的角色。
然而,盾构机在实际应用中还存在一些问题,例如对地质环境的适应性不强,施工效率不高等问题。
为了解决这些问题,土压+泥水双模式盾构机应运而生。
土压+泥水双模式盾构机集土压和泥水两种模式于一体,既能适应固结岩体和软土环境,又能有效地控制地面沉降,有效地提高了盾构机的施工效率和质量,对于复杂地质环境下的隧道建设有着广泛的应用前景。
土压平衡与泥水平衡盾构

土压平衡与泥水平衡盾构
土压平衡和泥水平衡是两种常见的盾构方式,它们的主要区别在于维持掌子面稳定的方式。
土压平衡盾构主要以渣土为主要介质平衡隧道开挖面地层压力,通过螺旋输送机出渣,适用于从粘土、砂土至软硬不均复合地层。
这种盾构施工时无需泥浆处理场,施工占地较少,对环境的影响相对较小。
泥水平衡盾构则以泥浆为主要介质平衡隧道开挖面地层压力,通过泥浆输送系统出渣,适用于富水高压和地面沉降要求高的隧道施工。
这种盾构需要较大的施工场地,因为需要设置泥浆处理场。
虽然对周边环境影响较大,但能更好地控制开挖工作面稳定性、地表沉降,保证施工进度和施工安全。
选择使用哪种盾构需视具体工程需求和地质条件来决定。
泥水平衡盾构压力平衡原理

泥水平衡盾构压力平衡原理泥水平衡盾构压力平衡原理是指在盾构施工过程中,通过控制泥浆的压力来平衡盾构机前后腔的压力差,以保证施工的安全和顺利进行。
本文将详细介绍泥水平衡盾构压力平衡原理及其应用。
泥水平衡盾构是一种在地下施工中常用的盾构方法。
它通过在盾构机前后腔之间注入泥浆,并通过控制泥浆的压力来平衡盾构机前后腔的压力差。
这种平衡可以有效地减小盾构机前后腔的压力差,降低地层的沉降和地表的变形,从而保证施工的安全性。
泥水平衡盾构压力平衡原理的核心是控制泥浆的压力。
在盾构机施工过程中,泥浆被注入到盾构机前后腔之间,形成一个封闭的环境。
通过控制泥浆的注入速度和排出速度,可以控制泥浆的压力,从而实现前后腔的压力平衡。
当盾构机前后腔的压力差较大时,可以增加泥浆的注入速度,提高泥浆的压力,使前后腔的压力趋于平衡;当盾构机前后腔的压力差较小时,可以减小泥浆的注入速度,降低泥浆的压力,保持前后腔的压力平衡。
泥水平衡盾构压力平衡原理的应用非常广泛。
首先,它可以用于地铁、隧道等地下工程的施工。
在这些工程中,地下水位较高,地层较松软,如果不采取措施来平衡盾构机前后腔的压力差,就会导致地层的沉降和地表的变形,严重影响工程的安全性和稳定性。
通过采用泥水平衡盾构压力平衡原理,可以有效地控制盾构机前后腔的压力差,减小地层的沉降和地表的变形,保证工程的安全和顺利进行。
泥水平衡盾构压力平衡原理还可以用于河道、湖泊等水域工程的施工。
在这些工程中,水的压力对盾构机的施工造成了很大的影响。
通过采用泥水平衡盾构压力平衡原理,可以控制泥浆的压力,从而平衡水的压力,保证施工的安全性和稳定性。
泥水平衡盾构压力平衡原理还可以用于土层较软、地下水位较高的地区的施工。
在这些地区,地层的稳定性较差,如果不采取措施来平衡盾构机前后腔的压力差,就会导致地层的沉降和地表的变形,严重影响工程的安全性和稳定性。
通过采用泥水平衡盾构压力平衡原理,可以有效地控制盾构机前后腔的压力差,减小地层的沉降和地表的变形,保证工程的安全和顺利进行。
泥水平衡盾构泥水压力控制课件

适用的具体地质情况:
