【人教版】七年级数学第二章《整式的加减》导学案

合集下载

七年级数学上册 第2章《整式的加减》导学案(新版)新人教版

七年级数学上册 第2章《整式的加减》导学案(新版)新人教版
(谈谈本节课你有什么收获?还有什么困惑?)
【课后作 业】 (一 )必做题 1.计算 (1)
1 1 1 2 ab a 2 a 2 ( ab ) 3 4 3 3
(2) (3a ab 7) (4a 2ab 7)
2 2
(3 ) ( 2 x
第 2 章《整式的加减》
学习目标: 1.进一步熟悉去括号、合并同类项法则. 2.熟练掌握整式的加减运算,并能进行化简求值. 学习重点:整式的加减. 学 习难点:化简求值. 【学前准备】 计算:①
2x 2 y 3xy 3x 2 y 2xy 1

a (2a b) 2(a 2b)
【评价】 准确程度评价 书写整洁程度评价 【课后反思】 优 优 良 良 中 中 差 差
【导入】 【自主学习,合作交流】 计算: (1) 2 x 3 y 5x 4 y (2) 8a 7b 4a 5b
3.求
2 1 1 3 1 x 2( x y 2 ) ( x y 2 ) 的值,其中 x=-2, y . 3 2 3 2 3
【当堂测试】
1.计算: (1) 3xy 4 xy (2 xy)
(2) ( x 2x 2 5) (4x 2 3 6x)
2.已知 A= 3x 2 4xy 2 y 2 , B x 2 2xy 5 y 2 ,求 A-B
3.先化简,再求值: 5(3x2 y xy 2 ) ( xy 2 3x2 y) ,其中 x
2
1 1 3 x ) 4( x x 2 ) 2 2
(4) 3x [7 x (4 x 3) 2 x ]
2 2
(二)选做题 1.已知多项式 a 2a 的值是 3,求 4 2a 4a 的值.

初中数学教案第二章整式的加减导学案[人教版初一七年级].

初中数学教案第二章整式的加减导学案[人教版初一七年级].

初中数学教案第二章整式的加减导学案[人教版初一七年级].预览说明:预览图片所展示的格式为文档的源格式展示,下载源文件没有水印,内容可编辑和复制第1课时:整式(1)学习内容:教科书第54—56页,2.1整式:1.单项式。

学习目标和要求:1.理解单项式及单项式系数、次数的概念。

2.会准确迅速地确定一个单项式的系数和次数。

学习重点和难点:重点:掌握单项式及单项式的系数、次数的概念,并会准确迅速地确定一个单项式的系数和次数。

难点:单项式概念的建立。

学习方法:探究,归纳、练习相结合。

学习过程:一、复习引入:1、列代数式(1)若正方形的边长为a,则正方形的面积是;(2)若三角形一边长为a,并且这边上的高为h,则这个三角形的面积为;(3)若x表示正方形棱长,则正方形的体积是;(4)若m表示一个有理数,则它的相反数是;(5)小明从每月的零花钱中贮存x元钱捐给希望工程,一年下来小明捐款元。

2、试说出所列代数式的意义。

3、观察所列代数式包含哪些运算,有何共同的运算特征。

二、探究新知:1.单项式:即由数与字母的乘积组成的代数式称为单项式。

补充:单独一个数或一个字母也是单项式,如a,5……2.练习:判断下列各代数式哪些是单项式?(1)21x;(2)a bc;(3)b2;(4)-5a b2;(5)y;(6)-xy2;(7)-5。

3.单项式系数和次数:进一步观察单项式结构,总结出单项式是由数字因数和字母因数两部分组成的。

指出下面四个单项式31a 2h ,2πr ,a bc ,-m 它们的数字因数各是什么?以上几个单项式的字母因数各是什么?各字母指数分别是多少?系数:单项式中的字母因数次数:单项式中所有字母的指数和4.例题:例1:判断下列各代数式是否是单项式。

如不是,请说明理由;如是,请指出它的系数和次数。

①x +1;②x1;③πr 2;④-23a 2b 。

例2:下面各题的判断是否正确?①-7xy 2的系数是7;②-x 2y 3与x 3没有系数;③-a b 3c 2的次数是0+3+2;④-a 3的系数是-1;⑤-32x 2y 3的次数是7;⑥31πr 2h 的系数是31。

七年级数学上册第二章整式的加减整式的加减导学案新人教

七年级数学上册第二章整式的加减整式的加减导学案新人教

2.2.1整式的加减(2)德育目标:、通过师生合作,体验教学活动充满着探索性和创造性,从而体会到学习中的成就感。

学习目的:1、合并同类项的方法2、整式的化简求值学习重点:整式的化简求值学习难点:合并同类项学习过程: 一、课堂引入: 复习定义:同类项合并同类项1、正确合并多项式 (1)合并同类项4x 2+2x+7+3x-8x 2-2(2)当x=2时,试求上式的值.二、自学课本P64 学生理解直接代入求值 或化简后求值的两种方法难易三、例题讲解:例2|、(1)求多项式2x 2—5x +x 2+4x —3x 2—2的值,其中x =21(2)、求多项式3a+abc —31c 2—3a+31c 2的值,其中a= -61,b= 2, c= -3四、当堂训练:(A 组) 1、写出下列各式。

