大学物理课堂练习答案(1)
大学基础物理学课后习题答案_含思考题(1)

大学基础物理课后答案主编:习岗高等教育出版社第一章 思考题:<1-4> 解:在上液面下取A 点,设该点压强为A p ,在下液面内取B 点,设该点压强为B p 。
对上液面应用拉普拉斯公式,得 A A R p p γ20=- 对下液面使用拉普拉斯公式,得 BB 02R p p γ=- 又因为 gh p p ρ+=A B 将三式联立求解可得 ⎪⎪⎭⎫ ⎝⎛-=B A 112R R g h ργ<1-5> 答:根据对毛细现象的物理分析可知,由于水的表面张力系数与温度有关,毛细水上升的高度会随着温度的变化而变化,温度越低,毛细水上升的高度越高。
在白天,由于日照的原因,土壤表面的温度较高,土壤表面的水分一方面蒸发加快,另一方面土壤颗粒之间的毛细水会因温度升高而下降,这两方面的原因使土壤表层变得干燥。
相反,在夜间,土壤表面的温度较低,而土壤深层的温度变化不大,使得土壤颗粒间的毛细水上升;另一方面,空气中的水汽也会因为温度下降而凝结,从而使得清晨时土壤表层变得较为湿润。
<1-6> 答:连续性原理是根据质量守恒原理推出的,连续性原理要求流体的流动是定常流动,并且不可压缩。
伯努利方程是根据功能原理推出的,它的使用条件是不考虑流体的黏滞性和可压缩性,同时,还要求流动是定常流动。
如果流体具有黏滞性,伯努利方程不能使用,需要加以修正。
<1-8> 答:泊肃叶公式适用于圆形管道中的定常流动,并且流体具有黏滞性。
斯托克斯公式适用于球形物体在黏滞流体中运动速度不太大的情况。
练习题:<1-6> 解:设以水坝底部作为高度起点,水坝任一点至底部的距离为h 。
在h 基础上取微元d h ,与之对应的水坝侧面面积元d S (图中阴影面积)应为坡长d m 与坝长l 的乘积。
练习题1-6用图d h d F由图可知 osin60d sin d d hh m ==θ 水坝侧面的面积元d S 为 d d d sin 60hS l m l °== 该面积元上所受的水压力为 0d d d [(5)]sin 60hF p S p ρg h l°==+-水坝所受的总压力为 ()[]N)(103.760sin d 5d 855o0⨯=-+==⎰⎰h l h g p F F ρ(注:若以水坝的上顶点作为高度起点亦可,则新定义的高度5h h ¢=-,高度微元取法不变,即d d h h ¢=,将h ¢与d h ¢带入水坝压力积分公式,同样可解出水坝所受压力大小。
大学物理学(第3版)下册课后练习答案

大学物理学课后习题答案(下册)习题99.1选择题(1)正方形的两对角线处各放置电荷Q,另两对角线各放置电荷q,若Q所受到合力为零,则Q与q的关系为:()(A)Q=-23/2q (B) Q=23/2q (C) Q=-2q (D) Q=2q[答案:A](2)下面说法正确的是:()(A)若高斯面上的电场强度处处为零,则该面内必定没有电荷;(B)若高斯面内没有电荷,则该面上的电场强度必定处处为零;(C)若高斯面上的电场强度处处不为零,则该面内必定有电荷;(D)若高斯面内有电荷,则该面上的电场强度必定处处不为零。
[答案:D](3)一半径为R的导体球表面的面点荷密度为σ,则在距球面R处的电场强度()(A)σ/ε0 (B)σ/2ε0 (C)σ/4ε0 (D)σ/8ε0[答案:C](4)在电场中的导体内部的()(A)电场和电势均为零;(B)电场不为零,电势均为零;(C)电势和表面电势相等;(D)电势低于表面电势。
[答案:C]9.2填空题(1)在静电场中,电势不变的区域,场强必定为。
[答案:相同](2)一个点电荷q放在立方体中心,则穿过某一表面的电通量为,若将点电荷由中心向外移动至无限远,则总通量将。
[答案:q/6ε0, 将为零](3)电介质在电容器中作用(a)——(b)——。
[答案:(a)提高电容器的容量;(b) 延长电容器的使用寿命](4)电量Q均匀分布在半径为R的球体内,则球内球外的静电能之比。
[答案:5:6]9.3 电量都是q的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系?解: 如题9.3图示(1) 以A 处点电荷为研究对象,由力平衡知:q '为负电荷2220)33(π4130cos π412a q q a q '=︒εε解得 q q 33-=' (2)与三角形边长无关.题9.3图 题9.4图9.4 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ2,如题9.4图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量.解: 如题9.4图示⎪⎩⎪⎨⎧===220)sin 2(π41sin cos θεθθl q F T mg T e解得 θπεθtan 4sin 20mg l q = 9.5 根据点电荷场强公式204r q E πε=,当被考察的场点距源点电荷很近(r →0)时,则场强→∞,这是没有物理意义的,对此应如何理解?解: 020π4r r q Eε=仅对点电荷成立,当0→r 时,带电体不能再视为点电荷,再用上式求场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大.9.6 在真空中有A ,B 两平行板,相对距离为d ,板面积为S ,其带电量分别为+q 和-q .则这两板之间有相互作用力f ,有人说f =2024d q πε,又有人说,因为f =qE ,SqE 0ε=,所以f =Sq 02ε.试问这两种说法对吗?为什么? f 到底应等于多少?解: 题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强SqE 0ε=看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个板的电场为S qE 02ε=,另一板受它的作用力Sq S qq f 02022εε==,这是两板间相互作用的电场力.9.7 长l =15.0cm 的直导线AB 上均匀地分布着线密度λ=5.0x10-9C ·m-1的正电荷.试求:(1)在导线的延长线上与导线B 端相距1a =5.0cm 处P 点的场强;(2)在导线的垂直平分线上与导线中点相距2d =5.0cm 处Q 点的场强. 解: 如题9.7图所示(1) 在带电直线上取线元x d ,其上电量q d 在P 点产生场强为20)(d π41d x a xE P -=λε222)(d π4d x a xE E l l P P -==⎰⎰-ελ题9.7图]2121[π40l a l a +--=ελ)4(π220l a l-=ελ用15=l cm ,9100.5-⨯=λ1m C -⋅, 5.12=a cm 代入得21074.6⨯=P E 1C N -⋅ 方向水平向右(2)同理2220d d π41d +=x xE Q λε 方向如题9.7图所示 由于对称性⎰=l Qx E 0d ,即Q E只有y 分量,∵ 22222220d d d d π41d ++=x x x E Qyλε22π4d d ελ⎰==lQyQy E E ⎰-+2223222)d (d l l x x2220d4π2+=l lελ以9100.5-⨯=λ1cm C -⋅, 15=l cm ,5d 2=cm 代入得21096.14⨯==Qy Q E E 1C N -⋅,方向沿y 轴正向9.8 一个半径为R 的均匀带电半圆环,电荷线密度为λ,求环心处O 点的场强. 解: 如9.8图在圆上取ϕRd dl =题9.8图ϕλλd d d R l q ==,它在O 点产生场强大小为 20π4d d RR E εϕλ=方向沿半径向外 则 ϕϕελϕd sin π4sin d d 0RE E x ==ϕϕελϕπd cos π4)cos(d d 0RE E y -=-=积分RR E x 000π2d sin π4ελϕϕελπ==⎰0d cos π400=-=⎰ϕϕελπRE y∴ RE E x 0π2ελ==,方向沿x 轴正向.9.9 均匀带电的细线弯成正方形,边长为l ,总电量为q .(1)求这正方形轴线上离中心为r 处的场强E ;(2)证明:在l r >>处,它相当于点电荷q 产生的场强E .解: 如9.9图示,正方形一条边上电荷4q在P 点产生物强P E d 方向如图,大小为()4π4cos cos d 22021l r E P +-=εθθλ∵ 22cos 221l r l +=θ12cos cos θθ-=∴ 24π4d 22220l r l l r E P ++=ελP Ed 在垂直于平面上的分量βcos d d P E E =⊥∴ 424π4d 2222220l r rl r l r lE +++=⊥ελ题9.9图由于对称性,P 点场强沿OP 方向,大小为2)4(π44d 422220l r l r lrE E P ++=⨯=⊥ελ∵lq 4=λ∴ 2)4(π422220l r l r qrE P ++=ε 方向沿9.10 (1)点电荷q 位于一边长为a 的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电通量;(2)如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电通量是多少?