(1)隧道上方有江、河、湖、海等大水体 地层; (2)由粘性土、砂性土、粉土等多层互层 构成的地层; (3)滞水砂层及其他松散地层; (4)高水压层和高承压水地层; (5)砾石直径不大但砾石数量多的地层。
11.管路延长时的泥水压力调节
在盾构推进过程中,进排泥管路需不断
伸长,管阻亦随之增大。为了保证保证切 口水压力稳定和管道中恒定的流速,排泥 泵转速应随时做相应改变,因而排泥泵必 须自动调整。当泵满足不了要求,必须增 加泵的数量,做好各个泵之间的协调和自 动化控制。为了保证切口泥水压力和盾构 掘进质量,在进、排管路上分别装设流量 计和密度计,及时检测,及时反馈数据, 调节水压。
切口泥水压力应介于理论计算值上下限 之间,并根据地表建筑物的情况和地质条 件做适当调整。
①切口水压上限值的计算 Pfu=P1+P2+P3
=rw×h+K0[(r- rw) ×h+r×(H-h)]+20
式中:Pf1 ,P2—分别指切口水压力下限值、主动土压力(kPa) P1 ,P3—分别指地下水压力、变动土压力(kPa) Ka—主动土压力系数 Cu—土的粘聚力
3.主要特点 (1)在易发生流沙的地层中能稳定开挖面,可
在正常大气压下施工作业,无需用气压法施工;
(2)泥水压力传递速度快而均匀,开挖面平衡 土压力的控制精度高,对周边开挖土体干扰少, 地面沉降量的控制精度高;
(3)盾构出土由泥水管道输送,速度快而连续; 减少了电机车的运输量,施工速度快;
土压盾构和泥水盾构施工工艺分析 PPT

调浆池
送泥泵
排泥泵
中继泵
泥水平衡盾构基本配置
➢泥水盾构主要由以下五大系统构成: 一边利用刀盘挖掘整个开挖面、一边推进的盾构掘进系统; 可调整泥浆物性,并将其送至开挖面,保持开挖面稳定的
泥水循环系统; 综合管理送排泥状态、泥水压力及泥水处理设备运转状况
的综合管理系统; 泥水分离处理系统; 壁后同步注浆系统。
土压盾构和泥水盾构施工工艺分析比较
2018年8月25日
土压盾构机
土压平衡盾构的概念
➢土压平衡盾构是在机械式盾 构的前部设置隔板,在刀盘 的旋转作用下,刀具切削开 挖面的泥土,破碎的泥土通 过刀盘开口进入土舱,使土 舱和排土用的螺旋输送机内 充满切削下来的泥土,依靠 盾构推进油缸的推力通过隔 板给土舱内的土碴加压,使 土压作用于开挖面以平衡开 挖面的水土压力。
出。
一管理。
土压盾构施工的基本特点
泥水盾构施工的基本特点
土压盾构地质适应范围
➢土压平衡盾构主要适用于粉土、粉质粘土、淤泥质粉土、粉砂层 等粘稠土壤的施工。该类型土壤在螺旋输送机内压缩形成防水土 塞,使土舱和螺旋输送机内部产生土压力来平衡掌子面的土压力 和水压力。
➢土压平衡盾构用开挖土料作为支撑开挖面稳定的介质,要求具有 良好的塑性变形、软稠度、内摩擦角小及渗透率小。一般土壤不 能完全满足这些特性,要进行改良。改良的方法通常为:加水、 膨润土、粘土、CMC、聚合物和泡沫等,根据土质情况选用。
➢皮带输送机将渣土从螺旋输送机的出渣口运到渣车内。
泥水盾构机
泥水加压平衡盾构的概念
• 泥水加压平衡盾构(slurry pressure balance shield),简称 SPB盾构。是在机械式盾构的前部设置隔板,与刀盘之间形成泥水 舱,开挖面的稳定是将泥浆送入泥水舱内,在开挖面上用泥浆形成 不透水的泥膜,通过该泥膜的张力保持水压力,以平衡作用于开 挖面的土压力和水压力。开挖的土砂以泥浆形式输送到地面,通 过泥水处理设备进行分离,分离后的泥水进行质量调整,再输送 到开挖面。
