第01章 几何光学的基本概念和基本定律

合集下载

应用光学公式

应用光学公式

n' n
② n '(
A:长为 N 的入射光线矢量 A’’:反射光线
③ n ' u ' nu
P n '2 n2 n2 cos2 I n cos I
( cos I
A ' A PN
3. 光焦度
A N ) | A|| N |
n ' n :+会聚-发散 r f n r n ' n
d ,D:通光直径,d:光轴展开长度 D
f' f 1 l' l n' n n' n 1 1 1 f' f 折合物距 折合像距 折合焦距 l' l y' fl ' y f 'l
3. 物像共轭距
sin(
min
第六章 光能
1. 辐射量与光学量
4/6 Lindt 2010.7.6
辐射能通量:W P d (瓦或尔格 /秒) V P d (瓦) 光通量 K 555 V P d (流明) P :某一波长附近具有功率 , K 555 683lm / W 最大 K (人眼敏感决定)黄光 P K 光谱光视效率 / 视见函数:V K 555 发光效率: W
7.
f ' 2 n' n' , H ,空 2 f n n ny n 1 n 1 , H , 空 n' y' n' n'
h tan U ' tan U f' 正切计算法 hi hi 1 di 1 tan U i 1 ', 令 tan U1 0, 任取h1 l ' l ' lk ' f ' 1 2 和高斯公式和li li 1 ' di 1 截距计算法 l2l3lk 令l 重复计算每一光组像距物距 1

PPT_第一章—几何光学基本定律与成像概念

PPT_第一章—几何光学基本定律与成像概念
1. 基本概念
光波——光是一种电磁波 波长范围:1mm~10nm 可见光:380~760nm 红外光:波长>760nm 紫外光:波长<400nm 光速: . m/s (真空) 介质中都小于
一、几何光学的基本定律和原理
1. 基本概念
准单色光的获取 可以通过棱镜、光栅、激光器、滤光片由复色光得 到单色光。
7 2013~2014学年《几何光学》课件 yanglp@
一、几何光学的基本定律和原理
2. 几何光学的基本定律
——入射光线; ——入射角 ——反射光线; ——反射角 ——折射光线; ——折射角 ——法线
光的反射定律: ① 入射光线、法线、反射光线在同一平面内; ② 入射光线和反射光线位于法线两侧,且

数学表达——一阶微分为零,即:

理解:实际光路取极值是指与邻近光路相比较取极小(经 平面反射或经平面折射的两点间)、极大(凹球面镜)或 稳定值(完善成象光学系统的物象点之间)
2013~2014学年《几何光学》课件 yanglp@ 20
, ,0
, 0,0
19
2013~2014学年《几何光学》课件

光的折射定律: 入射光线、法线、折射光线在同一平面内; 折射角的正弦与入射角的正弦之比与入射角的大小 无关,只与两种介质的折射率有关。即 sin 或 sin sin sin
9 2013~2014学年《几何光学》课件 yanglp@ 10
由于 ,所以 空气的折射率为 . ,介质相对于空气的折射 率称为相对折射率,简称折射率 光密介质——分界面两边 折射率高的介质 光疏介质——分界面两边 折射率低的介质
全反射棱镜
用以代替平面反射镜,减少反射时的光能损失

第一章_几何光学的基本定律与成像的概念-PPT文档资料

第一章_几何光学的基本定律与成像的概念-PPT文档资料

1.1.1 光波
1、光波性质 性质:光是一种电磁波,
是横波。 可见光波,波长范围
390nm—780nm 光波分为两种: 1)单色光波―指具有单
一波长的光波; 2)复色光波―由几种单
色光波混合而成。如: 太阳光
1.1.1 光波
2、光波的传播速度v
1)与介质折射率n有关; 2)与波长λ有关系。
所以介质的折射率是针对某一特定波长提出的, 我们平时所说的介质折射率,
是对于可见光中心波长, λ约550nm的d光而言的。
1.1.2、光源
从物理学角度来看,能够辐射能量的物体成为 发光体,也就是光源。
当光源大小与辐射光能的作用距离相比可以忽 略,称为“点光源”。
在几何光学中,我们取发光物体上的某些特定 几何点来代表发光体,也称为“点光源”,人为 认为这些点无限小,能量密度无限大,实际上是 不存在这样的点光源的。
可以表示为: I = - I”
在不光滑的反射界面,反射定律还成立么?
1.2.3 折射定律
折射定律:入射光线、 折射光线、通过投射 点的法线三者位于同 一平面,且:
反射时,取n’=-n,则有I=-I”,即折射定律转换为反射定律 说明反射定律是折射定律的一个特例!
折射定律的推导
设光线在两介质中的速度 分别为v1和v2,则有: QQ’=v1t,OO’=v2t 所以sinI1=QQ’/OQ’
R n 0 n n 1 1 2,R n 0 为 光 垂 直 入 射 ( I= 0 ) 时 的 反 射 率
sinI2=OO’/OQ’ 两式相比,得:
sinI1 QQ' V1 n2 sinI2 OO' V2 n1
1.2.5 折射率

