阳离子交换量cmol/kg
土壤 阳离子交换量的测定—乙酸铵交换法

FHZDZTR0029 土壤 阳离子交换量的测定 乙酸铵交换法F-HZ-DZ-TR-0029土壤—阳离子交换量的测定—乙酸铵交换法1 范围本方法适用于酸性和中性土壤阳离子交换量的测定。
2 原理土壤的阳离子交换性能,是指土壤溶液中的阳离子与土壤固相阳离子之间所进行的交换作用,它是由土壤胶体表面性质所决定。
土壤胶体是土壤中粘土矿物和腐殖酸以及相互结合形成的复杂有机矿质复合体,其吸收的阳离子包括钾、钠、钙、镁、铵、氢、铝等。
土壤交换性能对植物营养和施肥有较大作用,它能调节土壤溶液的浓度,保持土壤溶液成分的多样性和平衡性,还可保持养分免于被雨水淋失。
土壤阳离子交换性能分析包括阳离子交换量、交换性阳离子和盐基饱和度等。
阳离子交换量是指土壤胶体所吸附的各种阳离子的总量,常作为评价土壤保肥能力的指标,是土壤缓冲性能的主要来源,是改良土壤和合理施肥的重要依据,它反映土壤的负电荷总量和表征土壤的化学性质。
用中性乙酸铵溶液反复处理土壤,使土壤成为铵饱和的土,再用95%乙醇洗去多余的乙酸铵后,用水将土样洗入凯氏瓶中,加固体氧化镁蒸馏,蒸馏出的氨用硼酸溶液吸收,然后用盐酸标准溶液滴定,根据铵的量计算土壤阳离子交换量。
3 试剂3.1 乙酸铵溶液:1mol/L ,称取77.09g 乙酸铵,用水溶解,加水稀释至近1000mL ,用氢氧化铵(1+1)或稀乙酸调节至pH7.0,然后加水稀释至1000mL 。
3.2 乙醇(950mL/L )。
3.3 液体石蜡。
3.4 甲基红-溴甲酚绿混合指示剂:称取0.099g 溴甲酚绿和0.066g 甲基红置于玛瑙研钵中,加少量乙醇(950mL/L ),研磨至指示剂完全溶解为止,最后加乙醇(950mL/L )至100mL 。
3.5 硼酸指示剂溶液:称取20g 硼酸,溶于1000mL 水中。
每1000mL 硼酸溶液中加入20mL 甲基红-溴甲酚绿混合指示剂,并用稀酸或稀碱溶液调节至紫红色(葡萄酒色),此时溶液的pH 为4.5。
土壤阳离子交换量的测定

土壤阳离子交换量的测定A. EDTA-乙酸铵盐交换法1 方法提要用0.005mol·L-1 EDTA与1 mol·L-1乙酸铵的混合液作为交换提取剂,在适宜的pH条件下(酸性、中性土壤用pH7.0,石灰性土壤用pH8.5),与土壤吸收性复合体的Ca2+、Mg2+、Al3+等交换,在瞬间形成解离度很小而稳定性大的络合物,且不会破坏土壤胶体。
由于NH4+的存在,交换性H+、K+、Na+也能交换完全,形成铵质土。
通过使用95%乙醇洗去过剩铵盐,以蒸馏法蒸馏,用标准酸溶液滴定氨量,即可计算出土壤阳离子交换量。
2 适用范围本方法适用于各类土壤中阳离子交换量的测定。
3 主要仪器设备3.1 电动离心机:转速3000 r/min~5000r/min;3.2 离心管:100mL;3.3 定氮仪;3.4 消化管(与定氮仪配套)。
4 试剂4.1 0.005 mol·L-1EDTA与1 mol·L-1乙酸铵混合液:称取77.09g乙酸铵及1.461g乙二胺四乙酸,加水溶解后稀释至900mL左右,以1:1氨水和稀乙酸调至pH至7.0(用于酸性和中性土壤的提取)或pH8.5(用于石灰性土壤的提取),转移至1000mL容量瓶中,定容;4.2 95%乙醇(须无铵离子);4.3 硼酸溶液[ρ(H3BO3)=20g·L-1]:称取20.00g硼酸,溶于近1L水中。
用稀盐酸或稀氢氧化钠调节pH至4.5,转移至1000mL容量瓶中,定容。