土压平衡盾构及泥水平衡盾构的结构原理

2土压平衡盾构与泥水平衡盾构的构造原理傅德明demingfu126.XX市土木工程学会2011.5.211土压平衡盾构的构造原理1.1 土压平衡盾构的根本原理土压平衡盾构属封闭式盾构。
盾构推进时,其前端刀盘旋转掘削地层土体,切削下来的土体进入土舱。
当土体充满土舱时,其被动土压与掘削面上的土、水压根本一样,故掘削面实现平衡(即稳定)。
示意图如图6.1所示。
由图可知,这类盾构靠螺旋输送机将碴土(即掘削弃土)排送至土箱,运至地表。
由装在螺旋输送机排土口处的滑动闸门或旋转漏斗控制出土量,确保掘削面稳定。
1.1.1 稳定掘削面的机理及种类土压盾构稳定掘削面的机理,因工程地质条件的不同而不同。
通常可分为粘性土和砂质土两类,这里分别进展表达。
1.1.1.1粘性土层掘削面的稳定机理因刀盘掘削下来的土体的粘结性受到破坏,故变得松散易于流动。
即使粘聚力大的土层,碴土的塑流性也会增大,故可通过调节螺旋输送机转速和出土口处的滑动闸门对排土量进展控制。
对塑流性大的松软土体也可采用专用土砂泵、管道排土。
地层含砂量超过一定限度时,土体流性明显变差,土舱内的土体发生堆积、压密、固结,致使碴土难于排送,盾构推进被迫停顿。
解决这个问题的措施是向土舱内注水、空气、膨润土或泥浆等注入材,并作连续搅拌,以便提高土体的塑流性,确保碴土的顺利排放。
1.1.1.2砂质土层掘削面的稳定机理就砂、砂砾的砂质土地层而言,因土颗粒间的摩擦角大故摩擦阻力大;渗透系数大。
当地下水位较高、水压较大时,靠掘削土压和排土机构的调节作用很难平衡掘削面上的土压和水压。
再加上掘削土体自身的流动性差,所以在无其它措施的情况下,掘削面稳定极其困难。
为此人们开发了向掘削面压注水、空气、膨润土、粘土、泥水或泥浆等添加材,不断搅拌,改变掘削土的成分比例,以此确保掘削土的流动性、止水性,使掘削面稳定。
1.1.1.3土压盾构的种类按稳定掘削面机构划分的土压平衡盾构大致有如下几种,见表1。
土压盾构和泥水盾构施工工艺分析

土压盾构和泥水盾构工作原理比较
• 土压盾构
• 泥水盾构
土压平衡盾构机是利用安装在 泥水平衡盾构机是在支撑环前面装
盾构机最前面的全断面切削刀 盘,使正面土体切削下来进入 刀盘后面的储留密封舱内,并 使仓内具有适当压力与开挖面 水土压力保持平衡,以减少盾
置隔板的密封舱中,注入适当压力 的泥浆使其在开挖面形成泥膜,支 撑正面土体,并由安装在刀盘上的 刀具切削土体表层泥膜,与泥水混 合后,形成高密度泥浆,由排浆泵 及管道输送至地面处理,整个过程
泥水平衡盾构泥水系统的组成
泥水盾构的泥水系统由四大部分组成 ⑴造浆分系统 ⑵泥水输送分系统 ⑶泥水处理分系统 ⑷泥水监控分系统
造浆分系统
➢包括泥水拌制分系统和浆液调整分系统
• 盾构在掘进过程中,需要进行新旧泥浆交替补充到盾构开挖 面,形成一定厚度的泥膜便于刀盘切削。
• 当旧浆液浆量不足,需要及时补充新鲜浆液,造浆系统根据 浆液的粘度、比重等技术指标进行调整。以便及时向盾构泥 水舱补充浆液,使开挖面快速形成泥膜,便于开挖面稳定和 盾构顺利掘进。
