几何光学的基本概念和定律

合集下载

第1章 几何光学的基本原理1

第1章 几何光学的基本原理1
15
二、费马原理的原始表述: 光从空间的一点到另一点的实际路径是沿着
光程为极值的路径传播的。或者说,光沿着光 程为极大、极小或者常量的路径传播。
B
( AB) A n dl 0
在光线的实际路径上,光程的变分为0。
16
如果ACB代表光线的实际路径,如图,光线ACB 的光程(或者说所需的时间)与邻近的任何可能路 径 AC'B 相比为极值(极大、极小或常数)。
25
• 物空间和像空间不仅一 一对应,而且根据光的可 逆性,如果将物点移到原来像点的位置上,使光 线沿反反向射入光学系统,则它的像将成在原来 的物点上。这样的一对相应的点称为共轭点。
• 由费马原理可以得出一个重要结论:物点A和像 点 之间各光线的光程都相等,这便是物像之间的 等光程性。这里所说的像点是指完善像点。
当光线经过几个折射率为 n1, n2, n3, n4 的不同介质, 在各介质中经过的路程为l1, l2, l3, l4 ,从A,B,C,
D到达E时所需的时间为
tAE
i
li vi
i
nili ( ABCDE )
c
c
(ABCDE)称为光线ABCDE的光程,简写为(AE)。
( AE) ( ABCDE ) nili tAE c
28
•这一角度大于入射光线在斜面上的入射角45°所 以入射光线在斜面上不能全反射,如图所示,在斜 面AC上入射点 D处将有折射光线进入水中,其折 射角为
I2

sin
1
1.50sin 45 1.33

sin
1
0.797488

52.89096
29
第一章 作业

大学物理--几何光学

大学物理--几何光学

B
B
B
ndl n dl
A
A
而由公理:两点间直线距离最短 A
B
dl 的极小值为直线AB A
所以光在均匀介质中沿直线传播
2.光的反射定律
Q点发出的光经 反射面Σ到达P点
P’是P点关于Σ 面的对称点。
P,Q,O三点 确定平面Π。
直线QP’与反射 面Σ交于O点。
nQO OP
则易知当i’=i时,QO + OP为光程最短的路径。
•直接用真空中的光速来计算光在不同介质中通过一定 几何路程所需要的时间。
t nl ct cc
•光程表示光在介质中通过真实路程所需时间内,在真空
中所能传播的路程。
分区均匀介质:
k
nili
i 1
,
t
c
1 c
k i 1
nili
连续介质:
ndl (l)
二、费马原理
1.表述:光在空间两定点间传播时,实际光程为一特 定的极值。
'
nl
nl '
n r 2 r s 2 2 r r s cos
n
r 2
s '
2
r
2
r s '
r cos
A
l
i -i` l '
P
-u
-u`
C
P` -s` O
-r
-s
对给定的物点,不同的入射点,对应着不同
的入射线和反射线,对应着不同的 。
由费马原理可知 :当 d PAP' 0 时,
2. 光的折射反射定律:
(1) 光的反射定律:反射线位于入射面内,反射线和 入射线分居法线两侧,反射角等于入射角,即

7-1几何光学的基本概念和定律

7-1几何光学的基本概念和定律

L = ∫ n( s)ds = ∫ cds / v( s ) = ∫ cdt = c∆t
A A tA
B
(2) Fermat原理内容-费马原理
光线从任一点A传播到另一点B,是沿光程为极值 的路径传播。 B 数学表示: δL = δ n ( s )ds = 0