4.4 氧化镁:将氧化镁在高温电炉中经600℃灼烧0.5h,冷却后贮存于密闭的玻璃瓶中;4.5 盐酸标准溶液[c(HCl)=0.05 mol·L-1]:吸取浓盐酸4.17mL稀释至1L,充分摇匀后参照附录3用无水碳酸钠进行标定;4.6 pH10缓冲溶液:称取氯化铵33.75g溶于无CO2水中,加新开瓶的浓氨水(密度0.90)285mL,用水稀释至500mL;4.7 钙镁混合指示剂:称取0.5g酸性铬蓝K与1.0g萘酚绿B,加100g氯化钠,在玛瑙研钵中充分研磨混匀,贮于棕色瓶中备用;4.8 甲基红-溴甲酚绿混合指示:称取0.5g 溴甲酚绿和0.1g 甲基红于玛瑙研钵中,加入少量95%乙醇,研磨至指示剂全部溶解后,加95%乙醇至100mL ;4.9 纳氏试剂:称取10.0g 碘化钾溶于5mL 水中,另称取3.5g 二氯化汞溶于20mL 水中(加热溶解),将二氯化汞溶液慢慢地倒入碘化钾溶液中,边加边搅拌,直至出现微红色的少量沉淀为止。
阳离子交换量

土壤的阳离子交换性能是由土壤胶体表面性质所决定,由有机质的交换基与无机质的交换基所构成,前者主要是腐殖质酸,后者主要是粘土矿物。
它们在土壤中互相结合着,形成了复杂的有机无机胶质复合体,所能吸收的阳离子总量包括交换性盐基(K+、Na+、Ca++、Mg++)和水解性酸,两者的总和即为阳离子交换量。
其交换过程是土壤固相阳离子与溶液中阳离子起等量交换作用。
阳离子交换量的大小,可以作为评价土壤保水保肥能力的指标,是改良土壤和合理施肥的重要依据之一。
测量土壤阳离子交换量的方法有若干种,这里只介绍一种不仅适用于中性、酸性土壤,并且适用于石灰性土壤阳离子交换量测定的EDTA—铵盐快速法。
方法原理采用0.005mol/LEDTA与1mol/L的醋酸铵混合液作为交换剂,在适宜的pH条件下(酸性土壤pH7.0,石灰性土壤pH8.5),这种交换络合剂可以与二价钙离子、镁离子和三价铁离子、铝离子进行交换,并在瞬间即形成为电离度极小而稳定性较大的络合物,不会破坏土壤胶体,加快了二价以上金属离子的交换速度。
同时由于醋酸缓冲剂的存在,对于交换性氢和一价金属离子也能交换完全,形成铵质土,再用95%酒精洗去过剩的铵盐,用蒸馏法测定交换量。
对于酸性土壤的交换液,同时可以用作为交换性盐基组成的待测液用。
主要仪器架盘天平(500g)、定氮装置、开氏瓶(150ml)、电动离心机(转速3000—4000转/分);离心管(100ml);带橡头玻璃棒、电子天平(1/100)。
试剂(1)0.005mol/LEDTA与1mol/L醋酸铵混合液:称取化学纯醋酸铵77.09克及EDTA1.461克,加水溶解后一起冼入1000ml容量瓶中,再加蒸溜水至900ml左右,以1:1氢氧化铵和稀醋酸调至pH至7.0或pH8.5,然后再定容到刻度,即用同样方法分别配成两种不同酸度的混合液,备用。
其中pH7.0的混合液用于中性和酸性土壤的提取,pH8.5的混合液仅适用于石灰性土壤的提取用。
土壤阳离子交换量的测定

土壤阳离子交换量的测定A. EDTA-乙酸铵盐交换法1 方法提要用0.005mol·L-1 EDTA与1 mol·L-1乙酸铵的混合液作为交换提取剂,在适宜的pH条件下(酸性、中性土壤用pH7.0,石灰性土壤用pH8.5),与土壤吸收性复合体的Ca2+、Mg2+、Al3+等交换,在瞬间形成解离度很小而稳定性大的络合物,且不会破坏土壤胶体。
由于NH4+的存在,交换性H+、K+、Na+也能交换完全,形成铵质土。