(1)x 的4倍与x 的5倍的和是多少?(2)x 的3 倍比x 的一半大多少?2、求下列各式的值(1)3a +2b —5a —b,其中a = —2, b=1(2)3x-4x 2+7 —3x+2x 2+1,其中X=—3(B 组)3、求多项式x 3+4x 2—7x +5—4x 2+21x 3+8x —2,其中x =24、求多项式21xy 2—31yx 2+61xy 2—32xy 2—4+y x 2+2的值,其中x =—21,y =2(C 组)学生交流讨论5、把(b a 2+)看成一个字母,把代数式—2(b a 2+)2—1+(b a 2+)3+2(b a 2+)按(b a 2+)的指数从大到小排列6、讨论:如果多项式x 5—(2 a )x 4+7x 2+(b —3)x —9中不含x 4和x 的项,求b a ,的值拓展题: 7、多项式2a 2—3a +4的值为6,则多项式32a 2—a —1的值为多少?板书设计: 2.2.1整式的加减(2) 一、合并同类项 化简求值例2|、(1)求多项式2x 2—5x +x 2+4x —3x 2—2的值,其中x =21 (2)、求多项式3a+abc —31c 2—3a+31c 2的值,其中a= -61,b= 2, c= -3五、学习反思七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列运动属于平移的是()A.荡秋千B.地球绕着太阳转C.风筝在空中随风飘动D.急刹车时,汽车在地面上的滑动【答案】D【解析】试题解析:A. 荡秋千,不只是平移,此选项错误;B. 推开教室的门,不只是平移,此选项错误;C. 风筝在空中随风飘动,不只是平移,此选项错误;D. 急刹车时,汽车在地面上的滑动,是平移,此选项正确;故选D.2.关于,x y的二元一次方程组2420x myx y+=⎧⎨-=⎩有正整数解,则满足条件的整数m的值有()个A.1 B.2 C.3 D.4 【答案】C【解析】根据方程组有正整数解,确定出整数m的值.【详解】解:2420x myx y+=⎧⎨-=⎩①②,①-②×2得:(m+4)y=4,解得:y=44m+,把y=44m+代入②得:x=84m+,由方程组有正整数解,得到x与y都为正整数,得到m+4=1,2,4,解得:m=-3,-2,0,共3个,故选:C.【点睛】此题考查二元一次方程组的解,解题关键在于掌握方程组的解即为能使方程组中两方程都成立的未知数的值.3.若解集在数轴上的表示如图所示,则这个不等式组可以是()A.23xx≥-⎧⎨≤⎩B.23xx≤-⎧⎨≥⎩C.23xx≤-⎧⎨≤⎩D.23xx≥-⎧⎨≥⎩【答案】A【解析】根据数轴表示出不等式的解集,确定出所求不等式组即可.【详解】解:若解集在数轴上的表示如图所示,可得解集为﹣2≤x≤3,则这个不等式组可以是23xx-⎧⎨⎩,故选:A.【点睛】此题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.4.如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=()A.30°B.35°C.40°D.50°【答案】A【解析】首先证明∠ACC′=∠AC′C;然后运用三角形的内角和定理求出∠CAC′=30°即可解决问题.【详解】∵AC=AC′,∴∠ACC′=∠AC′C;∵CC′∥AB,且∠BAC=75°,∴∠ACC′=∠AC′C=∠BAC=75°,∴∠CAC′=180°−2×75°=30°;由题意知:∠BAB′=∠CAC′=30°,故答案为:A.【点睛】本题主要考查旋转的性质以及平行线的性质,正确理解是解题的关键.5.下列调查中,调查方式选择最合理的是()A.调查“乌金塘水库”的水质情况,采用抽样调查B.调查一批飞机零件的合格情况,采用抽样调查C.检验一批进口罐装饮料的防腐剂含量,采用全面调查D.企业招聘人员,对应聘人员进行面试,采用抽样调查【答案】A【解析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【详解】A.了解“乌金塘水库”的水质情况,采用抽样调查,故A正确;B.了解一批飞机零件的合格情况,适合全面调查,故B错误;C.了解检验一批进口罐装饮料的防腐剂含量,调查范围广,适合抽样调查,故C错误;D.企业招聘人员,对应聘人员进行面试,适合全面调查,故D错误,故选A.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.下列交通指示标识中,不是轴对称图形的是( )A.B. C.D.【答案】C【解析】轴对称图形是指将图形沿着某条直线折叠,则直线两边的图形能够完全重合.根据定义可得:本题中A、B和D都是轴对称图形.考点:轴对称图形7.二元一次方程x-2y=1有无数多个解,下列四组值中是该方程的解的是()A.1xy=⎧⎨=⎩B.1xy=⎧⎨=⎩C.11xy=⎧⎨=⎩D.11xy=⎧⎨=-⎩【答案】B【解析】将各项中x与y的值代入方程检验即可得到结果.【详解】A、x=0、y=1时,x-2y=0-2=-2≠1,不符合题意;B、x=1、y=0时,x-2y=1,符合题意;C、x=1、y=1时,x-2y=1-2=-1≠1,不符合题意;D、x=1、y=-1时,x-2y=1+2=3≠1,不符合题意;故选B.【点睛】本题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.8.下列各组图形,可由一个图形平移得到另一个图形的是()A.B.C.D.【答案】A【解析】根据平移的基本性质,结合图形,对选项进行一一分析即可得出结果.【详解】解:A、图形平移前后的形状和大小没有变化,只是位置发生变化,符合平移性质,故正确;B、图形由轴对称变换所得到,不属于平移,故错误;C、图形由旋转变换所得到,不属于平移,故错误;D、图形大小不一,大小发生变化,不符合平移性质,故错误.故选:A.【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小.9.下列各图中,正确画出AC边上的高的是()A.B.C .D .【答案】D【解析】根据三角形高的定义,过点B 与AC 边垂直,且垂足在AC 边上,然后结合各选项图形解答.【详解】解:根据三角形高线的定义,只有D 选项中的BD 是边AC 上的高.故选D.【点睛】本题主要考查了三角形高线的定义. 熟记定义并准确识图是解题的关键.10.设a ,b 是常数,不等式10x a b +>的解集为15x <,则关于x 的不等式0bx a ->的解集是( ) A .15x > B .15x <- C .15x >- D .15x < 【答案】C 【解析】根据不等式10x a b +>的解集为x <15 即可判断a,b 的符号,则根据a,b 的符号,即可解不等式bx-a<0 【详解】解不等式10x a b+>, 移项得:1-x a b > ∵解集为x<15∴1-5a b = ,且a<0 ∴b=-5a>0,15 15a b=- 解不等式0bx a ->,移项得:bx >a两边同时除以b 得:x >a b , 即x >-15故选C【点睛】此题考查解一元一次不等式,掌握运算法则是解题关键二、填空题题11.已知方程415x y -+=-,请用含y 的代数式表示x 是_________.【答案】415x y =+【解析】根据题意,移项即可求得结果.【详解】因为415x y -+=-,故可得415x y =+.故答案为:415x y =+.【点睛】本题考查二元一次方程中未知数的相互表示,属基础题.12.