A
说明:
该处极值可以是极大值、极小值或常值.
4.光路图上的线段长度和角度的必须为正值 .
四、符号法则-折射球面图-§7.1基本概念和定律
n I I’ -U A O r E n’
φ
C
U’ A’
-L
L’
例题-光的反射折射定律的矢量形式
例题1 沿 A0=i 方向的光线,从n=1的介质入射到 n ' = 3 的 介质中,已知界面的法线方向为 n 0 = −1 / 2i + 3 / 2 j ,求反 射和折射光线的方向。
1、光源 、 能够辐射光能的物体。
点光源: 点光源:光源的大小相对辐射光能的作用距离小得可以忽 略时,光源可以视为点光源;
2、波阵面 、 某一时刻,同一光源辐射场的位相相同的点构 成的曲面。
一、几何光学的基本概念-§7.1基本概念和定律
3、光线 、
光线特征: 光线特征
(1) 光线无直径、无体积,能量密度无限大 (2)在同一点,同一光源的光线和波面垂直,即波面 的法线方向为光线的方向
3
π1
π2

(1)
光 光 的光


(2)


A'
A
nds = ∫ nds = ∫ nds = c
B C
B'
C'
三、光学系统及其完善像-§7.1基本概念和定律

4.几何光学讲解

4.几何光学讲解

4.3.2 孔径光栏、入瞳和出瞳
物面中心点 A经系统成像于 A‘,其成像光束受限制的最小的圆 为 P,称为“孔径光栏”
P经系统前部的像为 P‘,称为入瞳,经后部的像为 P“,称为出瞳, 显然所有通过孔径光栏的光线必定都通过入瞳和出瞳。入瞳和出瞳互 为物像关系。
对于边缘的物点 B,通过入瞳的光线可能不能完全通过孔径光 栏和出瞳,称为有“渐晕”(见下文讨论),但对于一个设计得较好 的光学系统,渐晕不应该很大。
远心光路的一个用途是控制光束粗细,以适应光学元件的大小(如用在 有双折射滤光器的光路);另一个用途是当存在失焦时,像点的中心距(A"-
B")将不会改变,因此适合某些测量仪器。
4.4 近轴光路和理想光路的计算公式
4.4.1 同轴光路、近轴光路和理想光路
同轴光路是一种应用最广的光学系统,望远镜系统多属于同轴光 路。
实际的同轴光路计算要用三角函数。但如将孔径角和视场角均限 制得很小时,角度的正弦值或正切值可以用弧度值代替,于是光路计 算就大为简化,这样的光路称为“近轴光路”。
近轴光路对于光路的方案设计、外部参数计算(如焦距、截距、 像的高度、放大率、组合光学系统参数等)非常有利。
至于实际光路对于近轴光路在计算结果上的差异则可以归为光学 设计的"像差修正"的程度。
对于由多圈子镜组合起来的大型主镜,除中间一块子镜外,多数子 镜的对称轴与理论曲面的旋转轴是不重合的,称为“偏轴”曲面。
天文望远镜反射式光路常见的曲面及其组成的系 统
4.3 视场和孔径
如将光学系统看成一块没有厚度的透镜,则很容易区分“视场” 和“孔径”的不同概念。其区别在于:视场是从“镜头中心”出发向 观测物张开的角度,它表示可以观测的范围;而孔径是从物面(或像 面)上的一点出发向“镜头”张开的角度,它表示成像光束的粗细 (即反映光能量的集中程度)。

第01章 几何光学的基本概念和基本定律

第01章 几何光学的基本概念和基本定律

2.解:由vc n =得: 光在水中的传播速度:)/(25.2333.1)/(1038s m s m n c v =⨯==水水 光在玻璃中的传播速度:)/(818.165.1)/(1038s m s m n c v =⨯==玻璃玻璃 3.一高度为1.7米的人立于离高度为5米的路灯(设为点光源)1.5米处,求其影子长度。

解:根据光的直线传播。

设其影子长度为x ,则有x x +=5.157.1可得x =0.773米 4.一针孔照相机对一物体于屏上形成一60毫米高的像。

若将屏拉远50毫米,则像的高度为70毫米。

试求针孔到屏间的原始距离。

解:根据光的直线传播,设针孔到屏间的原始距离为x ,则有x x 605070=+可得x =300(毫米) 5. 有一光线以60°的入射角入射于的磨光玻璃球的任一点上, 其折射光线继续传播到球表面的另一点上,试求在该点反射和折射的光线间的夹角。