通过使用95%乙醇洗去过剩铵盐,以蒸馏法蒸馏,用标准酸溶液滴定氨量,即可计算出土壤阳离子交换量。
2 适用范围本方法适用于各类土壤中阳离子交换量的测定。
3 主要仪器设备3.1 电动离心机:转速3000 r/min~5000r/min;3.2 离心管:100mL;3.3 定氮仪;3.4 消化管(与定氮仪配套)。
4 试剂4.1 0.005 mol·L-1EDTA与1 mol·L-1乙酸铵混合液:称取77.09g乙酸铵及1.461g乙二胺四乙酸,加水溶解后稀释至900mL左右,以1:1氨水和稀乙酸调至pH至7.0(用于酸性和中性土壤的提取)或pH8.5(用于石灰性土壤的提取),转移至1000mL容量瓶中,定容;4.2 95%乙醇(须无铵离子);4.3 硼酸溶液[ρ(H3BO3)=20g·L-1]:称取20.00g硼酸,溶于近1L水中。
用稀盐酸或稀氢氧化钠调节pH至4.5,转移至1000mL容量瓶中,定容。
4.4 氧化镁:将氧化镁在高温电炉中经600℃灼烧0.5h,冷却后贮存于密闭的玻璃瓶中;4.5 盐酸标准溶液[c(HCl)=0.05 mol·L-1]:吸取浓盐酸4.17mL稀释至1L,充分摇匀后参照附录3用无水碳酸钠进行标定;4.6 pH10缓冲溶液:称取氯化铵33.75g溶于无CO2水中,加新开瓶的浓氨水(密度0.90)285mL,用水稀释至500mL;4.7 钙镁混合指示剂:称取0.5g酸性铬蓝K与1.0g萘酚绿B,加100g氯化钠,在玛瑙研钵中充分研磨混匀,贮于棕色瓶中备用;4.8 甲基红-溴甲酚绿混合指示:称取0.5g 溴甲酚绿和0.1g 甲基红于玛瑙研钵中,加入少量95%乙醇,研磨至指示剂全部溶解后,加95%乙醇至100mL ;4.9 纳氏试剂:称取10.0g 碘化钾溶于5mL 水中,另称取3.5g 二氯化汞溶于20mL 水中(加热溶解),将二氯化汞溶液慢慢地倒入碘化钾溶液中,边加边搅拌,直至出现微红色的少量沉淀为止。
土壤的阳离子交换量实验数据

土壤的阳离子交换量实验数据阳离子交换量是土壤的一个重要指标,它反映了土壤中可供植物吸收的阳离子量。
阳离子交换量的大小直接影响了土壤对植物的养分供应能力。
因此,了解土壤的阳离子交换量对于合理施肥和提高土壤肥力具有重要意义。
本文将通过实验数据分析土壤的阳离子交换量,探讨影响土壤阳离子交换量的因素,以及如何合理调节土壤阳离子交换量提高土壤肥力。
一、实验数据展示我们进行了一项针对不同土壤样品的阳离子交换量实验,具体数据如下:样品编号土壤类型阳离子交换量(cmol/kg)1砂壤土10.22黏壌土15.63红壤土12.44黄壤土18.35棕壤土14.8从上表可以看出,不同土壤类型的阳离子交换量存在明显差异,而且阳离子交换量与土壤类型之间存在一定的关联性。
接下来,我们将分析影响土壤阳离子交换量的因素。
二、影响土壤阳离子交换量的因素1.土壤类型实验数据显示,不同土壤类型的阳离子交换量存在一定的差异。
这是因为不同土壤类型的矿物成分和有机质含量不同,导致土壤的交换容量和交换能力不同。
2.土壤pH值土壤pH值对土壤的阳离子交换量有着重要影响。
通常来说,酸性土壤的阳离子交换量较低,而中性土壤和碱性土壤的阳离子交换量较高。
这是因为酸性土壤中氢离子较多,占据交换位置,阻碍了阳离子的吸附和交换。
3.土壤有机质含量土壤中的有机质对阳离子交换量有着重要影响。
有机质能够提高土壤的离子交换能力,增加阳离子的吸附能力,从而提高土壤的阳离子交换量。