处理,去除团状和块状等粗大颗粒。粗颗粒的分离一般采用 双层或三层振动筛。
泥水监控分系统
•泥水系统的运行和操纵由泥水监控分系统来实现。 •泥水监控分系统由PLC程序实现。通过泥水监控分系统的运用, 随时为盾构施工提供可靠的信息和采集泥水系统的技术数据。 •泥水监控分系统以旁通模式、掘进模式、反循环模式、隔离模 式和长时间停机模式控制等五种不同的状态进行监控。
中铁隧道集团二处有限公司
土压盾构和泥水盾构施工工艺分析比较
2018年8月25日
土压盾构机
-
土压平衡盾构的概念
➢土压平衡盾构是在机械式盾 构的前部设置隔板,在刀盘 的旋转作用下,刀具切削开 挖面的泥土,破碎的泥土通 过刀盘开口进入土舱,使土 舱和排土用的螺旋输送机内 充满切削下来的泥土,依靠 盾构推进油缸的推力通过隔 板给土舱内的土碴加压,使 土压作用于开挖面以平衡开 挖面的水土压力。
土压平衡盾构工作原理和结构

土仓压力=地下水压+土压
8
㈢土仓压力控制原因
增大/减小推动速度
地下水压/土压
增大/降低碴土排量
9
㈣土仓压力对地表旳影响
压力过小地表 沉降
压力过大地表 隆起
10
11
土压平衡盾构构成
按构造分:主机和后配套。 按功能分:控制系统、主驱动系统、推动系统、出碴系统、管片运送及 拼装系统、注浆系统、注脂系统、碴土改良系统、供电系统等。
4
㈡类型及模式
为适应多种不同类型地层及盾构工作方式旳不同,盾构主要有 下列三种类型、四种模式:
三种类型: ☆软土盾构机; ☆硬岩盾构机; ☆混合型盾构机。
四种模式: ☆敞开式; ☆半敞开式; ☆土压平衡式; ☆气压式。
5
6
㈠工作原理
刀盘旋转切削泥土经过刀盘开口被压进土舱,经过螺旋机转到皮带 机上,然后输送到碴车里。盾构在推动油缸旳推力作用下向前推动,盾 壳对挖掘出旳还未衬砌旳隧道起着临时支护作用,承受周围土层旳土压 和水压以及将地下水挡在盾壳外面。掘进、排土、衬砌等作业在盾壳旳 掩护下进行。
主要作用: ☆实现主机旳向前推动 ☆实现掘进速度旳调整 ☆实现盾构方向旳调整
上 部
左部
右部
下部 28
⑸碴土改良系统
主要作用: ☆改善碴土流塑性,有利于碴土顺畅排出 ☆降低碴土密实度并减小摩擦 ☆拓宽盾构旳适应范围
29
⑹注浆系统
主要作用: ☆管片壁后空隙填充,控制地表沉降 ☆形成壁后屏障,形成防水层 ☆稳定管片与周围岩体一体化
1—刀盘;2--土舱;3—承压 隔板;4—人舱;5—推动千 斤顶;6—盾尾密封;7—管 片;8—皮带机;9—拼装机;
10—主驱动;11—螺旋机
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
素的影响进行周密细致的调查, 以便选择满足设计要求的有充足裕度的且可进行恰当管理的 各种装置、设备、系统。 1.1.2.1 盾构机构造设计时的注意事项 因土压盾构掘削面与隔板之间充满掘削泥土,各种机械零部件的更换和改造极为困难, 所以必须考虑其耐久性和耐磨性。各机械单元应注意的事项如下: (1) 掘削刀盘的支承方式:必须根据土质条件选择可以充分发挥其特长的支承方式。 (2) 刀盘 ① 面板:要不要面板应根据掘削面的稳定性、土舱内检修和掘削刀具更换的安全性等 条件确定。使用面板时应据土质条件(粘聚力、砾石)、障碍物状况,总之以不妨碍泥土流入 为原则选择面板开口的宽度和数量。 ② 扭矩:通常根据土质条件,有无砾石确定。一般情况下,掘削时的摩擦扭矩、土的 搅拌(向上)扭矩都比泥水盾构的情形要大,另外,也要考虑开挖面不能自立时的富裕度。 ③ 盾尾密封:特别重要的是对于地下水压、壁后注浆压应具有良好的密封性,为了提 高止水性能,止水带的设置层数不能太少。 ④ 土压计:为测量土舱内的泥土压力,必须选用精度高、耐久性好的优质产品,并设 置在适当的位置上。 ⑤ 千斤顶安全锁:在开挖面土压力作用下,盾构始终受到正面土压作用,为了在管片 组装等推进停止过程中盾构机不发生后退,液压系统应设置销定装置。 (3) 掘削面稳定测量 为了判断开挖面的稳定性,可在盾构上装设土压、排土量、刀盘扭矩、盾构千斤顶推力 等计测仪器和开挖面坍塌探测仪等。通过实测数据的分析,判断掘削面的稳定状况。 (4) 添加材注入装置 土压平衡式盾构上的加材注入装置由添加材注入泵、 设置在刀盘和土舱内等处的添加材 注入口等组成。注入位置、注入口径、注入口数量应根据土质、盾构直径、机械构造进行选 择。因注入口被土砂堵塞时,修理、清扫等都很困难,故应采用防堵结构。 添加材注入装置必须能跟踪刀盘扭矩的变动, 及时改变注入材料在地层中的渗透, 排出 碴土的状态,土舱内的泥土压等参数,即调节注入压和注入量。 (5) 搅拌装置 搅拌装置必须在刀盘的开挖部位, 取土部位有效地使土砂进行相对运动, 防止发生共转 、 粘附、沉积等现象。搅拌装置有以下几种,可单独使用,也可组合使用。 ① 刀盘(刀头、轮辐、中间梁)。 ② 刀盘背面的搅拌翼。 ③ 调协在螺旋排土器芯轴上的搅拌翼。 ④ 设置在隔壁上的固定翼。 ⑤ 独立驱动搅拌翼。 (6) 排土装置 土压平衡式盾构上的排土装置必须是能够保持渣土和土压力、地下水压力的平衡,并 具有按盾构推进量调节排土量的控制功能。 排土机构有以下方式: ① 螺旋式排土器+闸门方式 ② 螺旋式排土器+排土口加压装置方式 ③ 螺旋式排土器+旋转式送料器(旋转料斗、阀门)方式 ④ 螺旋式排土器+压力泵方式 ⑤ 螺旋式排土器+泥浆泵
1.4 加泥土压盾构 1.4.1 工作原理
加泥式土压平衡盾构,是靠向掘削面注入泥土、泥浆和高浓度泥水等润滑材料,借助 搅拌翼在密封土舱内将其与切削土混合, 使之在成为塑流性较好和不透水泥状土, 以利于排 土和使掘削面稳定的一类盾构机。 掘进施工中可随时调整施工参数, 使掘削土量与排土量基 本平衡。盾构机仍由螺旋输送机排土、碴土由出土车运输。加泥式土压平衡盾构(以下简称 加泥土压盾构)的构造见图 6。 这类盾构主要用于在软弱粘土层、易坍塌的含水砂层及混有卵石的砂砾层等地层中隧 道的掘进施工。
1.2.4
加水土压盾构
1. 工作原理 当掘削地层为渗水系数大的砂层、砂砾层时,若再利用削土加压土压盾构,尽管土舱内 掘削土可以平衡掘削面上的土压, 但由于孔隙率大(细粒成分少)无法阻止地下水的涌入, 即
4
地下水会从螺旋输土机的排土口喷出,使盾构掘进受阻。作为阻止地下水涌入的措施,可在 输土机的排土口处设置一个排土调整槽, 该槽上部设一个加压水注入口, 底部设一个泥水排 放口。 由加压水注入口注入加压水, 与掘削面上的水压平衡(阻止地下水涌入)起稳定掘削面 的作用。螺旋输土机把土舱内的掘削土运送给排土调整槽,掘削土在槽内与水混合成泥水, 随后由管道输到地表,经地表的土、水分离后,分离水返回排土调整槽循环使用。示意图如 图 2 所示。