解:根据光的反射定律得反射角''I =60°,而有折射定律I n I n sin sin ''=可得到折射角'I =30°,有几何关系可得该店反射和折射的光线间的夹角为90°。

6、若水面下200mm 处有一发光点,我们在水面上能看到被该发光点照亮的范围(圆直径)有多大?解:已知水的折射率为 1.333,。

由全反射的知识知光从水中到空气中传播时临界角为:n nm I 'sin ==333.11=0.75,可得m I =48.59°,m I tan =1.13389,由几何关系可得被该发光点照亮的范围(圆直径)是2*200*1.13389=453.6(mm)7、入射到折射率为 的等直角棱镜的一束会聚光束(见图1-3), 若要求在斜面上发生全反射,试求光束的最大孔径角解:当会聚光入射到直角棱镜上时,对孔径角有一定的限制,超过这个限制,就不会 发生全反射了。

几何光学基础 光的基本概念和基本定律 几何光学基本定律

几何光学基础 光的基本概念和基本定律 几何光学基本定律
ห้องสมุดไป่ตู้
二、几何光学原理
全反射原理
• 表示入射光线由光密介质射向光疏介质,当入射 角大于临界角时,折射光线不再存在,入射光线 全部反射回原介质中。
• 临界角(全反射角)指折射角等于90°时对应的入
射角。
n
i'
n'
i i
im
i i
n sin im n
二、几何光学原理
全反射原理 例:光线由水中射向空气,临界角是多少?
• 垂轴线段(向上为正,向下 为负)
• 以光轴为原点
• 角度(顺时针正,逆时针负)
• 入射角、反射角、折射角, 以法线为起始边
• 孔径角,以光线为起始边
教学目的
思政元素 教学目标 知识目标 能力目标
专业—敬业、细心—耐心 掌握几何光学的基本定律、原理 几何光学基本定律和原理 会运用几何光学的基本定律和符号规定
PART 01
几何光学基本定律
一、几何光学基本定律
光的直线传播定律
各向同性的均匀介质中,光是沿着直线传播 的。这一定律可以解释很多自然现象。
法 线
入射光线
反射光线
n
i -i”
n

i i
一、几何光学基本定律
光的折射定律
• 入射光线、折射光线和法线三者位于同 一平面内
• 入射角和折射角的正弦之比为一个常数, 即为两种介质的折射率之比
sin i n 或 nsini n'sini' sin i n
• 入射光线和折射光线分别位于法线的两 侧
传播 • 鱼在水中看水面物体时,视角增大,是因为水中折射角小

PART 02
几何光学原理
二、几何光学原理

光学第三章几何光学

光学第三章几何光学
2、c —— 光速
联系光与电磁波
3、λ ——光波长
是否趋近于零 区分几何光学与波动光
学 4、χ ——介质的电极化率
其对光场响应是线性与非线性区分线性 与非线性光学
费马原理
一、费马原理:光在指定的两点间传播时,
实际的光程总是一个极值。其数学表达式为:
B nds 极值(极大值、极小值或恒定值) A
射光束都是单心光束的成像。这也是我们
着重研究的情况。
3、物、像与人眼
问题:

这里的像就是人眼视网膜上所成的
像吗?人眼能否区分物与像?
结论:
对人眼来所,物与像都是进入瞳孔的发
射光束的顶点。物、像、虚像人眼不能分辨。
但对于像,其光束有一定的限制,必须在特定
的范围才能观察到。
光在平面界面上的反射和折射 光学纤维 棱镜
第 三 章 几 何 光 学
三角形孔夫琅禾费衍射图像
本章内容
光线的概念 几何光学的基本定律 费马原理 光束 实象和虚像 平面反射和折射,棱镜的最小偏向角,光
学纤维 光在球面界面上的反射和折射、符号法则 近轴物点近轴光线成像的条件 薄透镜 理想光具组的基点和基面
光线的概念、几何光学的基本定律
B
或: nds 0 A
或:t 1
B
nds 0
ccA
二、几何光学的基本实验定律与费马原理
1、几何光学的基本实验定律或费马原理都可以 作为几何光学出发点,从而建立几何光学内容 体系。 2、由费马原理可以推导几何光学的基本实验 定律。 (1)、光在均匀介质中的直线传播
S
1
l = ([ - r)2 +(r - s)2 + (2 - r)( r - s)cos ] 2