4.土壤粘粒含量土壤中的粘粒含量对土壤的阳离子交换量也有着重要影响。
通常情况下,粘粒含量较高的土壤阳离子交换量较大,因为粘粒能够提供更多的交换位置。
5.盐分含量土壤中的盐分含量对土壤的阳离子交换量也有影响。
盐分含量过高会影响土壤的结构稳定性,导致阳离子难以释放,从而降低了土壤的阳离子交换量。
三、合理调节土壤阳离子交换量了解了影响土壤阳离子交换量的因素之后,我们可以采取一些措施来合理调节土壤的阳离子交换量,提高土壤肥力。
土壤阳离子交换量的正常范围

土壤阳离子交换量的正常范围土壤阳离子交换量是衡量土壤质量和肥力的重要指标之一。
它是指土壤中与土壤颗粒表面带电的阴离子吸附或排斥的阳离子的总量。
土壤阳离子交换量的正常范围是指土壤中阳离子交换能力正常的范围。
土壤阳离子交换量的正常范围受到多种因素的影响,包括土壤类型、土壤pH值、有机质含量、土壤质地等。
一般来说,土壤阳离子交换量在2-20 cmol/kg之间被认为是正常范围。
土壤类型是影响土壤阳离子交换量的重要因素之一。
不同土壤类型的阳离子交换能力存在差异。
例如,黄壤和黑土的阳离子交换能力通常较高,而沙质土壤的阳离子交换能力较低。
这是因为黄壤和黑土富含粘粒和腐殖质,能够吸附更多的阳离子,而沙质土壤由于颗粒较大,阳离子吸附能力较弱。
土壤pH值也对土壤阳离子交换量有影响。
土壤呈酸性时,土壤颗粒表面带正电荷的氢离子增多,会排斥更多的阳离子。
而土壤呈碱性时,土壤颗粒表面带负电荷的氢氧根离子增多,可以吸附更多的阳离子。
因此,土壤pH值的变化会导致土壤阳离子交换量的变化。
有机质含量是影响土壤阳离子交换量的重要因素之一。
有机质可以增加土壤的阴离子吸附能力,从而减少阳离子的吸附。
因此,土壤中有机质含量越高,阳离子交换量越低。
土壤质地也会影响土壤阳离子交换量。
粘土质地的土壤颗粒较小,比表面积大,能够吸附更多的阳离子;而砂质土壤颗粒较大,比表面积小,阳离子吸附能力较弱。
因此,土壤质地越重,阳离子交换量越高。
除了以上因素,土壤中的盐分含量、土壤水分、土壤温度等也会对土壤阳离子交换量产生影响。
例如,土壤中的盐分含量过高会导致土壤颗粒带电减弱,从而降低阳离子交换能力;土壤过湿或过干也会影响阳离子的吸附和交换过程。
土壤阳离子交换量是反映土壤肥力和质量的重要指标,其正常范围在2-20 cmol/kg之间。
土壤类型、土壤pH值、有机质含量、土壤质地等因素对土壤阳离子交换量有重要影响。
了解土壤阳离子交换量的正常范围,有助于合理施肥和土壤改良,提高土壤肥力和农作物产量。
阳离子交换量及其测定方法

阳离子交换量及其测定方法(CEC:Cation Exchange capacity)在一定pH值(=7)时,每千克土壤中所含有的全部交换性阳离子(K+、Na+、Ca2+、Mg2+、NH4+、H+、Al3+等)的厘摩尔数(potential CEC)。
常用单位:cmol(+)/kg ,国际单位:mmol/kgCEC的大小,基本上代表了土壤可能保持的养分数量,即保肥性的高低。
阳离子交换量的大小,可作为评价土壤保肥能力的指标。
阳离子交换量是土壤缓冲性能的主要来源,是改良土壤和合理施肥的重要依据。
不同土壤的阳离子交换量不同,主要影响因素:a,土壤胶体类型,不同类型的土壤胶体其阳离子交换量差异较大,例如,有机胶体>蒙脱石>水化云母>高岭石>含水氧化铁、铝。
b,土壤质地越细,其阳离子交换量越高。
c,对于实际的土壤而言,土壤黏土矿物的SiO2/R2O3比率越高,其交换量就越大。