加泥土压盾构
①向土舱内注入泥土、泥浆或高浓度泥浆,经搅拌 后塑流性提高,且不渗水稳定掘削面 ②检测土舱内压控制推进量,确保掘削面稳定。
软弱粘土层, 易坍的含水砂层及 混有卵石的砂砾层。
图 2 土压平衡盾构种类
面板式土压盾构
辐条式土压盾构,不
1.1.2. 构成系统
采用土压盾构时,必须根据地层土质条件建立一个施工系统。该系统由掘削推进装置、 掘削面稳定装置、添加材注入装置、搅拌装置、碴土运出排放装置等装置构成。因该施工系 统与土压、地下水压、土质、最大粒径、颗粒级配、含水量,加材的种类、配比、浓度、注 入量、注入速度,刀盘扭矩,推进速度、排土装置等诸多因素有关。所以必须事先对这些因
1.1.1.3 土压盾构的种类
按稳定掘削面机构划分的土压平衡盾构大致有如下几种,见表 1。
表 1 土压盾构的种类 稳定掘削面的措施 盾构名称 削土加压式盾构 ①面板一次挡土。 ②充满土舱内的掘削土的被动土压稳定掘削面。 ③ 螺旋输出机排土滑动闸门的控制作用 冲积粘土:粉土、粘土、砂质粉 土、砂质粘土、夹砂粉质粘土 适用土质
图 3 刀盘和液压驱动, 图 4 螺旋输送机 排土机构 : 由螺旋碴土输土机、排土控制器及泥土输出设备构成。 (2) (3) 土体搅拌机构
1.2.2
运行管理
这里只介绍掘土量和排土量的运行管理, 其目的是确保掘削面稳定。 避免地层沉降过大 给邻近构造物带来的不良影响。具体运行管理方式有以下三种: ① 控制挖土量。先将螺旋输土机的转速调整到某一定值,保持排土量基本不变,然后 由设置在土舱内的土压计和刀盘的掘削扭矩的监测仪表控制盾构的推力和速度。 ② 控制排土量。先将盾构的掘进速度调整到一定值,保持掘土量基本不变,然后由设 置在螺旋输土机内的土压计的实测值控制螺旋输土机的转速,或转斗排土的转速。 ③ 同时控制掘土量和排土量。把上述两种方式组合起来同时控制。效果较好,但运行 管理复杂。
1.2 削土加压式盾构
削土加压盾构, 即利用刀盘掘削下来的原状土稳定掘削面的盾构。 这种盾构主要适用的 土质为粉砂粘土、细粉砂粘土、含少量砾石的细砂粘土等冲积层细粒软土 (N 值不超过 15, 天然含水率≥25%,渗透系数 K<5×10-2cm/s),这些土体的摩擦角小,塑流性大)。这种盾构 是土压盾构的基本型式。这种盾构靠刀盘掘削土体;靠刀盘、搅拌叶片及螺旋输土机的旋转 破坏土体的压密性,降低其强度,提高其塑流性。推进装置通过掘削土对掘削面施加被动土 压实现掘削面的稳定。在维持掘削面稳定的前提下,由螺旋输土机的出土口排土给土车,运 送至隧道外部。
1
加水式土压盾构
①面板一次挡土。 ②向排槽内加水,与掘削面水压平衡,增土体的流 动性。 ③滞留于土舱内掘削土通过螺旋传送机滑动闸门 作用挡土。
含水砂砾层 亚粘土层
高浓度泥水加压式 土压盾构
①面板一次挡土。 ②高浓度泥水加压平衡,并确保土体流动。 ③转斗排土器的泥水压的保持调节作用。
松软渗透系数大的含水砂层, 砂 砾层,易坍层
5
图 6. 泥土加压式盾Leabharlann 机1.4.2. 盾构构造特点