几何光学基本定律与成像概念

几何光学基本定律与成像概念

第三节 光路计算与近轴光学系 统

n' n 球面光学系统。平面看成是球面半径无穷大的特例,反射是
折射在 时 的特例。可见,折射球面系统具有普遍 意义。物体经过光学系统的成像,实际上是物体发出的光束 经过光学系统逐面折、反射的结果。
大多数光学系统都是由折、反射球面或平面组成的共轴
34

12


4. 光路的可逆性
在图(1-2)中,若光线在折射率为 的介质中沿CO方
n ' 向入射,由折射定律可知,折射光线必沿 OA 方向出射。
同样,如果光线在折射率为n的介质中沿BO方向入射,则 由反射定律可知,反射光线也一定沿 OA 方向出射。由此 可见,光线的传播是可逆的,这就是光路的可逆性。
13
21


A nA0 ' ' A n' A0


或 此式说明: 两个矢量的方向一致。 、 ' ( A A) N 0 也可写成: ' 称为偏向常数。 A A N
用 点乘上式两边,有:
' ( A A) N 0 0
7
1.光的直线传播定律
在各向同性的均匀介质中,光线按直线传播。例子: 影子的形成、日食、月蚀等。
2.光线的独立传播定律 不同的光线以不同的方向通过某点时,彼此互不影响, 在空间的这点上,其效果是通过这点的几条光线的作用的 叠加。 利用这一规律,使得对光线传播情况的研究大为简化。
8
3.光的折射定律和反射定律
11
sin I ' n sin I n'
(2) 折射角的正弦与入射角的正弦之比与入 射角的大小无关,仅由两种介质的性质决定,即:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A=n A0
A' A Γ t N ,
0
Γ t为折射偏向常数 Γ t n' n ( A N ) A N
2 2 0 2 0
I
n
I’ N0 n’
A’=n’A’0
t
A' A [ n'2 n 2 ( A N 0 ) 2 A N 0 ]N 0
折射定律矢量表示
4、光路:光线的传播路径。
一、几何光学的基本概念-§7.1基本概念和定律
5、光束:和同一波面对应的法线束。(波面------)
o o
发散的同心光束
会聚的同心光束
平行光束
像散光束
1、光的直线传播定律-几何光学的基本定律
内容: 在各向同性的均匀介质中,光沿直线传播。
说明: (1)光线为直线; (2)光的传播速度(相速): v 1 /光程 非均匀介质中
L n( s)ds
A
B
光程为光在介质中传播的时间和真空中光速的乘积.
L n(s)ds cds / v(s) cdt ct
A A tA
B
B
tB
(2) Fermat原理内容-费马原理
光线从任一点A传播到另一点B,是沿光程为极值 的路径传播。 B 数学表示: L n( s )ds 0