几何光学基本定律与成像概念几何光学基本定律

几何光学基本定律与成像概念几何光学基本定律

第一章 几何光学基本定律与成像概念第一节几何光学基本定律一、光波与光线1、首先讲解光波性质性质:光是一种电磁波,是横波,我们说光源发光过程就是物体辐射电磁波的过6−程。

我们平常看到的光波属于可见光波,波长范围390nm—780nm,(1nm=10mm) 可见光波的可见是指能够引起人眼颜色感觉。

光波分为两种:①、单色光波――指具有单一波长的光波,λ=555nm 钠黄光λ=632.8nm 激光②、复色光波――有几种单色光波混合而成,λ1,λ2……,如:太阳光,在可见区域内就有7种波长。

2、光波的传播速度ν光波的传播速度不是一个常数,而是一个变量,他与哪些因素有关?① 与介质折射率n有关,n不同,ν不同;即介质不同,传播速度不同,所以光在水中和空气中ν不同。

② 与波长λ有关系,不同λ,其ν不同,即使处于同一介质中,λ不同,ν不同。

ν=c/n c:光在真空中的传播速度ν=3×108m/s;n为介质折射率。

例题:已知对于某一波长λ而言,其在水中的介质折射率n=4/3,求该波长的光在水中的传播速度。

8ν=c/n =3×10/4/3=2.25×108 m/s。

③ 光线――(是假想的、抽象的东西)是没有直径、没有体积却携有能量并具有方向性的几何线。

方向性是指光能的传播方向/波面的法线方向。

图1-1 平行光束④ 光束――同一光源发出的光线的集合。

会聚光束:所有光线实际交于一点(其延长线交于一点)图1-2 会聚光束发散光束:从实际点发出。

(其延长线通过一点)图1-3 发散光束需要说明的是:会聚光束可在屏上接收到亮点,发散光束不可在屏上接收到亮点,但却可为人眼观察到。

⑤ 波面――常见的有:平面波、球面波、柱面波。

平面波:有平行光形成。

平面波实际是球面波的特例,是R=∞时的球面波。

球面波:有点光源产生 柱面波:有线光源产生。

二、几何光学的基本定律可归纳为四个,即直线传播定律、独立传播定律、折射定律、反射定律。

(完美版)几何光学基本定律与成像概念演示文稿.PPT文档

(完美版)几何光学基本定律与成像概念演示文稿.PPT文档
在几何光学中,发光体与发光点概念与物理学中完全不同。
无论是本身发光或是被照明的物体在研究光的传播时统称 为发光体。在讨论光的传播时,常用发光体上某些特定的 几何点来代表这个发光体。在几何光学中认为这些特定点 为发光点,或称为点光源。
3、光线
当光能从一两孔间通过,如果孔径与孔距相比可 以忽略则称穿过孔间的光管的正透镜见图(a)所示;发散透镜或负 透镜,特点是心薄边厚,如图(b)所示。
正透镜的成 像:如图所 示
物点和像点:
像散光束:
二、完善成像的概念
发光物体可以被分解为无穷多个发光物点,每个物点发 出一个球面波,与之对应的是以物点为中心的同心光束。经 过光学系统之后,该球面仍然是一球面波,对应的光束仍是 同心光束,那么,该同心光束的中心就是物点经过光学系统 后所成的完善像点。
1.光的直线传播定律
在各向同性的均匀介质中,光线按直线 传播。例子:影子的形成、日食、月蚀等。
2.光线的独立传播定律 不同的光线以不同的方向通过某点时,
彼此互不影响,在空间的这点上,其效果 是通过这点的几条光线的作用的叠加。
利用这一规律,使得对光线传播情况 的研究大为简化。
3.光的折射定律和反射定律
几何光学基本定律与成像概念演示文稿
第一章:几何光学基本定律与 成像概念
第一节 几何光学的基本定律和原理 一、光波与光线
1、光的本质
光和人类的生产、生活密不可分; 人类对光的研究分为两个方面:光的本性,以此来研究各种光学现象, 称为物理光学;光的传播规律和传播现象称为几何光学。 1666年牛顿提出的“微粒说” 1678年惠更斯的“波动说” 1871年麦克斯韦的电磁场提出后,光的电磁波 1905年爱因斯坦提出了“光子”说 现代物理学认为光具有波、粒二象性:既有波动性,又有粒子性。