解: (1)由高斯定理0d εqS E s⎰=⋅立方体六个面,当q 在立方体中心时,每个面上电通量相等 ∴ 各面电通量06εqe =Φ. (2)电荷在顶点时,将立方体延伸为边长a 2的立方体,使q 处于边长a 2的立方体中心,则边长a 2的正方形上电通量06εq e =Φ 对于边长a 的正方形,如果它不包含q 所在的顶点,则024εqe =Φ, 如果它包含q 所在顶点则0=Φe .如题9.10图所示. 题9.10 图9.11 均匀带电球壳内半径6cm ,外半径10cm ,电荷体密度为2×510-C ·m -3求距球心5cm ,8cm ,12cm 各点的场强.解: 高斯定理0d ε∑⎰=⋅qS E s,02π4ε∑=q r E当5=r cm 时,0=∑q ,0=E8=r cm 时,∑q 3π4p=3(r )3内r - ∴ ()2023π43π4rr r E ερ内-=41048.3⨯≈1C N -⋅, 方向沿半径向外.12=r cm 时,3π4∑=ρq -3(外r )内3r ∴ ()420331010.4π43π4⨯≈-=rr r E ερ内外 1C N -⋅ 沿半径向外. 9.12 半径为1R和2R (2R >1R )的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各点的场强.解: 高斯定理0d ε∑⎰=⋅qS E s取同轴圆柱形高斯面,侧面积rl S π2=则 rl E S E Sπ2d =⋅⎰对(1) 1R r <0,0==∑E q(2) 21R r R << λl q =∑∴ rE 0π2ελ=沿径向向外(3) 2R r >=∑q∴ 0=E题9.13图9.13 两个无限大的平行平面都均匀带电,电荷的面密度分别为1σ和2σ,试求空间各处场强.解: 如题9.13图示,两带电平面均匀带电,电荷面密度分别为1σ与2σ, 两面间, n E)(21210σσε-=1σ面外, n E)(21210σσε+-=2σ面外, n E)(21210σσε+= n:垂直于两平面由1σ面指为2σ面.9.14 半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为r <R 的小球体,如题9.14图所示.试求:两球心O 与O '点的场强,并证明小球空腔内的电场是均匀的.解: 将此带电体看作带正电ρ的均匀球与带电ρ-的均匀小球的组合,见题9.14图(a).(1) ρ+球在O 点产生电场010=E,ρ- 球在O 点产生电场d π4π3430320OO r E ερ=∴ O 点电场'd33030OO r E ερ= ; (2) ρ+在O '产生电场'd π4d 3430301OO E ερπ='ρ-球在O '产生电场002='E∴ O ' 点电场 003ερ='E 'OO题9.14图(a) 题9.14图(b)(3)设空腔任一点P 相对O '的位矢为r',相对O 点位矢为r (如题8-13(b)图)则 03ερrE PO =,3ερr E O P '-=',∴ 0003'3)(3ερερερdOO r r E E E O P PO P=='-=+=' ∴腔内场强是均匀的.9.15 一电偶极子由q =1.0×10-6C 的两个异号点电荷组成,两电荷距离d=0.2cm ,把这电偶极子放在1.0×105N ·C-1的外电场中,求外电场作用于电偶极子上的最大力矩.解: ∵ 电偶极子p在外场E 中受力矩E p M⨯= ∴ qlE pE M ==max 代入数字4536max 100.2100.1102100.1---⨯=⨯⨯⨯⨯⨯=M m N ⋅9.16 两点电荷1q =1.5×10-8C ,2q =3.0×10-8C ,相距1r =42cm ,要把它们之间的距离变为2r =25cm ,需作多少功? 解: ⎰⎰==⋅=22210212021π4π4d d r r r r q q r r q q r F A εε )11(21r r -61055.6-⨯-=J外力需作的功 61055.6-⨯-=-='A A J题9.17图9.17 如题9.17图所示,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为2R ,现将另一正试验点电荷0q 从O 点经过半圆弧移到C 点,求移动过程中电场力作的功.解: 如题9.17图示0π41ε=O U 0)(=-RqR q 0π41ε=O U )3(R qR q -Rq 0π6ε-=∴ Rqq U U q A o C O 00π6)(ε=-=9.18 如题9.18图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中心O 点处的场强和电势.解: (1)由于电荷均匀分布与对称性,AB 和CD 段电荷在O 点产生的场强互相抵消,取θd d R l =则θλd d R q =产生O 点Ed 如图,由于对称性,O 点场强沿y 轴负方向题9.18图θεθλππcos π4d d 2220⎰⎰-==R R E E yR 0π4ελ=[)2sin(π-2sin π-]R0π2ελ-=(2) AB 电荷在O 点产生电势,以0=∞U⎰⎰===AB200012ln π4π4d π4d R R x x x x U ελελελ 同理CD 产生 2ln π402ελ=U 半圆环产生 0034π4πελελ==R R U∴ 0032142ln π2ελελ+=++=U U U U O9.19 一电子绕一带均匀电荷的长直导线以2×104m ·s -1的匀速率作圆周运动.求带电直线上的线电荷密度.(电子质量0m =9.1×10-31kg ,电子电量e =1.60×10-19C)解: 设均匀带电直线电荷密度为λ,在电子轨道处场强rE 0π2ελ=电子受力大小 re eE F e 0π2ελ== ∴ rv m r e 20π2=ελ得 1320105.12π2-⨯==emv ελ1m C -⋅9.20 空气可以承受的场强的最大值为E =30kV ·cm -1,超过这个数值时空气要发生火花放电.今有一高压平行板电容器,极板间距离为d =0.5cm ,求此电容器可承受的最高电压. 解: 平行板电容器内部近似为均匀电场 4105.1d ⨯==E U V9.21 证明:对于两个无限大的平行平面带电导体板(题9.21图)来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)相背的两面上,电荷的面密度总是大小相等而符号相同.证: 如题9.21图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ题9.21图(1)则取与平面垂直且底面分别在A 、B 内部的闭合柱面为高斯面时,有0)(d 32=∆+=⋅⎰S S E sσσ∴ +2σ03=σ说明相向两面上电荷面密度大小相等、符号相反;(2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即0222204030201=---εσεσεσεσ又∵ +2σ03=σ ∴ 1σ4σ=说明相背两面上电荷面密度总是大小相等,符号相同.9.22 三个平行金属板A ,B 和C 的面积都是200cm 2,A 和B 相距4.0mm ,A 与C 相距2.0mm .B ,C 都接地,如题9.22图所示.如果使A 板带正电3.0×10-7C ,略去边缘效应,问B 板和C 板上的感应电荷各是多少?以地的电势为零,则A 板的电势是多少?解: 如题9.22图示,令A 板左侧面电荷面密度为1σ,右侧面电荷面密度为2σ题9.22图(1)∵ AB AC U U =,即 ∴ AB AB AC AC E E d d = ∴2d d 21===ACABAB AC E E σσ 且 1σ+2σSq A=得 ,32S q A =σ Sq A 321=σ 而 7110232-⨯-=-=-=A C q S q σC C10172-⨯-=-=S q B σ(2) 301103.2d d ⨯===AC AC AC A E U εσV9.23两个半径分别为1R 和2R (1R <2R )的同心薄金属球壳,现给内球壳带电+q ,试计算:(1)外球壳上的电荷分布及电势大小;(2)先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及电势; *(3)再使内球壳接地,此时内球壳上的电荷以及外球壳上的电势的改变量.解: (1)内球带电q +;球壳内表面带电则为q -,外表面带电为q +,且均匀分布,其电势⎰⎰∞∞==⋅=22020π4π4d d R R R qr r q r E U εε题9.23图(2)外壳接地时,外表面电荷q +入地,外表面不带电,内表面电荷仍为q -.