n c/v (3)介质的折射率:
r r 。
A
2、光的独立传播定律-几何光学的基本定律 内容: 沿不同方向传播的光线,通过空间一点,彼此 互不影响,各光线独立传播。
光线和电力线、磁力线比较: 光线——无叠加定理,可以相交; 电力线和磁力线——有叠加定理,不能相交。 B A P
3、光的反射折射定律-几何光学的基本定律
说明 (1) N0方向从入射介质指向折射介质, 判断方法—A﹒N0>0 (2) |A|=n
(4) 反射定律的矢量形式—光的反射折射定律
A' ' A Γ r N0 Γ r为反射偏向常数 Γ r 2A N
0
A=nA0
-I I
n
A=n A0 N0 n t
A' ' A 2( A N0 )N0
(1) 实验
(a) 开普勒实验(1611年) (b) 斯涅耳实验 (1621年)
(2) 内容 (3) 折射定律的矢量形式
A' A Γ t N 0 A [ n'2 n 2 ( A N 0 ) 2 A N 0 ]N 0
(4) 反射定律的矢量形式
A' ' A Γ r N0 A 2(A N0 )N0
Malus定律的解释图
A’ 2’ 3’ B’ C’
I
-I n n I 反射和折射定律
说明 (a) 上面结论i和ii即为反射定律,结论i和iii为折射定律;
(b) 反射定律可以看作折射定律的特殊形式; n->n=-n,I->I; (c) 介质界面及曲率半径均较波长大得多,反射和折射定律在曲面的 局部仍适用。
(3) 折射定律的矢量形式—光的反射折射定律
§7.1几何光学的基本概念和定律
一、几何光学的基本概念
二、几何光学的基本定律
1、光的直线传播定律 2、光的独立传播定律 3、反射和折射定律 4、费马(Fermat)原理(1661年提出)
5、马吕斯(Malus)定律(1808年提出)
三、光学系统及其完善像
一、几何光学的基本概念-§7.1基本概念和定律
4、费马(Fermat)原理-几何光学的基本定律
(1) 光程 (2) Fermat原理内容 (3) 推导光的直线传播定律 (4) 推导光的反射定律 (5) 推导光的折射定律
(1) 光程-费马原理
指光在介质中经过的几何路径和介质折射率的 乘积,以字母L表示。 均匀介质中:L=n×s
其中n为介质的折射率,s为光经过的几何路径。
折射定律矢量表示
说明: (1) N0方向从入射介质指向折射介质, 判断方法—A﹒N0>0 (2) |A|=n
(5) 连续质介中光波的传播—光的反射折射定律
I
n n’ I’
I
n n’ I’
I
n n’
I’
n=n’, I=I’
n<n’, I>I’
n>n’, I<I’
结论:
光在介质中传播时,有偏向折射率 较高一侧的趋势 根据上述定性结论 ,可以对渐变介质中 光波传播作定性的分析

A
说明:
该处极值可以是极大值、极小值或常值.
Fermat原理的极值问题
极值可以是极大值、极小值或常值.
A
常值 B L1 B L2 A 极小 B
A
极大 Fermat原理取极值的几种情况
随遇平衡
不稳平衡
稳定平衡
5、马吕斯(Malus)定律-几何光学的基本定律
1’ A B C 1 2
3
光 学 系 统
1、光源
能够辐射光能的物体。
点光源:光源的大小相对辐射光能的作用距离小得可以 忽略时,光源可以视为点光源;
2、波阵面 某一时刻,同一光源辐射场的位相相同的点构 成的曲面。
一、几何光学的基本概念- § 7.1基本概念和定律
3、光线
光线特征:
(1) 光线无直径、无体积,能量密度无限大 (2) 在同一点,同一光源的光线和波面垂直,即波面 的法线方向为光线的方向
(5) 连续质介中光线的传播
(1)-a 开普勒实验(1611年)—光的反射折射定律
L M N D J C B
b
F H
E G
CJ JG CJ t an b JF t ana
a
开普勒比较入射角和折射角 的实验装置
(1)-b斯涅耳实验(1621年)—光的反射折射定律
实验装置:和Kepler实验装置基本相同。 结 论: 比值OS/OS恒为常数。
OS OP / cosa , OS' OP/cos b
a O
b
P
S
S’
OS / OS ' cosb / cosa
Snell实验结果图
(上面定义的入射角和折射角和平时定义的正好互余,所 以OS/OS相当于平时定义的折射角和入射角的正旋比。)
(2) 内容—光的反射折射定律
光线从折射率为n的介质入射到折射 率为n的介质中,设入射角、反射角和折 射角分别为I、I和I,如果规定光线按照 锐角旋转到法线方向,顺时针为正,逆 时针为负,则 (i)入射光线和反射光线、折射光线分 居法线两侧,并且它们和法线共面; (ii) I= -I; (iii) n sinI=n sinI。
相关文档
最新文档