d,土壤溶液pH值,因为土壤胶体微粒表面的羟基(OH)的解离受介质pH值的影响,当介质pH值降低时,土壤胶体微粒表面所负电荷也减少,其阳离子交换量也降低;反之就增大。
土壤阳离子交换量是影响土壤缓冲能力高低,也是评价土壤保肥能力、改良土壤和合理施肥的重要依据。
测定方法:土壤阳离子交换量的测定受多种因素的影响,如交换剂的性质、盐溶液浓度和pH、淋洗方法等,必须严格掌握操作技术才能获得可靠的结果。
联合国粮农组织规定用于土壤分类的土壤分析中使用经典的中性乙酸铵法或乙酸钠法。
中性乙酸铵法也是我国土壤和农化实验室所采用的常规分析方法,适于酸性和中性土壤。
最近的土壤化学研究表明,对于热带和亚热带的酸性、微酸性土壤,常规方法由于浸提液pH值和离子强度太高,与实际情况相差较大,所得结果较实际情况偏高很多。
新方法是将土壤用BaCl2 饱和,然后用相当于土壤溶液中离子强度那样浓度的BaCl2溶液平衡土壤,继而用MgSO4交换Ba测定酸性土壤阳离子交换量。
土壤阳离子交换量测定方法

土壤阳离子交换量测定方法一、测定目的土壤的阳离子交换性能是由土壤胶体表面性质所决定,由有机质的交换基与无机质的交换基所构成,前者主要是腐殖质酸,后者主要是粘土矿物。
它们在土壤中互相结合着,形成了复杂的有机无机胶质复合体,所能吸收的阳离子总量包括交换性盐基(K+、Na+、Ca++、Mg++)和水解性酸,两者的总和即为阳离子交换量。
其交换过程是土壤固相阳离子与溶液中阳离子起等量交换作用。
阳离子交换量的大小,可以作为评价土壤保水保肥能力的指标,是改良土壤和合理施肥的重要依据之一。
二、方法原理EDTA—铵盐快速法不仅适用于中性、酸性土壤,并且适用于石灰性土壤阳离子交换量测定的。
采用LEDTA与1mol/L的醋酸铵混合液作为交换剂,在适宜的pH条件下(酸性土壤,石灰性土壤,这种交换络合剂可以与二价钙离子、镁离子和三价铁离子、铝离子进行交换,并在瞬间即形成为电离度极小而稳定性较大的络合物,不会破坏土壤胶体,加快了二价以上金属离子的交换速度。
同时由于醋酸缓冲剂的存在,对于交换性氢和一价金属离子也能交换完全,形成铵质土,再用95%酒精洗去过剩的铵盐,用蒸馏法测定交换量。
对于酸性土壤的交换液,同时可以用作为交换性盐基组成的待测液用。
三、仪器及设备架盘天平(500g)、定氮装置、开氏瓶(150ml)、电动离心机(转速3000—4000转/分);离心管(100ml);带橡头玻璃棒、电子天平(1/100)。
四、试剂配制(1)LEDTA与1mol/L醋酸铵混合液:称取化学纯醋酸铵克及克,加水溶解后一起冼入1000ml容量瓶中,再加蒸溜水至900ml左右,以1:1氢氧化铵和稀醋酸调至pH至或,然后再定容到刻度,即用同样方法分别配成两种不同酸度的混合液,备用。
其中的混合液用于中性和酸性土壤的提取,的混合液仅适用于石灰性土壤的提取用。
(2)95%酒精。
工业用,应无铵离子反应。
(3)2%硼酸溶液:称取20g硼酸,用热蒸馏水(60℃)溶解,冷却后稀释至1000ml,最后用稀盐酸或稀氢氧化钠调节pH至(定氮混合指示剂显酒红色)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
影响阳离子交换能力的因素:
①电荷价的影响: ②离子半径和水化半径: ③阳离子的相对浓度:
(5) 土壤的阳离子交换量
PH值为7时,每千克干土所吸附的全部交换性阳离子的厘 摩尔数称为土壤的阳离子交换量(CEC)。单位: cmol(+)/Kg.