所以球壳电势由内球q +与内表面q -产生:0π4π42020=-=R q R q U εε(3)设此时内球壳带电量为q ';则外壳内表面带电量为q '-,外壳外表面带电量为+-q q ' (电荷守恒),此时内球壳电势为零,且0π4'π4'π4'202010=+-+-=R q q R q R q U A εεε得 q R R q 21=' 外球壳上电势()22021202020π4π4'π4'π4'R qR R R q q R q R q U B εεεε-=+-+-=9.24 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量.解: 如题9.24图所示,设金属球感应电荷为q ',则球接地时电势0=O U题9.24图由电势叠加原理有:=O U 03π4π4'00=+Rq R q εε得 -='q 3q9.25 有三个大小相同的金属小球,小球1,2带有等量同号电荷,相距甚远,其间的库仑力为0F .试求:(1)用带绝缘柄的不带电小球3先后分别接触1,2后移去,小球1,2之间的库仑力; (2)小球3依次交替接触小球1,2很多次后移去,小球1,2之间的库仑力.解: 由题意知 2020π4rq F ε=(1)小球3接触小球1后,小球3和小球1均带电2q q =', 小球3再与小球2接触后,小球2与小球3均带电q q 43=''∴ 此时小球1与小球2间相互作用力0022018348342F r πqr π"q 'q F =-=εε (2)小球3依次交替接触小球1、2很多次后,每个小球带电量均为32q. ∴ 小球1、2间的作用力00294π432322F r q q F ==ε9.26 在半径为1R 的金属球之外包有一层外半径为2R 的均匀电介质球壳,介质相对介电常数为r ε,金属球带电Q .试求: (1)电介质内、外的场强; (2)电介质层内、外的电势; (3)金属球的电势.解: 利用有介质时的高斯定理∑⎰=⋅q S D Sd(1)介质内)(21R r R <<场强303π4,π4r rQ E r r Q D r εε ==内;介质外)(2R r <场强303π4,π4r rQ E r Qr D ε ==外(2)介质外)(2R r >电势rQE U 0rπ4r d ε=⋅=⎰∞外 介质内)(21R r R <<电势2020π4)11(π4R Q R r qr εεε+-=)11(π420R r Qr r -+=εεε(3)金属球的电势r d r d 221⋅+⋅=⎰⎰∞R R R E E U 外内⎰⎰∞+=22220π44πdr R R Rr r Qdrr Q εεε)11(π4210R R Q r r-+=εεε9.27 如题9.27图所示,在平行板电容器的一半容积内充入相对介电常数为r ε的电介质.试求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值.解: 如题9.27图所示,充满电介质部分场强为2E ,真空部分场强为1E,自由电荷面密度分别为2σ与1σ由∑⎰=⋅0d q S D得11σ=D ,22σ=D而 101E D ε=,202E D r εε=rd r d ⋅+⋅=⎰⎰∞∞rrE E U 外内d21U E E == ∴r r E E εεεεσσ==102012题9.27图 题9.28图9.28 两个同轴的圆柱面,长度均为l ,半径分别为1R 和2R (2R >1R ),且l >>2R -1R ,两柱面之间充有介电常数ε的均匀电介质.当两圆柱面分别带等量异号电荷Q 和-Q 时,求: (1)在半径r 处(1R <r <2R =,厚度为dr ,长为l 的圆柱薄壳中任一点的电场能量密度和整个薄壳中的电场能量; (2)电介质中的总电场能量; (3)圆柱形电容器的电容. 解: 取半径为r 的同轴圆柱面)(S则 rlD S D S π2d )(=⋅⎰当)(21R r R <<时,Q q =∑∴ rlQD π2=(1)电场能量密度 22222π82l r Q D w εε==薄壳中 rlrQ rl r l r Q w W εευπ4d d π2π8d d 22222===(2)电介质中总电场能量⎰⎰===211222ln π4π4d d R R VR R l Q rl r Q W W εε (3)电容:∵ CQ W 22=∴ )/ln(π22122R R lW Q C ε==题9.29图9.29 如题9.29 图所示,1C =0.25μF ,2C =0.15μF ,3C =0.20μF .1C 上电压为50V .求:AB U .解: 电容1C 上电量111U C Q =电容2C 与3C 并联3223C C C += 其上电荷123Q Q = ∴ 355025231123232⨯===C U C C Q U 86)35251(5021=+=+=U U U AB V 9.30 1C 和2C 两电容器分别标明“200 pF 、500 V ”和“300 pF 、900 V ”,把它们串联起来后等值电容是多少?如果两端加上1000 V 的电压,是否会击穿? 解: (1) 1C 与2C 串联后电容1203002003002002121=+⨯=+='C C C C C pF(2)串联后电压比231221==C C U U ,而100021=+U U ∴ 6001=U V ,4002=U V 即电容1C 电压超过耐压值会击穿,然后2C 也击穿.9.31半径为1R =2.0cm 的导体球,外套有一同心的导体球壳,壳的内、外半径分别为2R =4.0cm和3R =5.0cm ,当内球带电荷Q =3.0×10-8C 时,求:(1)整个电场储存的能量;(2)如果将导体壳接地,计算储存的能量; (3)此电容器的电容值.解: 如图,内球带电Q ,外球壳内表面带电Q -,外表面带电Q题9.31图(1)在1R r <和32R r R <<区域0=E在21R r R <<时 301π4r rQ E ε =3R r >时 302π4rrQ E ε=∴在21R r R <<区域⎰=21d π4)π4(21222001R R r r rQ W εε ⎰-==21)11(π8π8d 2102202R R R R Q rr Q εε 在3R r >区域⎰∞==32302220021π8d π4)π4(21R R Q r r rQ W εεε ∴ 总能量 )111(π83210221R R R Q W W W +-=+=ε41082.1-⨯=J(2)导体壳接地时,只有21R r R <<时30π4r rQ E ε=,02=W∴ 4210211001.1)11(π8-⨯=-==R R Q W W ε J(3)电容器电容 )11/(π422102R R Q W C -==ε 121049.4-⨯=F习题1010.1选择题(1) 对于安培环路定理的理解,正确的是:(A )若环流等于零,则在回路L 上必定是H 处处为零; (B )若环流等于零,则在回路L 上必定不包围电流;(C )若环流等于零,则在回路L 所包围传导电流的代数和为零; (D )回路L 上各点的H 仅与回路L 包围的电流有关。
(完整版)大学物理01质点运动学习题解答

第一章质点运动学一选择题1.以下说法中,正确的选项是:()A.一物体若拥有恒定的速率,则没有变化的速度;B.一物体拥有恒定的速度,但仍有变化的速率;C.一物体拥有恒定的加快度,则其速度不行能为零;D. 一物体拥有沿x 轴正方向的加快度而有沿x 轴负方向的速度。
解:答案是 D。
2.长度不变的杆 AB,其端点 A 以 v0匀速沿 y 轴向下滑动, B 点沿 x 轴挪动,则 B 点的速率为:()A . v0 sinB .v0 cos C.v0 tan D.v0 / cos解:答案是 C。
简要提示:设 B 点的坐标为 x, A 点的坐标为 y,杆的长度为l,则x2y2l 2对上式两边关于时间求导:dx dy0,因dxv,dyv0,所以2 x 2 ydtdt dt dt2xv2yv0 = 0即v=v0 y/x =v0tan所以答案是 C。
3.如图示,路灯距地面高为 H,行人身高为 h,若人以匀速 v 背向路灯行走,灯y人头A H vv0hθvx影sB选择题 3图选择题 2图则人头影子挪动的速度u 为()H h Hv h HA.vB.H H h H h 解:答案是 B 。
简要提示:设人头影子到灯杆的距离为 x ,则x s h , x Hs , x H H hdx H ds HvuH h dt Hdt h所以答案是 B 。
4. 某质点作直线运动的运动学方程为x = 3t-5t 3 + 6 (SI),则该质点作A. 匀加快直线运动,加快度沿 x 轴正方向.B. 匀加快直线运动,加快度沿 x 轴负方向.C. 变加快直线运动,加快度沿 x 轴正方向.D. 变加快直线运动,加快度沿x 轴负方向.()解: 答案是 D5. 一物体从某一确立高度以v 0 的初速度水平抛出,已知它落地时的速度为v t ,那么它的运动时间是: ()v t - v 0v t v 0v t2 22v v 0 v t A.B.C.gD.2 gg2 g解:答案是 C 。
(完整版)大学物理课后习题答案详解

第一章质点运动学1、(习题1.1):一质点在xOy 平面内运动,运动函数为2x =2t,y =4t 8-。