若1x y -++(2-x )2=0,则xy =__________【答案】2【解析】由于|x-y+1|+(2-x )2=3,而|x-y+1|和(2-x )2都是非负数,由此可以得到它们中每一个都等于3,由此即可求出x 、y 的值,代入代数式求值即可.【详解】∵|x-y+1|+(2-x )2=3,|x-y+1|≥3和(2-x )2≥3,∴|x-y+1|=3,(2-x )2=3,解得x=2,y=1.∴xy=2.故答案是:2.【点睛】考查了非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(1)二次根式(算术平方根).当它们相加和为3时,必须满足其中的每一项都等于3.根据这个结论即可解决此类问题. 13.由一些正整数组成的数表如下(表中下一行中数的个数是上一行中数的个数的2倍):若规定坐标号(m,n )表示第m 行从左向右第n 个数,则(7,4)所表示的数是_____;(5,8)与(8,5)表示的两数之积是_______;数2012对应的坐标号是_________【答案】134,12144,(10,495).【解析】根据下一行中数的个数是上一行中数的个数的2倍表示出前n行偶数的个数的表达式为2m-1,然后求出第6行的最后一个偶数,再计算之后的4个偶数即可求出(7,4);分别求出第4行第7行最后的一个偶数,然后求出(5,8)与(8,5)表示的数,再相乘即可;求出数2012是第1006个偶数,根据表达式得1006=29-1+495,先求出第511个数是第9行的最后一个数,再求解即可.【详解】解:设前m行偶数的个数为S,则S=1+2+22+23+…+2m-1,两边都乘以2得,2S=2+22+23+…+2m,所以,S=2m-1,当m=6时,S=26-1=64-1=63,所以,(7,4)所表示的数是第63+4=67个偶数,为134;当n=4时,24-1=15,所以,(5,8)表示的数是第15+8=23个偶数,为46,当n=7时,27-1=127,所以,(8,5)表示的数是第127+5=132个偶数,为264,46×264=12144;∵数2012是第1006个偶数,n=9时,29-1=511,1006-511=495∴数2012是第10行的第495个数,可以表示为(10,495).故答案为:20,12144,(10,495).【点睛】本题是对数字变化规律的考查,读懂题目信息,表示出前n行的偶数的个数的表达式是解题的关键,也是本题的难点.14.已知21xy=⎧⎨=⎩是方程组221x aybx y+=⎧⎨+=⎩的解,则a b+=__________.【答案】-2【解析】解题关键是把方程组的解代入原方程组,使方程组转化为关于a和b的二元一次方程组,再解方程组.求出a、b,代入即可求值.【详解】解:把21x y =⎧⎨=⎩代入方程组221x ay bx y +=⎧⎨+=⎩, 得到关于a 和b 的二元一次方程组42211a b +=⎧⎨+=⎩, 解得20a b -⎧⎨⎩==. ∴a+b=-2+0=-2,故答案为:-2.【点睛】本题主要考查了二元一次方程组的解及解二元一次方程组,解方程组常用的方法是加减法和代入法. 15.分式方程1133mx x x +=--无解,则m 的值为___ 【答案】13或1. 【解析】分式方程去分母转化为整式方程,由分式方程无解求出x 的值,代入整式方程计算即可求出m 的值.【详解】分式方程去分母得:1+x ﹣3=mx ,即(m ﹣1)x =﹣2,当m =1时,整式方程无解;由分式方程无解,得到x ﹣3=0,即x =3,把x =3代入整式方程得:m =13, 故答案为:13或1. 【点睛】此题考查了分式方程的解,始终注意分母不为0这个条件.16.计算下列各题:(1)27-=_____; (2)()()32-⨯-=_____;(3=_____; (4=_____;(5)=_____; (6)|1=_____;【答案】5- 6 5 21【解析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式利用乘法法则,计算即可得到结果;(3)原式利用算术平方根计算即可得到结果;(4)原式利用立方根计算即可得到结果.(5)原式利用实数的减法,计算即可得到结果;(6)原式利用绝对值的代数意义化简,计算即可得到结果;【详解】解:(1)27-=()725--=-;(2)()()32-⨯-=32=6⨯;(3)25=5;(4)38=2;(5)233-=3; (6)|12|-=()12=21---; 【点睛】本题主要考查的是实数的运算,整式的化简求值,熟练掌握相关法则是解题的关键.17.如图,已知EF GH ,AC CD ⊥,143DCG ︒∠=,则CBF =∠__________度.【答案】127【解析】首先根据垂直定义可得∠ACD=90°,再根据余角的定义可得∠ACH 的度数,然后再根据平行线的性质可得∠FBC+∠ACH=180°,进而可得答案.【详解】解:∵AC ⊥CD ,∴∠ACD=90°,∵∠DCG=143°,∴∠DCH=180°-143°=37°,∴∠BCH=90°-37°=53°∵EF//GH ,∴∠FBC+∠BCH=180°,.∠FBC=180°-53°=127°,故答案为:127.【点睛】本题主要考查了平行线的性质,关键是掌握两直线平行,同旁内角互补.三、解答题18.若不等式组200x a x b -+⎧⎨-⎩的解集为﹣1≤x ≤2, (1)求a 、b 的值;(2)解不等式ax+b <0,并把它的解集在下面的数轴上表示出来.【答案】(1)a =﹣2,b =2;(2)x >1,图见详解【解析】(1)先求出不等式组的解集,根据已知即可求出a 、b 的值;(2)代入后求出不等式的解集即可.【详解】解:(1)200x a x b -+⎧⎨-⎩①② ∵解不等式①得:2a x , 解不等式②得:x ≤b , ∴不等式组的解集为2a x b , ∵不等式组200x a x b -+⎧⎨-⎩的解集为﹣1≤x ≤2, ∴12a =-,b =2, 即a =﹣2,b =2;(2)把a =﹣2,b =2代入ax+b <0得:﹣2x+2<0,﹣2x <﹣2,x >1,在数轴上表示为:.【点睛】本题考查了解一元一次不等式组、解一元一次不等式和在数轴上表示不等式的解集,能求出不等式组或不等式的解集是解此题的关键.19.阅读下列材料:我们知道||x 的几何意义是在数轴上数x 对应的点与原点的距离,即0x x =-,也就是说,12||x x -表示在数轴上数1x 与数2x 对应的点之间的距离;例 1.解方程||2x =,因为在数轴上到原点的距离为2的点对应的数为2±,所以方程||2x =的解为2x =±.例 2.解不等式|1|2x ->,在数轴上找出|1|2x -=的解(如图),因为在数轴上到1对应的点的距离等于2的点对应的数为1-或3,所以方程|1|2x -=的解为1x =-或3x =,因此不等式|1|2x ->的解集为1x <-或3x >.参考阅读材料,解答下列问题:(1)方程35x +=的解为 ;(2)解不等式:|2|3x -≤;(3)解不等式:428x x -++>.【答案】(1)x=2或x=-8;(2)-1≤x≤5;(3)x >5或x <-3.【解析】(1)利用在数轴上到-3对应的点的距离等于5的点的对应的数为2或-8求解即可;(2)先求出|2|3-=x 的解,再求出|2|3x -≤的解集即可;(3)先在数轴上找出428-++=x x 的解,即可得出428x x -++>的解集.【详解】解:(1)∵在数轴上到-3对应的点的距离等于5的点的对应的数为2或-8∴方程35x +=的解为x=2或x=-8(2)∵在数轴上到2对应的点的距离等于3的点的对应的数为-1或5∴方程|2|3-=x 的解为x=-1或x=5∴|2|3x -≤的解集为-1≤x≤5.