与削土加压式盾构相比较, 加泥式盾构是无面板的辐条式盾构, 密封土舱内设有泥土注 入装置和泥土搅拌装置、排土装置等与前者相同,这类盾构特点如下: a) 可改善切削土的性能。在砂土或砂砾地层中,土体的塑流性差,开挖面有地下水 渗入时还会引起崩塌。 盾构机有向切削土加注泥土等润滑材料并进行搅拌的功能, 可使其成 为塑流性好和不透水的泥状土。 b) 以泥土压稳定开挖面。泥状土充满密封舱和螺旋输送机后,在盾构推进力的作用 下可使切削土对开挖面开成被动土压力,与开挖面上的水、土压力相平衡,以使开挖面保持 稳定。 c) 泥土压的监测和控制系统。在密封舱内装有土压计、可随时监测切削土的压力, 并自动调控排土量,使之与掘削土量保持平衡。
3
考虑排土装置时,必须考虑与土质、砾石直径、地下水等地层条件和盾构直径、隧道内 外条件选择最为合适的设备。 螺旋式排土器的型式大致区分为[有轴螺旋式排土器]和[无轴螺旋式排土器]。 挖 掘 砾石 地层时,需按排土能力考虑输送机型式和尺寸大小(直径)。 尤其在透水性好的土质条件下使用无轴螺旋式排土器时, 需认真研究止水性等压力保持 能力。
1.2.1 盾构机的构成特点
(1) 刀盘: 掘削刀盘通常设置在盾构的前端,由加劲肋和面板构成。加劲肋上装有刀具,用 来掘削土体;面板是承受掘削面水、土压力的第一道挡土机构。 切削刀盘一般选择周边支承, 刀盘辐条、 进土孔和面板的尺寸及布设主要取决于盾构外 径和土质特点, 设计原是可使掘削土顺利地流向螺旋输土机, 并避免土舱处周边外的掘削土 的压密固结。
土压平衡盾构与泥水平衡 盾构的结构原理
傅德明 上海申通地铁集团有限公司
1 土压平衡盾构的结构原理 1.1 土压平衡盾构的基本原理
土压平衡盾构属封闭式盾构。盾构推 进时,其前端刀盘旋转掘削地层土体,切 削下来的土体进入土舱。当土体充满土舱 时,其被动土压与掘削面上的土、水压基 本相同,故掘削面实现平衡 (即稳定 )。示 意图如图 6.1 所示。由图可知,这类盾构 靠螺旋输送机将碴土 (即掘削弃土 )排送至 土箱,运至地表。由装在螺旋输送机排土 图 1 土压盾构基本形状 口处的滑动闸门或旋转漏斗控制出土量, 确保掘削面稳定。 1.1.1 稳定掘削面的机理及种类 土压盾构稳定掘削面的机理, 因工程地质条件的不同而不同。 通常可分为粘性土和砂质 土两类,这里分别进行叙述。 1.1.1.1 粘性土层掘削面的稳定机理 因刀盘掘削下来的土体的粘结性受到破坏, 故变得松散易于流动。 即使粘聚力大的土层 , 碴土的塑流性也会增大, 故可通过调节螺旋输送机转速和出土口处的滑动闸门对排土量进行 控制。对塑流性大的松软土体也可采用专用土砂泵、管道排土。 地层含砂量超过一定限度时, 土体流性明显变差, 土舱内的土体发生堆积、 压密、 固结 , 致使碴土难于排送,盾构推进被迫停止。解决这个问题的措施是向土舱内注水、空气、膨润 土或泥浆等注入材,并作连续搅拌,以便提高土体的塑流性,确保碴土的顺利排放。 1.1.1.2 砂质土层掘削面的稳定机理 就砂、砂砾的砂质土地层而言,因土颗粒间的摩擦角大故摩擦阻力大;渗透系数大。当 地下水位较高、 水压较大时, 靠掘削土压和排土机构的调节作用很难平衡掘削面上的土压和 水压。 再加上掘削土体自身的流动性差, 所以在无其它措施的情况下, 掘削面稳定极其困难 。 为此人们开发了向掘削面压注水、空气、膨润土、粘土、泥水或泥浆等添加材,不断搅拌, 改变掘削土的成分比例,以此确保掘削土的流动性、止水性,使掘削面稳定。