(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。
解:(1)由x=2t 得,y=4t 2-8 可得: y=x 2-8 即轨道曲线 (2)质点的位置 : 22(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j =则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8ri j v i j a j =+=+=2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时速度为0v ,求运动方程)(t x x =.解:kv dt dv-= ⎰⎰-=t vv kdt dv v 001 tk e v v -=0t k e v dtdx-=0 dt ev dx tk tx-⎰⎰=000)1(0t k e kv x --=3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ⎰⎰=vv 0d 4d tt t v 2=t 2v d =x /d t 2=t 2t t x txx d 2d 020⎰⎰= x 2= t 3 /3+10 (SI)4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的d d r t ,d d v t ,tv d d . 解:(1) t v x 0= 式(1)2gt 21h y -= 式(2) 201()(h -)2r t v t i gt j =+(2)联立式(1)、式(2)得 22v 2gx h y -=(3)0d -gt d rv i j t = 而落地所用时间 gh2t = 所以 0d -2gh d r v i j t =d d v g j t=- 2202y 2x )gt (v v v v -+=+= 2120212202)2(2])([gh v gh g gt v t g dt dv +=+=5、 已知质点位矢随时间变化的函数形式为22r t i tj =+,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。
大学物理I练习册参考答案

大学物理I练习册参考答案第一篇:大学物理I练习册参考答案大学物理I练习册参考答案力学部分:010004:(1)010011:(2)010014:(2)010016:(3)010044: B010057: D010095: B010098: C011002: 3t011009:011030:011039: 5m/s;17m/s011061: 4.8m/s;3.15rad22011012:ϖϖϖdv=ωRcosωtj-ωRsinωti;o011067: dt020003:(1)020012: C020015: B, D021002: 2g,0021016:(μcosθ-sinθ)g030023: B030028: D030038: D030061: D030069:(3)031005:031054: k/(mr);-k/(2r)2v0031062: 12J032046: h==4.25m;v=[2gh(1-μctgα)]1/2=8.16m/s 2g(1+μctgα)040001: A040011: B040020: C040030: B040032: C040054: A040064: D040070: C040076: C040090: C222040097: D040099: D041019: R1v1/R2;mvR/R112-1/2041043: Ma/2 ()041078: M/9042031: 156N;118N042005:电磁学部分1.B2.A3.C4.C5.2ε0A6.–2Ax,-2Byqd7.rλλ,ln02πε0r2πε0rUR1lnR2R1(2)Ek=4.8⨯10J , v=1.03⨯10m/s -778.(1)F=9.EP=0;UPC=⎰CPEdr=⎰rCRrλλdr=lnC 2πε0r2πε0R10.B11.B12.B13.C14.A15.D16.D17.q4πε0r2, 水平向左18.A19.εrC0,σ0,U0E0W0,εrεrεr20.看书P6721.看书P6722.C23.A24.D25.C27.μ0Iμ0IμI+=1.08⨯10-3T,垂直纸面向外28,0,垂直纸面向里2πR4R4πa29.μ0I, -2μ0I, ±2μ0I, ±2μ0I30, 2BIR,π/42;水平向右IaB,Ia2B34.πmga+b2μ0Ilna-b31,35.I1的磁场B=μ0I1,方向垂直向里,因此由安培定律(1)AD受I1的磁力FAD=I2aB 2πr=μ0I1I2a,方向向左。
大学物理课后习题及答案(1-4章)含步骤解

,根据流量守恒
,
(2)当
(3)当
时,
时,
−
,整理可得:
可得
,即
,
图1-34所示为输液的装置。设吊瓶的截面积为1 ,针孔的截面积为2 ,且1 ≫ 2 ,开始时( = 0),吊瓶内上下
液面距针孔的高度分别为ℎ1 和ℎ2 ,求吊瓶内药液全部输完时需要的时间。
,则针孔的流量为
液体总体积为
Ԧ =
= 2Ԧ − 2 Ԧ = −2Ԧ
1s末和2s末质点的速度为: 1 = 2Ԧ − 2Ԧ(m ∙ s−1 ),2 = 2Ԧ − 4Ԧ(m ∙ s −1 );
1s末和2s末质点的加速度相等:Ԧ = −2Ԧ (m ∙ s−2 )
已知一质点做直线运动,其加速度Ԧ = 4 + 3 m ∙ s−2 , 开始运动时,0 = 5 m,
= 0.06(m)
(2)设弹簧最大压缩量为∆′ , 与碰撞粘在一起的速度为 ′,0 = ( +
) ′,代入已知条件可得 ′ = 4Τ11, + 压缩弹簧的过程中,机械能守恒,则
1
(
2
1
+ ) 2 = 2 ∆′2 ,得∆′ =
+
≈ 0.04(m)
(1)角加速度 =
由 =
∆
∆
=
0−2×1500÷60
50
由 =
=
2×1500
60
= 50 (rad ∙ s −1 )
= − (rad ∙ s−2 )
= −,得 = −,两边进行积分
得到 − 50 = − − 0,
大学物理(武汉大学出版社)课堂练习答案

课堂练习答案February16,2014第一章质点力学1.1找出下列表达式中的错误,写出正确表达:(1)r=x+y解答:r=x i+y j(2)v=v x i+v y j解答:v=v x i+v y j(3)v=v x i+v y j解答:v=v x i+v y j(4)v=v x i+v y j解答:v=v x i+v y j(5)v=(v2x+v2y+v2z)1/2解答:v=(v2x+v2y+v2z)1/21.2已知r=2t i−4t2j,第1秒内的位移Δr=2i−4j,任意时刻的速度v(t)=2i−8t j,加速度a(t)=−8j,轨迹方程为y=−x21.3平抛物体的运动学方程x=5t,y=5t2,则任意时刻的位矢r=5t i+5t2j,速度v(t)=5i+10t j,加速度a(t)=10j,轨道方程为x2=5y1.4直线运动的点,其速度v(t)=e−t,初始位置为x0=2,则x(t)=3−e−t解答:x(t)=x0+ˆt0e−t d t=2+(−e−t)t=2+(−e−t+1)1.5从地面上抛一个物体,其高度h=10t−5t2,任意时刻的速度v(t)=10−10t,到达最高点的时刻是t=1解答:从物理⾓度来看,在最⾼点处,物体的速度为零v=d h/d t=10−10t=0,得t=1.从数学⾓度理解,h(t)是时间的函数,该函数取得极値的条件是d h/d t=0.1.6判定正误:(1)直线运动的物体达到最小速度时,加速度一定为零;·································[✓](2)直线运动的物体达到最大位置时,速度一定为零;···································[✓] 1.7选择:若质点的位矢为r,速度为v,速率为v,路程为s,则必有【B】A.|Δr|=Δs=ΔrB.|Δr|=Δs=Δr,当Δt→0时,有|d r|=d s=d rC.|Δr|=Δs=Δr,当Δt→0时,有|d r|=d r=d sD.|Δr|=Δs=Δr,当Δt→0时,有|d r|=d r=d s1.8选择:根据上题的符号,则必有【C】A.|v|=v,|v|=v B.|v|=v,|v|=vC.|v|=v,|v|=v D.|v|=v,|v|=v1.9选择:质点在某瞬时位于位矢r=(x,y)处,其速度大小v的计算错误的为【A】A.d rd tB.d rd tC.d sd tD.