(3)由绝对值的几何意义可知,方程428-++=x x 就是求在数轴上到4和-2对应的点的距离之和等于8的点对应的x 的值.∵在数轴上4和-2对应的点的距离是6∴满足方程的x 的点在4的右边或-2的左边若x 对应的点在4的右边,可得x=5;若x 对应的点在-2的左边,可得x=-3 ∴方程428-++=x x 的解为x=5或x=-3∴428x x -++>的解集为x >5或x <-3.故答案为(1)x=2或x=-8;(2)-1≤x≤5;(3)x >5或x <-3.【点睛】本题考查了绝对值及不等式的知识. 解题的关键是理解12||x x -表示在数轴上数1x 与数2x 对应的点之间的距离. 20.如图,在四边形ABCD 中,连接BD ,点E F 、分别在AB 和CD 上,连接,CE AF CE 、与AF 分别交BD 于点N M 、.已知AMD BNC ∠=∠.(1)若110AFC ∠=︒,求ECD ∠的度数;(2)若ABD BDC ∠=∠,试判断ECD ∠与BAF ∠之间的数量关系,并说明理由.【答案】(1)70︒;(2)ECD BAF ∠=∠,理由见详解.【解析】(1)根据对角相等以及同位角相等两直线平行,即可求得结果;(2)由内错角相等两直线平行,再根据两直线平行同位角相等即可判断ECD ∠与BAF ∠之间的数量关系.【详解】(1)如图可知:AMD BMF ∠=∠AMD BNC ∠=∠BMF BNC ∴∠=∠AF ∴//EC (同位角相等,两直线平行)AFD ECD ∴∠=∠又110AFC ∠=︒则18011070AFD ∠=︒-︒=︒70ECD ∴∠=︒(2)ABD BDC ∠=∠AB ∴//DC (内错角相等,两直线平行)BAF AFD ∴∠=∠(两直线平行,内错角相等)又ECD AFD ∠=∠ECD BAF ∴∠=∠【点睛】本题考查两直线平行的判定和性质,以及等效替代的方法,属中档题.21.一次环保知识竞赛共有25道题,规定答对一道题得4分,答错或不答一道题扣1分,在这次竞赛中,小明被评为优秀(85分或85分以上),则小明至少答对了几道题?【答案】小明至少答对1道题【解析】设小明答对了x 道题,则他答错和不答的共有(25-x )道题.根据题意,得4x -1×(25-x )≥85,解这个不等式,得x≥1.22.在等边三角形ABC 中6,AB =点D 是BC 边上的一点,点P 是AB 边上的一点,连接,PD 以PD 为边作等边三角形,PDE 连接BE .()1如图1,当点P 与点A 重合时,①找出图中的一对全等三角形,并证明;BD BE +=② ;()2如图2,若1,AP =请计算BD BE +的值.【答案】(1)①ACD ABE △≌△,证明见解析;②6;(2)1.【解析】(1)①由等边三角形的性质得60AB AC BAC =∠=︒,60AD AE DAE =∠=︒,从而得CAD BAE ∠=∠,由SAS 即可得到结论,②根据全等三角形的性质,即可求解;(2)过点P 作//PQ AC 交BC 于点Q ,易得BPQ 是等边三角形,结合PDE △是等边三角形,得EPB DPQ ∠=∠,由SAS 证明PEB PDQ ≌,进而即可求解.【详解】(1)①ACD ABE △≌△.证明如下: ABC 是等边三角形,60AB AC BAC ∴=∠=︒,. ADE 是等边三角形,60AD AE DAE ∴=∠=︒,.60CAD BAD BAE BAD ∴∠+∠=∠+∠=︒,CAD BAE ∴∠=∠,在ACD 和ABE △中,∵AC AB CAD BAE AD AE =⎧⎪∠=∠⎨⎪=⎩,ACD ABE ∴≌(SAS );②∵ACD ABE △≌△,∴CD=BE ,∴6BD BE BD CD BC +=+==.故答案是:6;(2)过点P 作//PQ AC 交BC 于点Q ,//PQ AC ,60PQB C A BPQ ∴∠=∠=∠=∠=︒.60ABC ∠=︒,BPQ ∴是等边三角形,PB PQ ∴=, PDE 是等边三角形,∴PE=PD ,∠DPE=60°,∴60EPB BPD BPD DPQ ∠+∠=∠+∠=︒,EPB DPQ ∴∠=∠.在PEB △和PDQ 中,PB PQ EPB DPQ PE PD =⎧⎪∠=∠⎨⎪=⎩,PEB PDQ ∴≌(SAS ),BE QD ∴=,615BD BE BD DQ BQ BP BA PA ∴+=+===-=-=.【点睛】本题主要考查三角形全等的判定和性质定理以及等边三角形的性质定理,添加辅助线,构造全等三角形,是解题的关键.23.如图,已知A ,O ,E 三点在一条直线上,OB 平分∠AOC ,∠AOB +∠DOE=90°,试问:∠COD 与∠DOE 之间有怎样的关系?说明理由.【答案】相等,理由见解析.【解析】试题分析:利用角平分线的性质,可知∠AOB=∠BOC ,而∠AOB+∠DOE=90°,由平角的定义,可知∠BOC+∠COD=90°,根据等角的余角相等,可知∠COD 与∠DOE 相等.试题解析:解:∠COD=∠DOE .理由如下:∵OB 平分∠AOC ,∴∠AOB=∠BOC .又∵∠AOB+∠DOE=90°,∴∠BOC+∠COD=∠AOE-(∠AOB+∠DOE)=180°-90°=90°,∴∠COD=∠DOE.点睛:本题主要考查了角平分线、平角的定义及余角的性质.比较简单.24.如图,在正方形网格中建立平面直角坐标系,已知点A(3,2),(4,-3),C(1,-2),请按下列要求操作:(1)请在图中画出△ABC;(2)将△ABC向左平移5个单位长度,再向上平移4个单位长度,得到△A1B1C1,在图中画出△A1B1C1,并直接写出点A1、B1、C1的坐标.【答案】(1)详见解析;(2)A1(-2,6),B1(-1,1),C1(-4,2)【解析】(1)在平面坐标系中找到出点连接即可(2)平移之后读出坐标即可【详解】解:(1)如图所示:(2)如图所示:结合图形可得:A1(-2,6),B1(-1,1),C1(-4,2)【点睛】本题考查平面直角坐标系,能够找出A、B、C三点然后平移画出图是本题解题关键25.如图,已知:AB∥CD,E在直线AB上,且EF⊥EG,EF交直线CD于点M.EG交直线CD于点N.(1)若∠1=34°,求∠2的度数;(2)若∠2=2∠1,直接写出图中等于4∠1的角.【答案】(1)∠2=56°;(2)等于4∠1的角为∠FMN,∠CME,∠MEB【解析】(1)依据AB∥CD,可得∠1=∠GEB=34°,依据EF⊥EG,即可得到∠2=180°-90°-34°=56°;(2)依据∠2=2∠1,∠1=∠GEB,即可得到∠GEB=30°=∠1,进而得出∠FMN=∠CME=∠MEB=120°,即可得到图中等于4∠1的角为∠FMN,∠CME,∠MEB.【详解】(1)∵AB∥CD,∴∠1=∠GEB=34°,∵EF⊥EG,∴∠2=180°﹣90°﹣34°=56°;(2)∵∠2=2∠1,∠1=∠GEB,∴∠2=2∠GEB,又∵∠2+∠GEB=90°,∴∠GEB=30°=∠1,∴4∠1=120°,∠2=60°,∴∠FMN=∠CME=∠MEB=120°,即图中等于4∠1的角为∠FMN,∠CME,∠MEB.【点睛】本题主要考查平行线的性质和垂线,掌握平行线的性质是解题的关键.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.七年级学生在会议室开会,每排坐12人,则有12人没有座位;每排坐14人,则余2人独坐最后一排,则这间会议室的座位排数是( )A .15B .14C .13D .12【答案】D【解析】分析后可得出两个等量关系:12×排数+12=学生人数;14×(排数-1)+2=学生人数.根据题意列出二元一次方程组求解即可。