第1章 几何光学基本定律与成像概念.

第1章 几何光学基本定律与成像概念.

物方孔径角
A 球心• C

顶点O
光轴
一、基本概念与符号规则
注意:习惯上,一般取光线的方向自左向 右进行
第二节:成像的基本概念与完善成像条件
一、光学系统与成像概念 物点发出的球面波(同心光束)经光学系统后仍
为球面波(同心光束),则其中心为物点的完善像点。 物体上每个点的完善成像点的集合即为物体的完善像。
物所在空间称物空间,像所在空间称像空间。
下面介绍成像的几个基本概念: 光束的分类; 物像与光束的对应关系; 完善成像的条件。
几何光学波面只是垂直于光线的几何曲面。
几何光学就是应用几何光线的概念来研 究光在不同条件下传播特性的一门学科!
二、几何光学基本定律
几何光学以下面几个基本定律为基础:
1. 光的直线传播定律 2. 光的独立传播定律 3. 光的反射定律:I = I 4. 光的折射定律
N
A
B
I I
Pn
Q
n O
N I C
n siIn n siIn
以上四个基本定律是几何光学研究各种光的 传播现象和规律以及光学系统成像特性的基础!
二、几何光学基本定律
角度的符号: (1) 均以锐角度量; (2) 由光线转向法线,顺时 针方向形成的角度为正,逆 时针方向为负。
N
A
B
I I
Pn
Q
n O
N I C
定律的局限性:例如当光经过小孔时会出现衍射, 不再沿直线传播;当两束相干光相遇时,会出现干 涉;
回顾
• 几何光学的基础:折、反定律,费马原理和吕马 斯定律三者可以互相推导出来,因此,三者之中任 一个可以作为几何光学的基本定律,而其他二者可 以作为推论!

第一章几何光学基本定律与成像概念

第一章几何光学基本定律与成像概念

nsin I nsin I
① 色散现象:sin I n sin I f ()
n ② 全反射
nc v
III. Total Internal Reflection
nsin I nsin I
I Im

Critical Angle:sin
Im

n sin n
I

n sin 90 n
★Δ AEC中,由正弦定律 sin I sin(U )
L r
r
★由折射定律 sin I n sin I
n
★ ΔAEC 及ΔA′EC: U I U I
sin I (L r) sinU r
U U I I
★ ΔA′EC中,由正弦定律 sin I sinU L r r
各向同性、均匀介质:直线 S
非均匀介质:曲线
★ 波(阵)面(Wavefront): 某一时刻光波振动位相相同的点所构成的面。
★ 波面法线 (Normal):各向同性介质中对应于光线。
3、光束(Beam):与波面对应的所有光线的集合
beams and wavefronts
a parallel beam
n n n n l l r
由阿贝不变式:
1.6 1 1.6 1
l1
5
2
l1′= +16cm >0 → 实像P ′
⑵ 光线遇到凹折射球面:
l2 = 16cm-20cm =-4cm, r =-2cm;
20cm
(光路图中各量都用绝对值)
1 1.6 11.6 l2 4 2
第一章 几何光学基本定律与成像概念
第一节 几何光学的基本定律 第二节 成像的基本概念与完善成像条件 第三节 光路计算与近轴光学系统 第四节 球面光学成像系统

