第一章 渗流的基本概念和基本定律
1地下水渗流基本概念与基本定律

(4)实际平均流速(Mean actual velocity)是多孔介质中地下水通过空隙面积 的平均速度;地下水流通过含水层过水断面的平均流速,其值等于流量除以过水断 面上的空隙面积,量纲为L/T。记为。它描述地下水锋面在单位时间内运移的距离
,是渗流场空间坐标的离散函数。表示为:
渗流速度 = n 实际平均流速
包括两大类,运动特点各不相同,分别满足于孔隙水和裂隙 岩溶水的特点。 (1) 第一类为地下水在多孔介质的孔隙或遍布于介质中的裂 隙运动,具有统一的流场,运动方向基本一致; (2) 另一类为地下水沿大裂隙和管道的运动,方向没有规律 ,分属不同的地下水流动系统。
地下水动力学
安徽理工大学 地球与环境学院 水资源与规划系
Ch1 地下水渗流基本概念与基本定律
(2) 连通性:封闭和畅通,有效和无效。
(3) 压缩性:固体颗粒和孔隙的骨架具有压缩性。 (4) 多相性:固、液、气三相可共存。其中固相的成为骨架,气相主要分
布在非饱和带中,地下水可以吸着水、薄膜水、毛管水和重力水等形式
存在。 固相—骨架 matrix
气相—空气,非饱和带中
地下水动力学
安徽理工大学 地球与环境学院 水资源与规划系
Ch1 地下水渗流基本概念与基本定律
2、水力坡度[水力梯度](hydraulic gradient):在渗流场中大小等于梯 度值,方向沿等水头面的法线并指向水头下降方向的矢量,用J表示。
式中 分别为:
——法线方向单位矢量。在空间直角坐标系中,其三个分量
2、层流与紊流 层流(laminar flow):水流流束彼此不相混杂、运动迹线呈近似 平行的流动。 紊流(turbulent flow):水流流束相互混杂、运动迹线呈不规则 的流动。
渗流力学要点整理

过程状况:是等温过程还是非等温过程;
系统状况:是单组分系统还是多组分系统,甚至是凝析系统;
相态状况:是单相还是多相甚至是混相;
流态状况:是服从线性渗流规律还是服从非线性渗流规律,是否物理化学渗流或非牛顿液体渗流。
3.确定未知数和其它物理量之间的关系
运动方程:速度和压力梯度的关系
岩石的状态方程
质量守恒方程(单相渗流的连续性方程、两相渗流的连续性方程)
单相渗流
=
div F=▽·F在矢量场F中的任一点M处作一个包围该点的任意闭合曲面S,当S所限定的区域直径趋近于0时,比值∮F·dS/ΔV的极限称为矢量场F在点M处的散度,并记作div F
两相渗流
油相
=
水相
油、气两相渗流
油相
=
油相
状态方程:物理参数和压力的关系
连续性方程:渗流速度v和坐标及时间的关系或饱和度与坐标和时间的关系:
确定伴随渗流过程发生的其它物理化学作用的函数关系(如能量转换方程、扩散方程等等)
4.写出数学模型所需的综合微分方程(组)
用连续性方程做为综合方程,把其它方程都代入连续性方程中,最后得到描述渗流过程全部物理现象的统一微分方程或微分方程组。
建立数学模型的步骤
1.确定建立模型的目的和要求
解决的问题:①压力P的分布②速度v的分布(包括求流量)③饱和度S的分布④分界面移动规律。
自变量:空间和时间,(x,y,z)或(r,θ,z)和时间t
因变量:压力P和速度v;两相或多相流S分布
其它参数:地层物性参数(如渗透率K、孔隙度ф、弹性压缩系数C、导压系数æ等)和流体的物理参数(如粘度μ、密度ρ、体积系数Bபைடு நூலகம்)
地下水动力学第一章(xiu)

J = Av + Bv 2
2. 1912年克拉斯诺波里斯基提出紊流公式:
v = KJ
1 2
四、达西定律的微分形式
微分形式: 微分形式:
五、渗透系数(hydraulic conductivity) 渗透系数( )
是重要的水文地质参数, 是重要的水文地质参数,它表征在一般正常条 件下对某种流体而言岩层的渗透能力 (permeability) v=KJ; ; 当J=1时,K=v 时
渗透率k 渗透率 (intrinsic permeability)
表征反映介质几何特性
γ K =k µ
γ: 比重;µ:动力粘滞性系数; 比重; 动力粘滞性系数; 渗透率k 反映介质几何特性,量纲[L ; 渗透率 :反映介质几何特性,量纲 2];
常用单位:cm2; 石油地质中用达西: 1 达西=9.8697*10-9cm2.