人教版七年级数学上册导学案 第二章整式的加减 2.2整式的加减(第三课时)

人教版七年级数学上册导学案 第二章整式的加减 2.2整式的加减(第三课时)

人教版七年级数学上册导学案 第二章整式的加减 2.2整式的加减(第三课时)【学习目标】1.掌握正确地运用合并同类项、去括号的法则进行整式的加减运算。

2.掌握利用整式的运算化简多项式并求值。

3.能运用整式的加减解决简单的实际问题。

4.培养主动探究、合作交流的意识,严谨治学的学习态度【课前预习】1.某天数学课上老师讲了整式的加减运算,小颖回到家后拿出自己的课堂笔记,认真地复习老师在课堂上所讲的内容,她突然发现一道题目:()()2222223355a ab ba ab b a +---++= 26b -,空格的地方被墨水弄脏了,请问空格中的一项是( )A .+2abB .+3abC .+4abD .-ab 2.若关于x 、y 的多项式2x 2+mx+5y ﹣2nx 2﹣y+5x+7的值与x 的取值无关,则m+n=( )A .﹣4B .﹣5C .﹣6D .63.若一个整式减去a 2-2b 2等于a 2+2b 2,则这个整式是( )A .2b 2B .-2b 2C .2a 2D .-2a 24.若多项式32281x x x -+-与多项式323253x mx x +-+的差不含二次项,则m 等于( )A .2B .-2C .4D .-45.下列计算正确的是( )A .8a+2b+(5a ﹣b )=13a+3bB .(5a ﹣3b )﹣3(a ﹣2b )=2a+3bC .(2x ﹣3y )+(5x+4y )=7x ﹣yD .(3m ﹣2n )﹣(4m ﹣5n )=m+3n6.一个多项式减去x 2﹣2y 2等于x 2+y 2,则这个多项式是( )A .﹣2x 2+y 2B .2x 2﹣y 2C .x 2﹣2y 2D .﹣x 2+2y 27.若a 2+2ab =−10,b 2+2ab =16,则多项式a 2+4ab +b 2与a 2−b 2的值分别为( )A .6,26B .-6,26C .-6,-26D .6,-26 8.x 2+ax ﹣2y +7﹣(bx 2﹣2x +9y ﹣1)的值与x 的取值无关,则﹣a +b 的值为( )A .3B .1C .﹣2D .29.某同学做了一道数学题:“已知两个多项式为A ,B ,B=3x ﹣2y ,求A ﹣B 的值.”他误将“A ﹣B ”看成了“A+B ”,结果求出的答案是x ﹣y ,那么原来的A ﹣B 的值应该是( )A .4x ﹣3yB .﹣5x+3yC .﹣2x+yD .2x ﹣y10.下列计算正确的是( )A .﹣1﹣1=0B .2(a ﹣3b )=2a ﹣3bC .a 3﹣a=a 2D .﹣32=﹣9 【学习探究】自主学习 1、合并同类项法则:合并同类项时,把____________相加,所得的和作为系数,字母和字母的指数___________。

第二章 整式的加减导学案[人教版初一七年级] 8

第二章 整式的加减导学案[人教版初一七年级] 8

第8课时:整式的加减(5)学习内容:教科书第68—70页,2.2整式的加减:4.整式的加减。

学习目的和要求:1.从实际背景中去体会进行整式的加减的必要性,并能灵活运用整式的加减的步骤进行运算。

2.认识到数学是解决实际问题和进行交流的重要工具。

学习重点和难点:重点:整式的加减。

难点:总结出整式的加减的一般步骤。

学习方法:归纳、总结、类比、练习相结合。

学习过程:一、复习引入:1.做一做。

某学生合唱团出场时第一排站了n名,从第二排起每一排都比前一排多一人,一共站了四排,则该合唱团一共有多少名学生参加?①写出答案:n+(n+1)+(n+2)+(n+3)②以上答案进一步化简吗?如何化简?我们进行了哪些运算? 2.练习:化简: (1)(x+y)—(2x -3y) (2)2()222223(2)a b a b --+以上化简实际上进行了哪些运算?怎样进行整式的加减运算? 二、探究新知:1.整式的加减:去括号和合并同类项是整式加减的基础。

因此,整式加减的一般步骤可以总结为:(1)如果有括号,那么先去括号。

(2)如果有同类项,再合并同类项。

2.例题: 例1 计算 (1)(2x -3y )+(5x+4y) (2)(8a ―7b)―(4a ―5b)注意:第一题就是问题“计算多项式2x -3y 与5x+4y 的和”,第二题就是问题“计算多项式8a ―7b 与4a ―5b 的差”例2 一种笔记本的单价是x 元,圆珠笔的单价是y 元,小红买这种笔记本3本,买圆珠笔2支;小明买这种笔记本4本,买圆珠笔3支。

买这些笔记本和圆珠笔,小红和小明一共花费多少钱?(2) 做大纸盒比做小纸盒多用料多少平方厘米?归纳:一般的,几个整式相加减,如果 ,然后 。

例9 求21x -2(x -31y 2)+(-23x+31y 2)的值,其中x=-2,y=32三、归纳小结:1我的收获是2、还有没解决的问题是四、巩固练习:课本p70:1,2,3 五、自主检测:1、化简:(1)(x+y)—(2x -3y) (2)2()222223(2)a b ab --+(3)―2y 3+(3xy 2―x 2y)―2(xy 2―y 3)2、(1)求整式x2―7x―2与―2x2+4x―1的差。

七年级数学上册第二章整式的加减整式的加减导学案新人教版

七年级数学上册第二章整式的加减整式的加减导学案新人教版

课题 2.2.1整式的加减 (1)德育目标:、通过师生合作,体验教学活动充满着探索性和创造性,从而体会到学习中的成就感。

学习目的:1、理解同类项和合并同类项的概念2、掌握合并同类项的法则,并会运用该法则;学习重点:合并同类项、同类项的概念学习难点:根据同类项概念在多项式中找同类项学习过程:一、课堂引入: 运用有理数的运算律计算100×2+252×2=____________100×(-2)+252×(-2)=____________二、自学课本 P62-P63探究,小组探讨乘法分配律在计算中的运用由课本问题引出: 1、填空 (1)100t+252t=( )t(2)3x 2+2x 2= ( )x 2 (3)3ab 2—4ab 2=( )ab 2归纳: ___________________________________________,叫做同类项,几个常数项也是同类项。

__________________________,叫做合并同类项.合并同类项后,所得项的系数是合并前各同类项的系数的____,且___________ 不变。

理解同类项:两个相同①所含字母相同;②相同字母的指数分别相同;两者缺一不可;两个无关:(1)、同类项与系数大小无关;(2)、同类项与它们所含相同字母的顺序无关.三、例题讲解:例1:判断下列各组中的两项是否是同类项①-5ab 3与3a 3b , ②x 3与53, ③-xy 2z 与12zy 2x ,④3xy 与3x , ⑤53与35, ⑥3mn 与33mn例2:合并下列各式的同类项:(1)xy 2-51xy 2 (2)-3x 2y+2x 2y+3xy 2-2xy 2(3)4a 2+3b 2+2ab-4a 2-4b 2 (4)4x 2+2x+7+3x-8x 2-2例3、当K 取何值时,y x y xk 23-与是同类项? 分析:要使y x y x k 23-与是同类项,必须满足什么条件?四、当堂训练: (A 组) 1、下列两式是同类项的是( )A .32xyz 与32xy B. x1 与2x C.0.5x 3y 2和7x 2y 3 D.5m 2n 与-4 n m 22、下面计算正确的是( )A.3x 2-x 2=3B.3a 2+2a 3=5a 5C.3+x=3xD.-0.25ab+41ba=0 3、计算: (1)12x -20x ; (2)x+7x-5x ; (3)-5a+0.3a-2.7a ;(4)31y -32y +2y ; (5)-6ab+ba+8ab ; (6)10y 2-0.5y 2(B 组)4、请你在下面的横线上填上适当的内容,使两个单项式构成同类项。