几何光学的基本定律

几何光学的基本定律

m
s
ni li
i 1
B
s A ndl
2)费马原理:光线从A到B,经过任意屡次折射或反射,其光程为极值。 (对s旳一次微分为零)
B
s A ndl 0
能够解释光旳直线传播、反射、折射定律。
2024/9/22
11
4. 马吕斯定律(波面与光束、波面与光程旳关系)
垂直于波面旳光线经过任意次折射、反射,出射波面仍与出射光 束垂直,且入射波面与出射波面相应点之间光程相同。
第一章 几何光学旳基本定律与成像概念
一、基本概念(光波、光源、光线、波面、光束)
1. 光波— 电磁波(横波)
2024/9/22
1
可见光波长:400nm—760nm 4000Å-7600 Å 0.4μm—0.76μm
在可见光范围内,不同波长引起不同颜色感觉。 单色光— 具有单一波长旳光。 几种单色光混合而成为“复色光”。 真空中光速 c=3×108m/s 介质中光速 v=c/n
与入射光线所在介质折射率之比。
折射定律可表达为:
sin I sin I
n n
或: n sin I nsin I
若令 n n,得 I I ,即为反射定律。
这表白反射定律能够看作为折射定律旳一 种特例。
2024/9/22
7
两种现象:光路旳可逆性及全反射 光路旳可逆性:假定某一条光线,沿着一定旳路线。由A传播到B, 假如我们在B点沿着出射光线,按摄影反旳方向投射一条光线,则此 反向光线仍沿着此同一条路线,由B传播到A。光线传播旳这种性质, 叫做“光路可逆性”。
n1 QQ n2 OO QQ OQ sin I1
OO OQ sin I 2
n1 sin I1 n2 sin I 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.解:由v
c n =得: 光在水中的传播速度:)/(25.2333
.1)/(1038s m s m n c v =⨯==水水 光在玻璃中的传播速度:)/(818.165
.1)/(1038s m s m n c v =⨯==玻璃玻璃 3.一高度为1.7米的人立于离高度为5米的路灯(设为点光源)1.5米处,求其影子长度。

解:根据光的直线传播。

设其影子长度为x ,则有
x x +=5.157.1可得x =0.773米 4.一针孔照相机对一物体于屏上形成一60毫米高的像。

若将屏拉远50毫米,则像的高度为70毫米。

试求针孔到屏间的原始距离。

解:根据光的直线传播,设针孔到屏间的原始距离为x ,则有
x x 605070=+可得x =300(毫米) 5. 有一光线以60°的入射角入射于的磨光玻璃球的任一点上, 其折射光线继续传播到球表面的另一点上,试求在该点反射和折射的光线间的夹角。

解:根据光的反射定律得反射角''I =60°,而有折射定律I n I n sin sin '
'=可得到折射角'I =30°,有几何关系可得该店反射和折射的光线间的夹角为90°。

6、若水面下200mm 处有一发光点,我们在水面上能看到被该发光点照亮的范围(圆直径)有多大?
解:已知水的折射率为 1.333,。

由全反射的知识知光从水中到空气中传播时临界角为:
n n
m I 'sin ==333
.11=0.75,可得m I =48.59°,m I tan =1.13389,由几何关系可得被该发光点照亮的范围(圆直径)是2*200*1.13389=453.6(mm)
7、入射到折射率为 的等直角棱镜的一束会聚光束(见图1-3), 若要求在斜面上
发生全反射,试求光束的最大孔径角
解:当会聚光入射到直角棱镜上时,对孔径角有一定的限制,超过这个限制,就不会 发生全反射了。

由n
I m 1sin =,得临界角 26.41=m I 得从直角边出射时,入射角 74.34590180=---=m I i 由折射定律
n
U i 1sin sin =,得 5.68U =即 11.362U =
8、有一光线入射于和的平面分界面上, 平面的法线
为 ,求反射光线和折射光线 。

解:
因为I n N A cos =⋅ 所以I j i j i cos 23)60cos 30(cos )30cos 60(cos ==
+⋅+ 所以
=2
32231)23(15.122-=⨯-+- 所以由矢量形式的折射定律
=
j i j i j i )4
322()4162()60cos 30)(cos 232()30cos 60(cos ++-=+-
++ 矢量形式的反射定律
=
[]i j i j i j i j i -=+⋅++-+)60cos 30(cos )30cos 60(cos )60cos 30(cos 2)30cos 60(cos。

相关文档
最新文档