√(d xd t)2+(d yd t)21.10直径为40cm的定滑轮上缠绕着一条细钢丝绳,绳的另一端吊着一个重物,若某时刻重物下落的加速度为1m/s2,速度为0.3m/s,则此刻滑轮的角加速度为5rad/s2,角速度为1.5rad /s解答:物体下落的距离等于滑轮边缘转动的距离,物体下落的速度就是滑轮边缘的线速度,物体下落的加速度等于滑轮边缘的切线加速度.1.11半径为0.1m 的轨道上有一个质点,它的角位置θ=π+t 2,则任意时刻的切线加速度a t =0.2,法线加速度a n =0.4t 2解答:ω=d θd t =2t ,β=d ωd t =2,a t =R β,a n =R ω21.12半径为1m 的轨道上有一个质点,它的路程s =2t −0.5t 2,则任意时刻的切线加速度a t =−1,法线加速度a n =(2−t )2解答:v =d s d t =2−t ,a t =d v d t =−1,a n =v 2R 1.13判定正误:(1)以圆心为坐标原点的圆周运动满足d r/d t =0且d r /d t =0;··························[✓](2)匀速率圆周运动满足d v/d t =0且d v /d t =0;...........................................[×](3)匀速率曲线运动满足d v/d t =0且d v /d t =0;·····································[✓](4)法线加速度的效果是改变速度的方向;·············································[✓](5)切线加速度的效果是改变速度的大小;·············································[✓](6)圆周运动中,若a n 是常量,则a t 为零;············································[✓](7)圆周运动中,若a t 是常量,则a n 也是常量;...............................................[×]1.14物体下落,受到重力mg 以及空气阻力f =kv ,则终极速度v T =mg/k ,若阻力f =kv 2,则终极速度v T =√mg/k1.15判定正误:(1)物体质量越大,惯性越大;·······················································[✓](2)物体的速度越大,惯性越大;.............................................................[×]1.16选择:用水平力F N 把一个物体压着靠在粗糙的竖直墙面上保持静止,当F N 逐渐增大时,物体所受的静摩擦力F f 的大小【A 】A .不为零,但保持不变;B .随F N 成正比地增大;C .达到某一最大值后,就保持不变;1.17选择:一段路面水平的公路,转弯处轨道半径为R ,汽车轮胎与路面间的摩擦因数为μ,要使汽车不至于发生侧向打滑,汽车在该处的行驶速率【C 】A .不得小于√μgR ;B .必须等于√μgR ;C .不得大于√μgR ;D .还需汽车的质量m 决定;1.18选择:小物体沿固定的圆弧形光滑轨道由静止下滑,在下滑过程中【B 】A .它的加速度方向永远指向圆心,速率不变;B .轨道的支撑力的大小不断增加;C .它受到的合外力大小变化,方向永远指向圆心;D .它受到的合外力大小不变,速率不断增加;1.19在东北天坐标系中,A 车向东运动v A =2i m /s ,B 车向北运动,v B =3j m /s ;则B 相对于A 的速度v BA =(3j −2i )m /s1.20稳定的南风风速v 1=2m /s ,某人向西快跑,速率v 2=4m /s .此人感受到的风速大小为√22+42=√20m /s解答:南风是由南向北吹的,⼈是由东向⻄跑,⼆者的速度是相互垂直的.⼈感受的风速是风相对于⼈的速度,即v风⼈=v风−v⼈,v风⼈=√v2风+v2⼈1.21火车沿着直线铁路以30m/s的速率匀速行驶,车厢内的一名乘务员从车头走向车尾,速率为1m/s,乘务员相对于地面的速度大小为29m/s1.22飞船点火起飞时,航天员会感受到大于其体重数倍的重力,这个现象称为超重;在环绕地球的太空舱内,宇航员可以自由漂移,这个现象叫做失重1.23质量为2kg的质点沿直线运动,速度由1m/s增加至3m/s,则外力的冲量大小为4N·s1.24细绳将一个质量为m的小球悬挂在天花板下,球在水平面内匀速圆周运动,周期为T,在小球运行一周的过程中,重力的冲量为|I|=mgT,动量的增量为|Δp|=01.25质量为m的物体以初速度v0,仰角30◦斜上抛,到达最高点.在此过程中,动量的增量为|Δp|=mv0sin30◦,重力的冲量为|I|=mv0/21.26光滑的冰面上由两个物体A,B,m A=3g,v A=(i+2j)m/s,m B=5g,v B=(9i+2j)m/s,两物体碰撞后粘为一体,其共同速度v=(6i+2j)m/s1.27直接用手按钉子,很难将其钉入木头内;若首先用5N的力挥动锤子2s,则锤子获得的动量大小为10N·s;若该运动的锤子敲击钉子,与钉子之间的相互作用持续2ms,则锤子与钉子之间的作用力大小为5kN.1.28升降梯将重100N的物体从地面送达高为10m的楼顶,花费了3s的时间.在此过程中,重力的冲量|I|=300N·s,重力做功W=−1000J,此物体的重力势能增加量ΔE p=1000J1.29水平路面上两个点A、B的距离为2m,某物体重500N,与地面的摩擦系数为0.2,物体由A运动至B.若物体沿着直线以3m/s的速度运动,摩擦力做功W f=−200J;若物体沿着直线以5m/s的速度运动,摩擦力做功W f=−200J;若物体沿着长度为4m的曲线运动,摩擦力做功W f=−400J1.30海水中两个点A、B的距离为2m,鱼受到正比于速度的阻力f=0.1v,由A运动至B.若鱼沿着直线以3m/s的速度运动,流体阻力做功W f=−0.6J;若鱼沿着直线以5m/s的速度运动,流体阻力做功W f=−1.0J;若鱼沿着长度为4m的曲线以5m/s的速度运动,摩擦力做功W f=−2.0J1.31判定正误:(1)沿着闭合路径,保守力做功等于零;···············································[✓](2)保守力做功与运动路径无关;·····················································[✓](3)保守力做正功,系统的势能减小;·················································[✓](4)沿着保守力方向移动物体,物体的势能减小;·······································[✓](5)非保守力的功一定为负值;...............................................................[×] 1.32质量为2kg的质点,速率由1m/s增加至2m/s,则外力做功的大小为3J1.33外力的冲量等于质点系统动量的增量.所有作用力的功,等于系统动能的增量.保守力做的功,等于系统势能的减少量.非保守力做的功,等于系统机械能的增量.1.34判定正误:(1)保守力做负功,则系统的机械能一定减小;................................................[×](2)非保守力做负功,系统的势能一定增大;..................................................[×](3)非保守力做负功,系统的机械能一定减小;·········································[✓](4)一对相互作用内力能够改变系统的总动量;...............................................[×](5)一对相互作用内力能够增加系统的总动能;·········································[✓](6)作用力和反作用力大小相等方向相反,两者所作功的代数和必为零;.......................[×]课堂练习答案February 16,2014第二章连续介质力学2.1刚体的基本运动形式有平动和转动两种基本类型.2.2质量为m 的质点沿着半径为r 的圆周以角速度ω转动,其转动惯量J =mr 2.2.3质量为m ,半径为r 的均匀圆盘绕垂直于盘面的中心轴转动,转动惯量为12mr 2;质量为m ,长度为l 的细棒,对于过端点且垂直于棒的轴的转动惯量为13ml 2;质量为m ,长度为l 的细棒,对于过中点且垂直于棒的轴的转动惯量为112ml 2.2.4转动惯量为25kg ·m 2、半径为0.5m 的定滑轮绕中心轴转动,其边缘受到10N 的切向摩擦阻力,阻力矩的大小为5N ·m,其角加速度的大小为0.2s −2.2.5判定正误:(1)刚体受到的合外力不为零,则合外力矩一定不为零;..........................