七年级数学上册第二章《整式的加减》代数式导学案新版新人教版

七年级数学上册第二章《整式的加减》代数式导学案新版新人教版

代数式( 1)班:座号:姓名:【学目】1.理解字母表示数的意,并能合解一些代数式的意,培养符号意;2.在情境中,能求出代数式的,并解它的意;3.在独立思虑的基上,极参加授课的,并能表自己的点.学重点:会列出代数式,并能解一些代数式的背景或几何意.学点:依照生活,代数式作出不同样解.【学前准】用字母代替数,能我的生生活来好多方便,如本章前言中的:学小价和字完成正字1.列在土地段的行速度是100 km/ h,依照速度、和行程之的关系:行程=速度,列 2 h行的行程是:100 2200 km列 5 h行的行程是:100 5500 km⋯⋯:列 t h 行的行程是:100 t _____ km(明:在含有字母的式子中若是出乘号,平常将乘号写作“.”或省略不写.比方: 100× t 能够写成 100 . t或100t;若是出除号,平常用分数代替,比方: a 2 写成a.)22.( 1)用运算符号把数和表示数的字母的式子叫做代数式;独的数字和字母也是代数式;( 2)判断以下各式哪些是代数式.① 3x 6y ;②s;③ m2 1 ;④6;⑤ a ;⑥x 6 0 ;⑦x y 6 .t其中是代数式有:.(填写序号即可)2.某种笔本价 3 元,( 1) 2 本的笔本需元;3本的笔本需元;( 2)x本的笔本需元.3.例子明朝数式6a 的意:.4.若是用x(米/秒)表示小明跑步的速度,用y(米/秒)表示小明走路的速度,那么小明先跑步10 秒再走路 5 秒所的行程米.5.公园的票价钱是:成人票每10 元,学生票每 5 元.( 1)若是一个旅游有成人x 个,学生 y 个,那么付票用元;( 2)若是旅游有成人35 个,学生10 个,那么付票用多少元?想一想:在本质生活中,代数式10x 5 y 还能够表示怎样的意义?【讲堂研究】例 1列代数式表示:(1) 棱长为 a 的正方体的表面积是,体积是 ________ ;(2) 铅笔的单价是 x 元,圆珠笔的单价是铅笔的 2.5 倍,则圆珠笔的单价是元;(3) a 与 b 的和的 -2 倍能够表示为 .(4)a 与b 的 -2 倍的和能够表示为.(5) 一辆长途汽车从杨柳村出发, 3h 后抵达出发地 s km 的溪河镇,这辆长途汽车的平均速度是 _____ km/ h ;(6) 一台电视机原价a 元,现按原价的 9 折销售,这台电视机现在的售价为________元;(7) 一个长方形的长是 0.9 ,宽是 a ,这个长方形的面积是 ________,.一个代数式能够表示不同样的含义,你还能够说出 0.9 a 表示的一个含义吗?【概括总结】总结书写代数式时要注意:若出现乘号,平常将乘号写作 “ ”或省略不写.比方, 100 x 能够写成 100x 或100x .数字与字母相乘,省略乘号并且把数字放在字母前面;如:2a , - 3 ( x+y ).各项前面的系数请使用假分数,不要写成带分数;如:7ab 不写成 21ab .a不写成33有除法运算时,用分数线代替除号.如:a 2 .2若结果是和、差形式的,请将结果添上括号,再写单位.如: ( 2a+30) 元【讲堂检测】1.列代数式表示:( 1) f 的 11 倍与 2 的和能够表示为;( 2)一个教室有 2 扇门和 4 个窗户, n 个这样的教室有扇门和个窗户;( 3)甲班共有x 名学生,女生人数占45%,那么男生人数共有人;乙班学生数比甲班多5%,则乙班有人;( 4)一个长方形的长是 a 米,宽是 b 米,这个长方形的周长是 _ 米.2. 在某地,人们发现在必然温度下某种蟋蟀叫的次数与温度之间有以下近似关系:用蟋蟀1min叫的次数除以7,此后再加上3,就近似地获得该地当时的温度(℃).( 1)用代数式表示该地当时的温度;( 2)蟋蟀1min叫的次数分别是84,140时,该地当时的温度.3.举例说明朝数式 2a 2b 所表示的意义.【讲堂拓展】出租车收费标准因地而异,甲城市收费标准为:起步价乙城市收费标准为:起步价(1) 请分别列式并比较10 元, 3 千米后每千米价为8 元, 3 千米后每千米价为: 在两市乘坐出租车的行程分别为1.5 元,每次加燃油费 1 元;2 元,每次加燃油费 2 元.2 千米, 5 千米, 6 千米时,哪个城市的车费更高些?(2) 在甲,乙两市乘坐出租车x ( x >3)千米时,分别付费多少元?【课后作业】1 .列代数式表示:( 1)a的5 倍与b的 10倍的和能够表示为.( 2)a、b的平方差能够表示为.( 3) a 与 b的和的平方能够表示为.2.( 1)34能够写成3104 ,那么79 能够写成;( 2)一个两位数的个位数字是 a ,十位数字是 b ( b0 ),这个两位数能够表示为.( 3)一个三位数的个位数字是 c ,十位数字是b,百位数字是 a (a0 )这个三位数能够表示为.3.举例说明以下各代数式所表示的意义.(1)4x(2) 1 8% x※ 4.某市出租车收费标准为:起步价 6 元(即行驶距离不高出3km 都付 6 元车费),高出3km 后,每增x km(x 为大于 3 的整数)行程.加 1km,加收 2.4 元(不足1km 按1km计算)。