1 v( P) = V0
∫
V0 v
u ' dVv
渗透流速与实际流速关系
vA = uAv = Q Av v=u = une A v = neu
渗透流速与实际流速关系
三、水头与水力坡度
u2 总水头H = z + + γ 2g p p u2 Q 《z + = H p 测压水头; 2g γ ∴H p ≈ H
典型体元的定义
称为典型体元。 把V0称为典型体元。 引进REV后就可以把多孔介质处理为连续 引进REV后就可以把多孔介质处理为连续 REV 这样多孔介质就处处有孔隙度 处处有孔隙度了 体,这样多孔介质就处处有孔隙度了。 REV究竟有多大? REV究竟有多大? 究竟有多大 REV相对于单个孔隙是相当大的, REV相对于单个孔隙是相当大的,但相对 相对于单个孔隙是相当大的 于渗流场又是非常小的。 于渗流场又是非常小的。
水力学-渗流可编辑全文

2.3lg
a0 H 2 a0
浸润曲线:
y
x
L L m2hk
H12 hk 2
hk 2
15.7 渗流场的基本微分方程式及 其解法简介
为了解渗流的区内各点的渗流流速和动 水压强,进行渗流场的求解
渗流场的连续性方程:
ux uy ux 0 x y z
运动方程:
ux
k
H x
uy
k
渗流的类型: 恒定渗流和非恒定渗流 均匀渗流及非均匀渗流 渐变渗流及急变渗流 有压渗流和无压渗流
15.2 渗流的基本定律—达西定律
达西定律:均质孔隙 介质中渗流流速与水 力坡度的一次方成比 例并与土的性质有关
v Q kJ A
或 v k dH
ds
适用条件:
适用于层流渗流,水利工程中绝大多 数 渗流属于层流范围
CH15 渗流
渗流常出现在:经过挡水建筑物中、水 工建筑物地基中、集水建筑物中、水库 及河道
本章研究渗流的流速、压强分布、渗流 的流量、渗流的水面线等
15.1 渗流的基本概念
渗流是水在土中的存在形式:汽态水、 吸着水、薄膜水、毛细水、重力水
假定:渗流是在均质各向同性土中的
渗流模型—认为渗流是充满了整个孔隙 介质区域的连续水流 模型取代真实渗流的原则: 1、流量相等 2、确定作用面动水压强相等 3、阻力相等即水头损失相等
渗流的临界雷诺数为:
Re
1
vd
0.75n 0.23
非层流渗流,其流动规律为:
v kJ 1m
渗透系数 k 的确定
主要取决于颗粒形状、大小、不均匀系 数及水温
经验法、室内测定法、野外测定法
15.3 地下河槽中恒定均匀渗流和 非均匀渐变渗流
渗流力学 学习指南

《渗流力学》课程学习指南第一章渗流的基础知识和基本定律一、学习内容简介油气储集层;渗流的基本概念;渗流过程的力学分析及油藏驱动方式;线性渗流和非线性渗流。
二、学习目标全面掌握渗流力学的基本概念和基本定律,了解本课程的学习目的,为今后的学习打下基础。
三、学习基本要求1.了解油气储集层的理论及实际结构,渗流过程的力学分析及油藏驱动方式,非达西渗流的两种形式;2.掌握孔隙结构的概念和油气储集层的特点,渗流的基本几何形式,渗流速度和压力的概念,掌握达西定律的应用及其范围。
四、重点和难点重点:油气储集层的特点,渗流速度的概念,折算压力在计算中的应用,达西定律和单位制,达西定律的适用条件。
难点:油气储集层的特点,渗流速度和真实渗流速度的概念及关系,换算折算压力,达西定律的适用条件。
五、学习方法推荐结合油层物理,大学物理和课堂例题学习。
第二章单相液体的稳定渗流一、学习内容简介渗流数学模型的建立;单相液体稳定渗流数学模型的解;井的不完善性;稳定试井。
二、学习目标能够建立单相液体稳定渗流基本微分方程;能根据基本微分方程推导流量与产量公式;了解井的不完善性和稳定试井的知识。
三、学习基本要求1.了解渗流力学研究问题方法,井的不完善性的分类,稳定试井可解决的问题;2.掌握渗流力学模型要素及建立过程,平面单向流模型,平面平面单向流、径向流压力分布公式的推导,流量公式的推导和应用,加权法求地层平均压力,稳定试井的概念。
四、学习重点和难点重点:微分法导出渗流数学模型,平面单向流、径向流模型压力分布和流量公式,流场图的含义,面积加权法求地层平均压力,表皮系数、采油指数、指示曲线的概念。