[×](2)若外力穿过转轴,则它产生的力矩为零;································[✓](3)若外力平行于转轴,则它对转轴的力矩为零;····························[✓]2.6判定正误:有两个力作用在一个有固定转轴的刚体上,则(1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零;·················[✓](2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;·················[✓](3)当这两个力的合力为零时,它们对轴的合力矩也一定是零;....................[×](4)当这两个力对轴的合力矩为零时,它们的合力也一定是零;....................[×]2.7质量m 速率v 的质点做半径为r 的匀速率圆周运动,其角动量大小为mvr.2.8质量m 速率v 的质点沿着x 轴做匀速率直线运动,它相对于坐标点(x,y )的角动量大小为mvy .2.9某恒星诞生之初的转动惯量为J ,角速度为ω.当燃料耗尽之后坍塌为白矮星,转动惯量为J/4,此时其转动角速度为4ω.2.10已知地球在近日点时距离太阳r 1,速率v 1,在远日点时距离太阳r 2,则速率v 2=v 1r 1/r 2.2.11判定正误:(1)刚体内部的相互作用力不能改变刚体的角动量;··························[✓](2)若刚体的角动量守恒,则刚体所受合外力为零;...............................[×](3)若外力平行于转轴,则刚体的角动量守恒;······························[✓](4)若外力的延长线穿过转轴,则刚体角动量守恒;··························[✓]2.12判定正误:(1)对某个定轴转动刚体而言,内力矩不会改变刚体的角加速度;···············[✓](2)一对作用力和反作用力对同一轴的力矩之和必为零;······················[✓](3)质量相等而形状不同的两个刚体,受相同力矩,角加速度一定相同;...........[×]课堂练习答案第2章连续介质力学2.13选择:均匀细棒OA 可绕O 端自由转动,使棒从水平位置由静止开始自由下摆,在下摆过程中,则必有【D 】A .角速度从小到大,角加速度不变B .角速度从小到大,角加速度从小到大C .角速度不变,角加速度为零D .角速度从小到大,角加速度从大到小2.14转动惯量为J ,角速度为ω的定轴转动的刚体,其角动量为J ω,转动能量为12J ω2.2.15转动惯量为9.0kg ·m 2的定滑轮受到18N ·m 的力矩作用而转过了3.1rad ,则滑轮的角加速度为2.0rad /s 2,力矩做功56J .2.16某发动机铭牌上标注转速为4000rpm 时,输出扭矩为60.5N ·m ,则此刻发动机的功率为25.3kW (rpm 的意思是revolutions per minute ).2.17选择:假设卫星环绕地球中心作椭圆运动,则在运动过程中【B 】A .角动量守恒,动能守恒B .角动量守恒,机械能守恒C .角动量不守恒,机械能守恒D .角动量守恒,动量也守恒E .角动量不守恒,动量也不守恒2.18杆件的变形种类可以分为伸缩、剪切、弯曲、扭转四种.2.19用10N 的拉力拽一条横截面为2mm 2的铁丝,则铁丝内部横截面上的正应力大小为5MPa .2.20长度为2m 、横截面积为2mm 2的细钢丝,受到300N 的拉力后,长度增加了1.5mm .则钢丝的正应变为7.5×10−4,正应力等于1.5×108Pa ,杨氏模量为2×1011Pa .2.21上海环球金融中心大楼主体部分高度约400m ,其顶部在大风中摇摆的幅度约1m ,若将此视为剪切形变,则剪切应变为2.5×10−3.2.22一段自来水管,前半截直径为4cm ,流速为2m /s ;后半截直径为2cm ,则流速为8m /s .课堂练习答案February 16,2014第三章静电场3.1近距作用观点认为,电荷之间的相互作用力是通过电场来传递的.3.2真空中的直角坐标系上有三点A (x 1,0)、B (0,y 2)及C (0,0),在A 点放置点电荷q 1,B 点放置点电荷q 2,问C 点处的场强大小为14πε0√q 21/x 41+q 22/y 42.3.3在坐标(x,0)处有一点电荷q 1,在(0,y )处有另一点电荷q 2,则q 1与q 2之间的电场力大小为14πε0q 1q 2x 2+y 2.3.4一根很细的均匀带电量为Q (Q >0)的塑料棒弯成半径为R 的圆环,接口处留有宽为Δl 的空隙(Δl ≪R ),求环心处电场强度的大小和方向.解答:Q Δl 8π2ε0R 33.5在均匀电场E 中放入一个面积为A 的平板.若电场与平板垂直,则穿过平板的电通量大小为EA ;若电场与平板平行,则电通量大小为0.3.6某带电直线长度为2h ,电荷线密度为+λ,以直线的一个端点为中心,h 为半径作一个球面,则通过该球面的总电通量为d λ/ε0.3.7电量为q 的点电荷位于一立方体的中心,立方体边长为a ,则通过立方体一个面的电通量是q/(6ε0);如果把这个点电荷放到一个半球面的球心处,则通过半球面的电通量是q/(2ε0).3.8均匀带电球面内部的场强大小为0;电荷面密度为σ的无限大均匀带电平面周围的场强大小为σ/(2ε0);电荷线密度为λ的无限长带电直线周围,与直线距离为r 的位置的场强大小为λ/(2πε0r ).3.9下列说法是否正确?为什么?(1)闭合曲面上各点场强为零时,该曲面的电通量必为零;·······························[✓](2)闭合曲面的总电通量为零,该曲面上各点的场强必为零;..................................[×](3)闭合曲面的总电通量为零,该曲面内必没有带电物体;.....................................[×](4)闭合曲面内没有带电物体,曲面的总电通量必为零;·································[✓](5)闭合曲面内净电量为零,曲面的电通量必为零;·····································[✓](6)闭合曲面的电通量为零,曲面内净电量必为零;·····································[✓](7)闭合曲面上各点的场强仅由曲面内的电荷产生;...........................................[×](8)高斯定理的适用条件是电场必须具有对称性;.............................................[×](9)若电场线从某处进入闭合曲面,则该处的电通量为正值...................................[×]3.10两块相互平行的金属板之间存在着均匀电场E ,距离为l ,则两金属板之间的电势差为El.3.11与孤立点电荷q 距离为r 的点,其电势为q/4πε0r;孤立的均匀带电球面半径为R ,电量为q ,其内部空间的电势为q/4πε0R .3.12在边长为a 的正方体中心处放置一点电荷Q ,设无穷远处为电势零点,则在正方体顶角处的电势为Q 2√3πε0a.3.13一对等量异号点电荷的电量分别为±q ,两者之间的距离为2l ,则它们连线中点的场强为q/2πε0l 2,电势为0.3.14沿着电场线的正方向,电势减小,正电荷的电势能减小,负电荷的电势能增加(填写“增加”或“减小”).3.15在电压为U 的两点之间移动电量为Q 的电荷,电场力做功|W |=QU .课堂练习答案第3章静电场3.16在夏季雷雨中,通常一次闪电过程中两点间的平均电势差约为100MV,通过的电量约为30C.一次闪电消耗的能量是3×109J.3.17真空中两个电量分别为q1,q2的点电荷,距离为l,它们之间的相互作用电势能为q1q24πε0l.3.18一个残缺的塑料圆环,携带净电量q,半径为r,环心处的电势为q/4πε0r.3.19判定正误:(1)电场强度相等的位置电势相等;..........................................................[×](2)同一个等势面上的电场强度大小相等;....................................................[×](3)某区域内电势为常量,则该区域内电场强度为零;···································[✓](4)电势梯度大的位置电场强度大;···················································[✓](5)电场线与等势面必然正交.······················································[✓] 3.20设真空电场中的电势分布用U表示,将一个电量为q的点电荷放入电场中,电势能用E p表示,判定下列说法的正误:(1)将电荷q从A点移动至无穷远,电场力做功等于qU A;·······························[✓](2)将电荷q从无穷远处移动至A点,电场力做功等于E p A;..................................