人教版七上数学第二章整式的加减(1、2) 学生用导学案

人教版七上数学第二章整式的加减(1、2) 学生用导学案

课题:第二章整式的加减(1、2)月日班级:姓名:一、教材分析:(一)学习目标:1.知道第二章整式的加减知识结构图.2.通过基本训练,巩固第二章所学的基本内容.3.通过典型例题的学习和综合运用,加深理解第二章所学的基本内容,发展能力. (二)学习重点和难点:1.重点:知识结构图和基本训练.2.难点:典型例题和综合运用.二、归纳总结,完善认知1.总结本章的知识网.2.你认为本章的重点知识点和概念分别是什么?3.本章框图a(b+c)=ab ac整式的加减合并同类项整式多项式去括号单项式的式子列含字母表示数用字母三、基本训练,掌握双基1.填空(以下内容是本章的基础知识,是需要你理解和记住的,看能不看教材写出多少)(1)数字与字母的积,像这样的式子叫;单项式中的数字因数叫做单项式的;一个单项式中,所有字母的指数和叫做这个单项式的.(2)几个单项式的和叫做;其中,每个单项式叫做多项式的,不含字母的项叫做;多项式里次数最高项的次数,叫做这个多项式的. (3)与统称整式.(4)所含字母相同,并且相同字母的指数也相同的项叫做;合并同类项的方法是:系数,字母部分.(5)去括号的方法是:如果括号前面是“+”号,去括号后括号里各项都符号;如果括号前是“-”号,去括号后括号里各项都符号.(6)几个整式相加减,如果有括号就先去括号,然后再.2.填空:(1)单项式-15ab的系数是,次数是;(2)单项式4a2b2的系数是,次数是;(3)单项式23x y5的系数是,次数是.3.填空: (1)多项式4x 2-3的项是 ,常数项是 ,次数是 ;(2)多项式a 3-2a 2b 2+b 3的项是 ,次数是 .4.填空: (1)全班学生总数是x ,其中男生占总数的52%,则女生人数是 ; (2)底边长为6,高为h 的三角形面积是 ;(3)一台a 元的电视机,降价30%后售价是 元; (4)一台a 元的电视机,打七折出售,售价是 元; (5)温度由t 度下降8度后是 度;(6)今年扎西m 岁,去年扎西 岁,5年后扎西 岁;(7)某商店上月收入为a 元,本月的收入比上月的2倍还多10元,本月的收入是 元; (8)西藏某景点的门票价格是:成人10元,学生5元.一个旅游团有成人x 人,学生y 人,那么该旅游团应付 元门票费; 5.合并同类项:(1)-xy 2+3xy 2; (2)-3a +2b -5a -b ; (3)3x 2+5x -4+x 2-2x +1.6.计算:(1)(4x 2y -5xy 2)-(3x 2y -4xy 2) (2)(6m 2-4m -3)+(2m 2-4m +1)(3)(5a 2+2a -1)-4(3-8a +2a 2)7.先化简,再求值:(5a 2+3b 2)+(a 2+b 2)-(5a 2+3b 2),其中,a =-1,b =1.8. 若多项式222)25(23mx x y x +-+-的值与x 的值无关,则m 等于( ).A .0B .1C .—1D .—7 四、典型示题,加深理解示例1 某粮店原有5袋大米,每袋大米为x 千克.上午卖出3袋,下午又购进同样包装的大米4袋.进货后这个商店有大米多少千克?示例2 填空:(1)一条河流的水流速度为每小时3千米,如果已知船在静水中的速度为每小时20千米,那么这条船顺水行驶的速度为每小时 千米,逆水行驶的速度为每小时 千米;(2)一条河流的水流速度为每小时3千米,如果已知船在静水中的速度为每小时v 千米,那么这条船顺水行驶的速度为每小时 千米,逆水行驶的速度为每小时 千米.(要明确,顺水行驶:船的速度=船在静水中的速度 水流速度;逆水行驶:船的速度=船在静水中的速度 水流速度)示例3 填空:两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是每小时50千米,水流速度是每小时a 千米,则:(1)甲船顺水行驶速度为每小时 千米,乙船逆水行驶速度为每小时 千米; (2)2小时后两船相距 千米;(3)2小时后甲船比乙船多航行 千米. 五、综合运用,发展能力 9.填空:(1)教室里座位的行数是m ,每行的座位数比行数多2,则教室里总共有________ 座位; (2)三个植树队,第一队植树x 棵,第二队植的树比第一队植树的2倍少25棵,第三队植的树比第一队植树的一半多42棵,三个队共植树 棵; (3)有一枚古钱币,如图,圆的半径为3a ,正方形的边长为2a , 则古钱币的面积为 (π取3);10.某轮船顺水航行3小时,逆水航行1.5小时,已知轮船在静水中的速度为a 千米/小时,水流速度为y 千米/小时.11. 有理数a 、b 、c在数轴上的位置如图所示,化简代数式:a c b b a b a ----++.六.思维拓展,挑战自我12.若多项式18223-+-x x x 与多项式352323+-+x mx x 相加后不含二次项,则m= . 13.(1)已知:2,622=-=-b ab ab a ,求2222,2b a b ab a -+-的值.(2)已知6063)2(5,522-+--=-x y x y y x 求的值.14.已知22228,8y x xy B xy y x A +-=+-=,当31,21-=-=y x 时,求B A +2的值.15.求代数式中的值: {})]24(3[2522222b a ab ab b a ab ----,其中5.0,3=-=b a16.已知a ,b 在数铀上的位置如图,化简2a b a a b +--+.17.若)1532()2(22-+--+-+y x bx b y ax x 的值与字母x 的取值无关,试求a,b 的值.18.有一包长方体的东西,用三种不同的方法打包,哪一种方法使用的绳子最短?哪一种方法使用的绳子最长?(a +b >2c )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一学时 整式(1)学习内容:教科书第54—56页,整式:1.单项式。

学习目标:1.理解单项式及单项式系数、次数的概念。

2.会准确迅速地确定一个单项式的系数和次数。

3.通过小组讨论、合作学习等方式,经历概念的形成过程,培养自主探索知识和合作交流能力。

学习重点和难点:重点:掌握单项式及单项式的系数、次数的概念,并会准确迅速地确定一个单项式的系数和次数。

难点:单项式概念的建立。

一、自主学习;1、先填空,再分析写出式子特点,与同伴交流。

(1)若正方形的边长为a ,则正方形的面积是 ;(2)若三角形一边长为a ,并且这边上的高为h ,则这个三角形的面积为 ;(3)若x 表示正方体棱长,则正方体的体积是 ;(4)若m 表示一个有理数,则它的相反数是 ;(5)小明从每月的零花钱中贮存x 元钱捐给希望工程,一年下来小明捐款 元。

2、观察以上式子的运算,有什么共同特点3、单项式定义:由数与字母的乘积组成的代数式称为单项式。

[老师提示] 单独一个数或一个字母也是单项式,如a ,5,0。

4、练习:判断下列各代数式哪些是单项式 (1)21 x ; (2)a bc ; (3)b 2; (4)-5a b 2; (5)y ; (6)-xy 2; (7)-5。

5、单项式系数和次数:观察“1”中所列出的单项式,发现单项式是由数字因数和字母因数两部分组成。

单项式中的数字因数叫单项式的系数;单项式中所有字母指数的和叫单项式的次数。

说说四个单项式31a 2h ,2πr ,a bc ,-m 的数字因数和字母因数及各个字母的指数二、合作探究:1、教材p56例1:阅读例题,体会单项式及系数次数概念。

2、判断下列各代数式是否是单项式。

如不是,请说明理由;如是,请指出它的系数和次数。

①x +1; ②x 1; ③πr 2; ④-23a 2b 。

3、下面各题的判断是否正确①-7xy 2的系数是7; ②-x 2y 3与x 3没有系数; ③-a b 3c 2的次数是0+3+2;④-a 3的系数是-1; ⑤-32x 2y 3的次数是7; ⑥31πr 2h 的系数是31。

[老师提示]①圆周率π是常数;②当一个单项式的系数是1或-1时,“1”通常省略不写,如x 2,-a 2b 等;③单项式次数只与字母指数有关。

4、课堂练习:课本p56:1,2。

5、若单项式x m y 2的次数是5,则m= ;6、已知单项式2x m y n+2与3x m+2的次数相同,求n 的值。

7、写一个含m ,n 的3次单项式 ;8、有一串单项式:-x,2x 2, -3x 3,4x 4…, 10x 10…(1)、请写出第2010个单项式;(2)、请写出第n 个单项式。

三、学习小结:四、课堂作业: 课本p59习题第1,2题第二学时 整式(2)学习内容:教科书第56—59页,整式:2.多项式。

学习目标和要求:1.通过本节课的学习,掌握整式多项式的项及其次数、常数项的概念。

2.通过小组讨论、合作交流,经历新知的形成过程,培养比较、分析、归纳的能力。

由单项式与多项式归纳出整式,有利于知识的迁移和知识结构体系的更新。

3.初步体会类比和逆向思维的数学思想。

学习重点和难点:重点:掌握整式及多项式的有关概念,掌握多项式的定义、多项式的项和次数,以及常数项等概念。

难点:多项式的次数。

一、自主学习:1.列代数式:(1)长方形的长与宽分别为a 、b ,则长方形的周长是 ;(2)某班有男生x 人,女生21人,则这个班共有学生 人;(3)鸡兔同笼,鸡a 只,兔b 只,则共有头 个,脚 只。