难点:微分法导出渗流数学模型,平面径向流压力分布特点,流量公式的推导,表皮系数的意义。
(四)学习方法推荐联系高等数学的知识与结合例题学习。
第三章多井干扰理论一、学习内容简介多井干扰现象的物理过程;势的叠加原则;镜像反映法及边界效应;等值渗流阻力法;复变函数理论在渗流力学中的应用。
渗流的基本定律(达西定律)

岩层按渗透性分类
同一点各方向上渗透性相同的介质称为各向同性
介质(isotropy medium);
同一点各方向上渗透性不同的介质称为各向异性 介质(anisotropy medium) 。 均质(homogeneity)、非均质(inhomogeneity): 指K于空间坐标的关系,即不同位置K是否相同; 各向同性、各向异性: 指同一点不同方向的K是否 相同。
2.1912年克拉斯诺波里斯基提出紊流公式:
四、达西定律的微分形式
微分形式:
渗水力梯度I 是无因次的,故渗 透系数K的因次与渗透流速V 相同。一般采用 m/d 或 cm/s 为单位。令 I = 1 ,则V =K 。意即渗透系数为水力梯度等
于 1 时的渗透流速。水力梯度为定值时,渗透系数愈大。
地下水通过非均质界面的折射现象
定义:地下水在非均质岩层中运动,当水流通过渗透系数突变的
分界面时,出现流线改变方向的现象 1. 折射定理
1. 几点讨论: (1) 当K1≠K2,α1≠0,流线才会折射 (2)当K1=K2,α1= α2 (3) 只有在0< α1<90,才会折射
(4)在层界面上发生的流线折射并不改变地下水流总方向,总体
多孔介质概念与特性
我们把孔隙岩层称为多孔介质(porous media). •多孔介质特性: 彼此连通的网络,几何形态及连通情况异常复杂, 难以用精确的方法来描述。 由固体骨架和孔隙组成,孔隙通道是不连续的。
因此,无论是固体骨架,还是空隙空间,微观上讲都不是连续函数
普通水流与渗流
共同点: 1.总体流向取决于水头差 2.流量取决于水头差及沿程损耗 区别:水在管道中运动取决于 管道大小、形状及粗糙度;渗流运动取决于空隙大小、形状、 连通性。
地下水动力学简介

第一章 渗流理论基础§1-1 渗流的基本概念一、渗流及连续介质假说1 多孔介质(porous medium)与连续介质(continuous medium)多孔介质很难给出其精确定义,在地下水动力学中,把具有孔隙的岩石称为多孔介质。
它包括孔隙介质和裂隙介质。
一般来说,具有以下特点的物质就称为多孔介质。
(1)该物体为多相体:固体相-骨架,流体相-空隙;(2)固体相的分布遍及整个多相体所占据的区域;(3)空隙空间具有连通性。
多孔介质由连续分布的多孔介质质点(图1-2)组成—多孔连续介质.此时孔隙度的表示公式为:--为数学点P 处多孔介质的表征体积元(简称为表征体元-REV ),将其所包含的所有流体质点与固体颗粒0v ∆的总体称为多孔介质质点.将其所包含的所有流体质点称为多孔介质流体质点。
图1-2 REV 的定义及孔隙度随体积的变化多孔介质的性质:1)孔隙性2) 压缩性2 渗透(seepage )渗透:地下水受重力作用在岩石空隙中的实际运动称为渗透。
由于岩石空隙结构极为复杂,空隙的大小、延伸方向、形状无一定规律。
渗透具有如下特征:(1)运动途径复杂多变;(2)状态函数非连续;(3)只有平均性质的渗透规律(图1-1),研究地下水质点的运动特征比较困难。
因此,在当前经济技术条件下研究单个孔隙中的水或单个水质点的运动是十分困难的,也没有必要。
vv p n v v v ∆∆=∆→∆0lim)(图1-2岩石中地下水的渗透针对这种极为复杂的地下水运功,在地下水动力学中一般可采用两种研究方法。
1) 研究微观情况下的运动,即研究地下水在以孔隙介质中的骨架为边界孔隙或裂隙中的运动。
由于空隙介质的结构具有随机性,所以用统计平均方法来确定地下水运动的宏观规律性;2) 从宏观角度出发,采用试验及数学分析方法,对大量微观运动进行宏观研究得出各种运动条件下地下水运动的基本规律。