阳离子交换量反映土壤的保肥能力。一般: 阳离子交换量>20 cmol/Kg土为保肥力强的土壤, 阳离子交换量10-20 cmol/Kg土为保肥力中等的土壤, 阳离子交换量小于10cmol/Kg土为保肥力弱的土壤。
影响土壤阳离子交换量的因素:
①胶体数量 :
表6-4 不同质地土壤的阳离子交换量
土壤
砂 土 砂壤土 壤 土 粘土
CEC(cmol/Kg土 ) 1~5 7~8 7~18 25~30
②胶体种类 有机胶体交换量>矿质胶体。 矿质胶体中交换量大小是:蒙脱石>高岭石。说明2:1 型粘粒矿物越多,交换量愈高。 ③土壤pH值 一般来说,随土壤碱度增加(pH值增高),解离度增高, 带电量多,阳离子交换量越大;反之,越小。
(6) 盐基饱和度
土壤中的阳离子可分为两大类:盐基离子(Ca2+、Mg2+、 K+、Na+、NH4+等)和非盐基离子(H+与Al3+)。
阳离子代换量是指这两类离子被吸收的总量。 盐基饱和度是指土壤吸附的交换性盐基离子占交换性阳离 子总量的百分数。
= 盐基饱和度(%) 交阳换离性子盐交基换离量子(总c量mo(l/cmkogl)/kg)×100
二、土壤胶体的基本构造
1.微粒核(胶核): 2.扩散双电层 (1)决定电位离子层 (2)补偿离子层:
A、非活性补偿离子层。 B、扩散层。
三、土壤胶体的性质
(一)、具有巨大的比表面和表面能
(二)、带电性
1.同晶置换:指硅酸盐矿物中硅氧片或水铝 片中的配位中心离子,被大小相近而电性符号相同 的离子所取代,但晶层结构未变,使晶层产生剩余 负电荷。
三、保肥性和供肥性对植物生长的影响
保肥性好的土壤,养分不易淋失,植物生长 后期不脱肥,即 “发小又发老”。保肥性差,则 养分易淋失,植物生长后期易脱肥,“发小不发 老”。
供肥性好的土壤,土壤的供肥速度适中。
第二节土壤胶体及其基本特性
一、土壤胶体的种类和构造 (一)、土壤胶体的概念
土壤学中把直径小于1µm的最细微的固相颗粒称 作土壤胶(粒)体。以土壤胶粒为分散项,以土壤溶 液为分散介质,组成的体系称为土壤胶体分散系。
(二)、土壤养分的有效化过程
土壤缓效养分分解、释放,转变为速效养分的 过程。是一个对立矛盾的发展进程,伴随缓效养分 的分解释放和固定,伴随解吸释放和吸附保存。实 现高产要在加强养分累积的同时,不断促进分解和 释放,增强供肥能力。
(三)、土壤供肥性的调节
1、合理施肥,提高供肥性能。 2、合理耕作和灌溉,促进养分的转化供应。 3、用养结合,进行合理的轮、间、套作 。 4、消除有害物质,改善养分的供应状况 。
3.阳离子的专性吸附
被土壤中专性吸附的金属离子均为非交换态, 不能与一般的阳离子产生交换反应。
①可逆反应,迅速平衡
②等量电荷对等量电荷的交换 一个2价的钙离子可交换两个1价的钾离子。
③交换速度受交换点的位置和温度的影响