[×](3)将电荷q从A点移动至B点,电场力做功等于qU AB;································[✓](4)将电荷q从A点移动至B点,电场力做功等于E p B−E p A;................................[×](5)缓慢移动电荷q,外力做的功等于电势能的减小量;.......................................[×] 3.21静电平衡时,导体内部任意一点的总电场强度大小为零,整个导体中任意位置的电势都相等,导体上的电荷只能分布在表面上.3.22地球可以看作是一个良好的导体,现在已知地球表面附近的电场强度近似为100V/m,方向指向地球中心,则地球表面的电荷密度为−100ε0.3.23判断正误:(1)实心导体内部空间是等电势体,但是表面不一定是等势面;................................[×](2)空腔导体的内表面(空腔表面)上不会有净电荷;...........................................[×](3)若导体空腔内无电荷,则空腔与导体是等电势的;···································[✓](4)导体空腔表面的感应电荷量一定与空腔内部的总电荷量等值异号;·····················[✓](5)导体表面附近的电场线一定与表面正交.··········································[✓] 3.24简答:静电屏蔽的含义是什么?有哪些类型的应用?3.25空气中面积为A,极板距离为d的平行板电容器,其电容为ε0A/d.3.26真空中的电容器的电压为U,电容为C,则其存储的电场能为W e=CU2/2.3.27真空静电场的能量密度表达式为w e=ε0E2/2.3.28有一平行板电容器,保持板上电荷量不变(充电后切断电源),现在使两极板间的距离d增大,则极板间的电场强度不变,电压增大,电容减小.(填写“增大”、“减小”或“不变”)3.29无极分子的电极化方式为位移极化,有极分子的电极化方式主要为转向极化.3.30电介质的极化现象与导体的静电感应现象有什么相似之处?3.31面积为S,极板距离为d的平行板电容器填充了相对介电常数为εr的均匀电介质后,平行板电容器的电容表达式为ε0εr S/d.4.1电量为q 的粒子以角速度ω做圆周运动,它形成的等效电流强度I =ωq/(2π).4.2无限长的直导线载有电流I ,距离导线x 处的磁感应强度大小为μ0I 2πx;沿着直线运动的电荷,其运动的正前方的磁感应强度大小为0.4.3相互平行的直导线之间距离为d ;电流大小都是I ,方向相反;则两导线中点位置的磁场B =2μ0I πd .4.4半径为R 的单匝环形导线载有电流I ,环心处的磁感应强度大小为μ0I 2R;该电流的磁矩大小为πR 2I .4.5半径为R 的两个单匝圆形线圈正交放置,其圆心重合.若两个线圈中的电流大小都是I ,则圆心处的磁场B =√2μ0I 2R,两个电流环的总磁矩大小为√2πR 2I .4.6边长为0.1m ,匝数为1000的正方形线圈,通电0.5A ,其磁矩大小为5A ·m 2.4.7下图中两导线中的电流绝对值分别为I 1,I 2,写出下列环路积分的值˛L 1B ·d l =μ0I 1˛L 2B ·d l =−μ0I 2˛L 3B ·d l =μ0(I 2−I 1)4.8如下图所示,直线电流I 从立方体的两个相对表面的中心穿过,则下列积分分别等于˛abcda B ·d l =0¨abcd B ·d S =0˛bcgfb B ·d l =μ0I ¨bcgf B ·d S =04.9无限长的空心直螺线管,线圈数密度为n ,横截面积为S ,载流I ,则其管内的磁场B =μ0nI ,横截面上的磁通量为μ0nIS .4.10一个电子以速度v =(5×104j )m /s 射入均匀磁场B =(0.4i +0.5j )T 中,受到的洛仑兹力F =3.2×10−15k N4.11判断正误:(1)均匀磁场不会改变带电粒子的速率;···············································[✓](2)非均匀磁场的洛仑兹力能够对运动电荷做正功;...........................................[×](3)受到洛仑兹力后,带电粒子的动能和动量都不变..........................................[×]4.12判断正误:(1)闭合载流线圈在均匀磁场中受到的总磁场力为零;···································[✓](2)闭合载流线圈在均匀磁场中受到的磁力矩为零;...........................................[×](3)电流方向相同的平行直导线相互吸引;·············································[✓](4)载流长直螺线管中的多匝线圈之间相互排斥..............................................[×]4.13磁介质按照磁化率可以分为顺磁质、抗磁质、铁磁质三类.4.14铁磁材料按照磁滞回线的形状可以分为硬磁材料、软磁材料两类.5.1如下图所示,导线回路L的形状不变,而其位置正在发生移动.根据楞次定律判定各回路中是否有感应电流;若有,请用箭头标记其环绕方向.5.2如下图所示,导线回路L的形状与位置皆不变.图(a)、图(b)中电流I正在增大;图(c)、图(d)中的磁棒正在运动.根据楞次定律判定各回路中是否有感应电流;若有,请用箭头标记其环绕方向.5.3边长D=0.1m的单匝正方形导线框绕其对角线以3000rev/min的角速度转动,均匀磁场B=1mT 与其转轴垂直.则导线框中的最大磁通量为10−5Wb,最大电动势为3.14mV.5.4判定正误:(1)电动势可以由保守力来担当;.............................................................[×](2)静电力不可能担当电动势的角色;·················································[✓](3)在一个孤立的电池内部,电动势与静电力的方向相反;·······························[✓] 5.5感应电动势分为两类:导体在磁场中运动产生的电动势叫做动生电动势,磁场分布随时间变化引起的电动势称为感生电动势.5.6动生电动势的实质是运动电荷受洛仑兹力的结果;感生电动势则来源于感生电场,而感生电场是由变化的磁场所激发的.5.7在均匀的磁场B中,一条长度为l的铁棒以速率v运动,铁棒两端能够产生的最大电压值为Blv伏,最小电压值为0伏.5.8判定正误:(1)感生电场是由电荷产生的;...............................................................[×](2)感生电场是保守场;.....................................................................[×](3)空间中没有磁场的位置一定没有感生电场................................................[×] 5.9条形磁铁平行于大块的金属平板移动,其N极朝向金属平板,定性的画出磁铁N极附近的涡流与磁铁运动方向之间的关系.5.10某电路的电流变化引发周围另外一个电路中产生电流,此现象叫做互感.5.11自感系数为L的线圈,通过电流I,则其储存的磁能是LI2/2.5.12有两个半径相接近的圆线圈,问如何放置方可使其互感最小?如何放置可使其互感最大?解答:共⾯同⼼放置互感⼤;相互垂直放置互感为零.5.13用康铜丝绕成的标准电阻要求没有自感,问怎样绕制方能使其自感为零?试说明其理由.5.14位移电流的实质是什么?位移电流与传导电流有什么不同?解答:变化的电场;第六章振动和波动6.1已知某质点在x 轴上运动,用国际单位制表示为x =2cos (100πt +1.5),它的振幅为2,角频率为100π,频率为50,初相位是1.5,最大速率等于200π,最大加速度是20000π2解答:将已知等式与振动的⼀般形式对⽐:x =A cos (ωt +φ0)=A cos (2πft +φ0)v =d x d t ,v m =ωA ;a =d v d t ,a m =ω2A 6.2时间t =1时,x =2cos (5t +1)与y =3cos (7t +2)的相位差等于3解答:(7t +2)−(5t +1)=(2t +1) t =1=36.3质量为10.0g 的钢球悬挂在劲度系数为100N /m 的弹簧下振动,周期为π/50s解答:T =2πω=2π√m k6.4半个周期为1s 的摆称作秒摆,地球上秒摆的摆长大约为1m 解答:T =2s ,g ≃π2,T =2π√l/g ,l =T 2g/(4π2)=16.5谐振子的位移为振幅的一半时,其动能与总能量的比值为3:4解答:x =A/2,总能量E =12kA 2,势能E p =12kx 2=18kA 2,动能E k =E −E p =38kA 26.6判定正误:(1)简谐振动的初相位角在第一象限,则初速度为负;···································[✓](2)简谐振动的初相位角在第三象限,则初速度为正;···································[✓](3)简谐振动的初位移为正,则初相位角在二、三象限;.......................................