3 渗流(seepage flow)前面已经提到,要研究实际的渗透十分困难,因此,我们用一种假想水流来代替真实水流,这种假想水流是在连续介质的基础上通过概化得出的:(1)假定水流充满整个含水层空间(既包括空隙所占据的空间,也包括颗粒/骨架所占据的空间);(2)只考虑水流运动的总体方向,不考虑水流实际运动途径的复杂变化.将通过上述概化后所得到的假想水流—渗流。
渗流的基本定律(达西定律)

影响渗透系数大小的因素
f(孔隙大小 多少、液体性质) 孔隙大小、 K= f(孔隙大小、多少、液体性质) 岩层空隙性质(孔隙大小、多少) 岩层空隙性质(孔隙大小、多少) 由流体的物理性质决定, 由流体的物理性质决定,与γ成正比,与μ成 成正比, 反比.流体的物理性质与所处的温度、压力有关。 反比.流体的物理性质与所处的温度、压力有关。
vx = Kxx Jx + Kxy Jy vy = Kyx Jx + Kyy Jy
v = Kε Jε ε ε v = K η Jη η η
si θ n co θ s
o c sθ 设R为旋转矩阵 R = −si θ n
设R为旋转矩阵
vx v ε =[R ] v η vy Jx Jε =[R ] J η Jy
多孔介质概念与特性
我们把孔隙岩层称为多孔介质(porous media). 我们把孔隙岩层称为多孔介质 •多孔介质特性 多孔介质特性: 多孔介质特性 8彼此连通的网络,几何形态及连通情况异常复杂, 彼此连通的网络,几何形态及连通情况异常复杂, 彼此连通的网络 难以用精确的方法来描述。 难以用精确的方法来描述。 8由固体骨架和孔隙组成,孔隙通道是不连续的。 由固体骨架和孔隙组成,孔隙通道是不连续的。 由固体骨架和孔隙组成
z
a. 一维流:仅沿一个方向存在流速 一维流: b. 二维流:沿两个方向存在分流速 二维流: 分:平面二维流、剖面二维流) 平面二维流、剖面二维流) c. 三维流: 三维流: 三个方向均存在分流速
图 1-2-8a
x y
一维流
岩层按渗透性分类
6. 按岩层渗透性随空间和方向变化特点,分 均质各向同性、均质各向异性、 均质各向同性、均质各向异性、 非均质各向同性、 非均质各向同性、非均质各向异性 几个概念: 各向同性、各向异性、均质、非均质
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PZ1 PZ2 PZ
Q KA Z L
要求记忆
对于水平地层,则有: Q KA P
L
第一节 线性渗流规律
二.达西定律的讨论
v w ①渗流速度 与真实速度
v Q A
w Q A
渗流流量 渗流面积
孔隙度
v w
第一节 线性渗流规律
② 达西定律的适用条件
ⅰ:流体为牛顿流体.
ⅱ:渗流速度必须在适当的范围内(即流体为层流流动).
纯溶洞结构 裂缝孔隙结构 双重介质 溶洞孔隙结构 裂缝溶洞结构 三重介质 溶洞--裂缝--孔隙结构
二 储集层外部形状及简化
① 根据储集层的厚度:层状油藏,块状油藏 (球形流)
② 根据边界条件:定压边界,封闭边界 ③ 根据平面延伸系数:
长轴 <3 圆形地层 短轴 >3 条带形地层
三 储集层的特点
① 储集性 a e m
第三节 油藏能量及驱动方式
三.油藏驱动方式
驱动方式:在油藏开采过程中主要依靠哪种能量来驱 动,就称为何种驱动方式.
①刚性水压驱动:边水或注入水动:边水供应不足,油藏压力变小,水区 和油区的流体及岩石弹性膨胀.
第三节 油藏能量及驱动方式
③弹性驱动:岩石及流体的弹性能为主要 的驱油动力.(封闭边界,无 气顶,无注入水)
第二节 渗流的基本概念
④ 真实速度:
Q V A
A ---真实渗流面积
A A
V V
—透明度 在数值上与孔隙度相等
第二节 渗流的基本概念
三.油藏中压力的概念
① 原始地层压力Pi 油田未开发前的地层中流体承受的压力. 对于同一水动力学系统其压力梯度曲线
(即P~H曲线)应该为一直线. 一个油藏若处于多个水动力学系统,其
压力梯度曲线则为一条折线.
第二节 渗流的基本概念
② 目前地层压力PR ③ 井底压力Pwf:井底油层中部压力. ④ 静压:关井后所测得的压力. ⑤ 边界压力Pe:油藏边界上的压力 ⑥ 折算压力Pz:将油藏内各点的压力按静水
力学内部压力分布规律折算 到同一水平面上的压力,该 压力即为折算压力.