(4) 阳离子交换能力
一种阳离子将它种阳离子从胶粒上交换下来的能力叫 做该种阳离子的交换能力。
土壤中常见的离子交换能力排列顺序是: Fe3+>Al3+>H+>Ca2+>Mg2+>K+>NH4+>Na2+
第一节 土壤保肥性和供肥性与植物 生长
一、土壤保肥性
土壤保蓄养分的性能称为土壤保肥性。
(一)土壤保肥性的机制
1.机械阻留
2.物理吸附:
3.化学沉淀:
4.生物吸收:
5.物理化学吸附:
(二)土壤保肥性指标及提高土壤保肥性能 的措施
常以土壤阳离子交换量作土壤保肥性的指标:
提高土壤保肥性能的主要措施有:改良土壤质 地,增加土壤黏粒含量;增施有机肥料,提高土壤 有机质含量。此外,在酸性土壤上,施用石灰,提 高土壤pH,也可增强土壤保肥性能。
(一)、土壤对阳离子吸附与交换作用
1.阳离子的静电吸附 2、阳离子的交换作用 (1) 阳离子交换作用ห้องสมุดไป่ตู้概念
土壤胶体表面所吸附的阳离子,与土壤溶液中的其他阳 离子相互交换的过程称为阳离子交换作用。可表示为:
(2) 阳离子交换作用的过程
指胶体表面所吸附的阳离子与土壤溶液中的阳 离子相互交换的过程。
(3) 土壤阳离子交换作用的特点
(四)土壤胶体的吸附性
土壤胶体具有吸附养分分子、离子或原 子团的能力,避免了土壤养分的淋失。
第三节 土壤吸收保肥作用
一、土壤吸附性能的概念
(一)土壤吸附的概念 指分子、离子或原子团在土壤固相表面富集的过程。 (二)土壤吸附性能的类型
1.交换性吸附 (物理化学吸附) 2.专性吸附 3.负吸附
二、土壤胶体的离子吸附与交换作用
2.表面分子解离: 3.断键: 4.胶体表面从介质中吸附离子。
(三)、分散性和凝聚性
胶体的凝聚作用:由溶胶联结凝聚成凝胶的 作用,叫做胶体的凝聚作用(凝聚速度决定于电 解质浓度和电解质种类)。
胶体的分散作用:凝胶分散成溶胶的作用, 叫做胶体的分散作用。
常见阳离子凝聚力的排列顺序是: Fe3+>Al3+>Ca2+>Mg2+>K+>NH4+>Na+
二、土壤的供肥性
(一)、供肥性的概念和土壤供肥能力
1. 供肥性的概念
土壤的供肥性是土壤供应作物所必须的各种速效
养分的能力和将缓效养分转化为速效养分的能力。
2.土壤供肥能力:
(1)、土壤供应速效养分的数量: (2)、缓效养分转变为速效养分的速率:
(3)、速效养分持续供应的时间:
(二)、土壤胶体的种类 1.无机胶体(矿质胶体) 指土壤矿物的细分散颗粒.其比表面
大,并带电荷,具有胶体特性。包括成 分简单的含水氧化物和成分复杂的各种 次生层状铝硅酸盐两类。
2.有机胶体
有机胶体最主要的成分是腐殖质,还有少量的木 素、蛋白质、纤维素等。
3.有机无机复合胶体
土壤中的无机胶体和有机胶体,在物理、化 学或物理化学作用下,结合形成的各种稳定性和 性质都不同的复合体,称有机无机复合体。