2.观察以上所得出的三个代数式与上节课所学单项式有何区别。

[老师提示]上面这些代数式都是由几个单项式相加而成的。

几个单项式的和叫做多项式。

在多项式中,每个单项式叫做多项式的项。

其中,不含字母的项,叫做常数项。

如:多项式5232+-x x有三项,它们是23x ,-2x ,5。

其中5是常数项。

一个多项式含有几项,就叫几项式。

多项式里,次数最高项的次数,就是这个多项式的次数。

例如,多项式5232+-x x 是一个二次三项式。

注意:(1)多项式的次数不是所有项的次数之和,是次数最高的项的次数;(2)多项式的每一项都包括它前面的符号。

(3)多项式不包含单项式单项式与多项式统称整式二、合作探究:1、教材p57例22、判断:①多项式a 3-a 2b+a b 2-b 3的项为a 3、a 2b、a b 2、b 3,次数为12; ( )②多项式3n 4-2n 2+1的次数为4,常数项为1。

( )[注意]:多项式的次数为最高次项的次数。

3、指出下列多项式的项和次数:(1)3x -1+3x 2; (2)4x 3+2x -2y 2。

4、指出下列多项式是几次几项式。

(1)x 3-x +1; (2)x 3-2x 2y 2+3y 2。

5、已知代数式3x n -(m -1)x +1是关于x 的三次二项式,求m 、n 的条件。

6.课堂练习:课本p59:1,2。

7、填空:-45a 2b -34a b +1是 次 项式,其中三次项系数是 ,二次项为 ,常数项为 ,写出所有的项 。

8、下列代数式中哪些是整式哪些是单项式哪些是多项式xy+z a x 2+bx -1 π21 x ; x y 1_三、学习小结:四、课堂作业: 课本p60:第3题第三学时 整式(3)学习内容:课本p58例3及课本p64提到的一个内容学习目的和要求:1、通过用整式来表示事物间的关系,逐步掌握数学建模思想;2、理解多项式的升(降)幂排列的概念,会进行多项式的升(降)幂排列。

3、通过尝试和交流,体会多项式升(降)幂排列的可行性和必要性。

4、初步体验排列组合思想与数学美感,培养审美观。

学习重点和难点:重点:会进行多项式的升(降)幂排列,体验其中蕴含的数学美。

难点:会进行多项式的升(降)幂排列,体验其中蕴含的数学美。

一、自主学习:1、教材p58例3:我们知道船在河流中行驶时,船的速度需要分两种情况讨论:(1)顺水行驶:船的速度= ;(2)逆水行驶:船的速度= ;在上面两个关系式中若用字母V表示静水速度则船的顺水速度为船的逆水速度为当V=20时则甲船顺水速度甲船逆水速度乙船顺水速度乙船逆水速度2..请运用加法交换律,任意交换多项式x2+x+1中各项的位置,可以得到几种不同的排列方式在众多的排列方式中,你认为那几种比较整齐【提示】有六种不同的排列方式,像x2+x+1与1+x+x2这样的排列比较整齐。

这两种排列有一个共同点,那就是x的指数是逐渐变小(或变大)的。

我们把这种排列叫做升幂排列与降幂排列。

例如:把多项式5x2+3x-2x3-1按x的指数从大到小的顺序排列,可以写成-2x3+5x2+3x-1,这叫做这个多项式按字母x的降幂排列。

若按x的指数从小到大的顺序排列,则写成-1+3x+5x2-2x3,这叫做这个多项式按字母x的升幂排列。

二、合作探究1、请把卡片按x 降幂排列2、把多项式2πr -1+3πr 3-π2r 2按r 升幂排列。

【提示】:π是数字,不是字母,题目中一次项、二次项、三次项系数分别为2π、-π2、3π。

3、把多项式a 3-b 3-3a 2b +3a b 2重新排列。

(1)按a 升幂排列;(2)按a 降幂排列。

4、把多项式x 4-y 4+3x 3y -2xy 2-5x 2y 3用适当的方式排列。

(1)按字母x 的升幂排列得: ;(2)按字母y 的升幂排列得: 。

【注意】:(1)重新排列多项式时,每一项一定要连同它的符号一起移动;(2)含有两个或两个以上字母的多项式,常常按照其中某一字母升幂排列或降幂排列。

5.一个三位数百位数字是a ,十位数字是b,个位数字是 c 则这个三位数表示为;6.课堂练习书P61习题8,9,10,11题三.学习小结四.作业。

书P60习题4,5,6,7,题第四学时整式的加减(1)学习内容:教科书第63—64页,整式的加减:(1)同类项。

学习目标和要求:1.理解同类项的概念,在具体情景中,认识同类项。

2.通过小组讨论、合作学习等方式,经历概念的形成过程,培养自主探索知识和合作交流的能力。

3.初步体会数学与人类生活的密切联系。

学习重点和难点:重点:理解同类项的概念。

难点:根据同类项的概念在多项式中找同类项。

一、自主学习1、问题;每本练习本x元,小明买5本,小红买3本,两人一共花了多少钱小明比小红多花多少钱用代数式表示以上问题;(用两种表示方法)2、运用有理数的运算定律填空:100×2+252×2=( ) 100×(-2)+252×(-2)=( )100t+252t=( )你发现什么规侓了吗与同伴交流一下。

3、用发现的规律填空:(1)100t-252t=( ) t (2)3x 2y+2x 2y=( ) x 2y(3)3mn 2--4mn 2=( ) mn 24.同类项的定义:我们常常把具有相同特征的事物归为一类。

比如多项式的项100t 和-252t 可以归为一类,3x 2y 、2x 2y 可以归为一类,3 mn 2、-4mn 2可以归为一类,5a 与9a 也可以归为一类,还有83、0与95也可以归为一类。

3x 2y 与2x 2y 只有系数不同,各自所含的字母都是x 、y ,并且x 的指数都是2,y 的指数都是1;同样地3mn 2、4mn 2,也只有系数不同,各自所含的字母都是m 、n ,并且m 的指数都是1,n 的指数都是2。

像这样,所含字母相同,并且相同字母的指数也分别相等的项叫做同类项。

另外,所有的常数项都是同类项。

比如,前面提到的83、0与95也是同类项。

二、合作探究1、判断下列说法是否正确,正确地在括号内打“√”,错误的打“×”。

(1)3x 与3mx 是同类项。

( ) (2)2a b 与-5a b 是同类项。

( )(3)3x 2y 与-31yx 2是同类项。

( ) (4)5a b 2与-2a b 2c 是同类项。

( )(5)23与32是同类项。

( )2、指出下列多项式中的同类项:(1)3x -2y +1+3y -2x -5; (2)3x 2y -2xy 2+31xy 2-23yx 2。

3、k 取何值时,3x k y 与-x 2y 是同类项4、若把(s +t)、(s -t)分别看作一个整体,指出下面式子中的同类项。

(1)31(s +t)-51(s -t)-43(s +t)+61(s -t); (2)2(s -t)+3(s -t)2-5(s -t)-8(s -t)2+s -t 。

三、学习小结:四、课堂作业:若2a m b 8与a 3b 2m+3n 是同类项,求m 与n 的值。

第五学时 整式的加减(2)学习内容:教科书第64—66页,整式的加减:2.合并同类项。

相关文档
最新文档