第二节 渗流的基本概念
Q A H1 H2 A H Z1 Z2 L
Q KiA L
Q
KiA
L
K i--比例常数,渗流系数
第一节 线性渗流规律
进一步实验表明:
岩石绝对 渗透率
Ki
流体重率
Ki K
Q KA L
v Q K A L
v ~ v ~ 呈 线性 关 系
第一节 线性渗流规律
Q弹 Vf Ct(Pi Pb)
Vf C( Pi Pb)
④溶解气驱动:主要依靠分离出的溶解气 的弹性能驱动.
第三节 油藏能量及驱动方式
⑤气压驱动:以气顶压力为主要的驱动方 式.
⑥重力驱动:依靠原油自身的重力驱动.
值得注意的是:油藏的驱动方式并不是 固定不变的,随着油田 的开发,油藏可以出现 多种驱动方式.
O
Pi
H
第三节 油藏能量及驱动方式
一.受力分析 地下流体在地层中渗流主要受到以下
几方面里的作用: ① 重力:有时为动力,有时为阻力.
•M
• M
第三节 油藏能量及驱动方式
② 惯性力:通常表现为阻力 ③ 粘滞力(阻力):
速度梯度
F A dv dr
表现为 动力
④ 弹性力: C Cf Cl
第三节 油藏能量及驱动方式
⑤ 毛细管压力:
PC
2 r
cos
当Pc与流体流向相同时为动力,相
异为阻力,但实际油藏中多表现为阻力.
⑥ 边水压力:动力
第三节 油藏能量及驱动方式
二.油藏能量
① 边水压头:将油驱入井底并举升到一定高度. ② 气顶压力:气体弹性驱动. ③ 液体及岩石的弹性能 ④ 溶解气的膨胀能 ⑤ 原油的重力势能
值得注意的是:在流体流向井底的过程中,往往是各种 能量同时起作用,但每种能量发挥的大小作用不尽相同,有 的处于主导地位,有的处于从属地位.
Z
PA ●M
PM
●A
ZA ZM
X
PZM PM gZM
PZA PA gZA
油藏中,同一水动力系统各点的折算压力应该相等, 这也是判断油藏两点是否处于同一水动力系统的方法. 同时也可以判断地层中流体的流向.
第二节 渗流的基本概念
⑦ 压力梯度曲线:
油藏埋深~实测压力P的关系曲线.同一 水动力系统应该为一直线.
第一章 渗流的基本概念和基本定律
第一节 油气储集层 第二节 渗流的基本概念 第三节 油藏能量及驱动方式
第一节 油气储集层
• 一 多孔介质的分类及其简化 • 二 储集层外部形状及其简化 • 三 储集层的特点
一 多孔介质的分类及其简化
储集层按其内部空间结构特点可以分为三种 介质七种结构:
粒间孔隙结构 单重介质 纯裂缝结构
ⅲ:流体不与岩石发生任何物理化学反应.
ⅳ:岩石被某一相流体饱和.
第二章 渗流的基本规律
第一节 线性渗流规律 第二节 非线性渗流定律 第三节 特殊情况下的渗流规律
第一节 线性渗流规律
渗流规律:描述压力与流速的关系. 压力和流速( P, )是描述渗流 的两个十分重要的物理量.
线性渗流:流速与压力差(或压力梯度)呈 线性关系的渗流.
第一节 线性渗流规律
一.达西定律
一.渗流的三种基本几何形式 ② 平面径向流(二维问题)
第二节 渗流的基本概念
一.渗流的三种基本几何形式 ③ 球形径向流(三维问题)
第二节 渗流的基本概念
二.渗流速度 ① 定义:流体通过单位面积的体积流量. ② 计算:
VQ A
A---渗流面积 ③ 与力学上速度的物理含义的区别:
它是宏观上统计的平均值,其方向为 高压指向低压.
② 渗透性 K
Ka Ke Kr
③ 压缩性 Ct
Cf
C
Cr
④ 分散性 S S S Sr
⑤ 复杂性(孔隙结构):四通八达
杂乱无序
很难用数学的方法来表征孔喉的形态,多
靠实验来实现。
渗流的特点:① 渗流阻力大
② 渗流速度慢
第二节 渗流的基本概念
一.渗流的三种基本几何形式 ① 平面单向流(一维问题)
第二节 渗流的基本概念
又 i
Zi
i
w
2 i
2g
Wi可以忽略
如有一口井: Q 250m3 / d,h 10m
0.2,rw 0.1m
w Q 2.32 103m / s 2rh
w2 0.279 106m 2g
i
Zi
Pi
第一节 线性渗流规律
1
2
(Z1
P1
) (Z2
P2
)
(P1 Z1 ) (P2 Z2 )