[×](4)简谐振动的初位移为负,则初相位角在三、四象限;.......................................[×](5)单摆简谐振动的角频率就是摆线绕悬挂点的角速度;......................................[×]6.7产生速度共振的条件是什么?解答:驱动⼒的频率等于系统固有频率6.8两个同方向的振动分别为y 1=3cos (50t +φ10)、y 2=4cos (50t +φ20),若φ10−φ20=2π,则合振动的振幅A =7;若φ10−φ20=3π,则A =1;若φ10−φ20=−90◦,则A =5解答:A =√A 21+A 22+2A 1A 2cos Δφ6.9两个同方向的振动分别为x 1=3cos (2π500t +1.1)、x 2=3cos (2π498t +1.6);则拍频f beat =2Hz 6.10频率相同的两个相互垂直的振动,相位差是90◦,则合振动的轨迹一般是椭圆6.11振动方向与传播方向相同的波称为纵波;振动方向与传播方向垂直的波称为横波6.12一列横波的波函数为y =0.05cos (10πt −4πx )SI ,则频率f =5Hz ,波长λ=0.5m ,波速c =2.5m /s ,座标x =2m 的质点在t =1s 的相位等于2πrad6.13空气中的声速约u =330m /s ,声音频率f =1000Hz ,则波长λ=0.33m;若水中的声波波长λ=1.5m ,周期T =1ms ,则水声波速c =1500m /s课堂练习答案第6章振动和波动6.14真空中的电磁波波速c=3.0×108m/s,可见光的波长按照“红橙黄绿青蓝紫”的顺序依次递减,范围是760~400nm,计算可见光的频率范围.解答:(4.0~7.5)×1014Hz6.15波场中的介质都在参与简谐振动.若锁定某个质元观察,时间每增加一个周期T,该质元的相位增加2π;若锁定某个时刻观察,沿着波传播的方向,距离每增大一个波长λ,相应质元振动的相位减小2π6.16波动由a点传播到b点的时间是Δt,若a点的振动规律是f(t),那么b点的振动规律是f(t−Δt) 6.17波动由a点传播到b点的距离是l,波长为λ.若a点的振动规律是A sin(ωt),那么b点的振动规律是A sin(ωt−2πl/λ)6.18判定正误:(1)流体中不可以传播横波;························································[✓](2)固体中不可以传播纵波;.................................................................[×](3)空气中的声波是纵波;··························································[✓](4)水面波是横波;..........................................................................[×](5)介质的速度与波的速度是两个不同的物理量;·······································[✓](6)介质能够随着波动一起向远方传送;......................................................[×](7)波的传播速度由介质决定;·······················································[✓] 6.19波动绕过障碍物传播的现象叫做衍射.6.20某种介质中的光速是真空光速的1/k,则该介质的折射率是k.6.21驻波中静止不动的点叫做波节,振幅最大的点叫做波腹;两个波节之间的距离是波长的0.5倍.6.22一段两端固定的琴弦,长度为0.5m,它的基波波长为1m.6.23一支细长玻璃管的一端密封,另一端开口.在玻璃管中注入水,可以改变其中的空气柱长度.假设空气中的声速为340m/s,想要在玻璃管中吹奏出基频为1000Hz的声波,玻璃管中的空气柱长度应为85mm.6.24电磁波垂直穿过厚度为e折射率为n的玻璃,则玻璃中的波程为ne6.25振幅相同的普通声波(500Hz)和超声波(50000Hz),后者的声强是前者的10000倍,后者的声强级比前者多40dB.6.26声强级增加1B,则声波的声强变成原来的10倍.6.27假设声速为330m/s,高速列车鸣笛的频率为1000Hz,而铁路边的执勤人员接收到的频率为1500Hz,则此时列车的速度为396km/h.6.28据说俄罗斯的“米格-31”战斗机可以在高空加速到3.2马赫,这表示此飞机的速度可以达到声速的3.2倍.如果某战斗机以2.0马赫的速度巡航,它在空气中激发的激波的半顶角大小为30◦.课堂练习答案February16,2014第七章波动光学7.1双缝的间距为0.15mm,在距离1.0m处测得第1级暗纹和第10级暗纹之间的距离为36mm,则相邻明条纹的间距为4mm,光的波长等于600nm.7.2在双缝中某一个缝的后面覆盖一片玻璃,使得从此缝出射的光的光程增大5λ,则屏幕上的干涉图案将整体平移5个条纹.7.3判断正误:(1)双缝的距离减小,则干涉条纹的间距增大;······························[✓](2)光的波长增大,则双缝干涉条纹的间距变小;.................................[×](3)接收屏的距离增大,则双缝干涉条纹的间距变小;.............................[×](4)用白光进行双缝干涉,零级明纹是彩色的;...................................[×](5)将整个双缝干涉装置从空气中搬到水中,干涉条纹的间距变小;·············[✓]7.4判断正误:(1)光从空气中垂直入射到玻璃上,其反射光存在半波损失;···················[✓](2)光从空气中垂直入射到玻璃上,其折射光存在半波损失;......................[×](3)光从水中垂直入射到空气中,其反射光存在半波损失;........................[×](4)光从水中垂直入射到空气中,其折射光存在半波损失;........................[×](5)雷达波从大气中近似平行入射到湖面上,其反射波存在半波损失;···········[✓](6)透镜的物点与像点之间的所有光线是等光程的.··························[✓]7.5判断正误:(1)若尖劈膜的顶角减小,则等厚干涉条纹的间距也减小;........................[×](2)若尖劈膜的顶角减小,则等厚干涉条纹向顶尖方向移动;......................[×](3)若尖劈膜的顶角增大,则顶尖处干涉条纹的明暗交替变化;....................[×](4)保持尖劈膜的倾角不变而使其厚度增大,则干涉条纹向着顶尖方向移动;·····[✓](5)保持尖劈膜的倾角不变而使其厚度增大,则干涉条纹间距不变;·············[✓]“等厚干涉”就是厚度均匀的薄膜产生的干涉.................................[×](6)7.6增透膜的最小光学厚度是真空波长的1/4倍;增反膜的最小光学厚度是真空波长的1/4倍.7.7等厚干涉中,相邻明(暗)条纹对应的薄膜厚度之差为薄膜中的波长的0.5倍.7.8在反射光干涉中,空气尖劈顶尖处的干涉条纹是明还是暗?透射光形成的空气中的牛顿环,中心点是明还是暗?解答:暗;明7.9判断正误:(1)若狭缝的宽度减小,则单缝衍射的中央明纹角宽度减小;......................[×](2)若波长减小,则单缝衍射中央明纹的角宽度减小;························[✓]。
大学物理随堂练习答案北京邮电大学练习一

大学物理随堂练习答案北京邮电大学练习一振动和波动有什么区别和联系?平面简谐波动方程和简谐振动方程有什么不同?又有什么联系?振动曲线和波形曲线有什么不同?
解:(1)振动是指一个孤立的系统(也可是介质中的一个质元,)在某固定平衡位置附近所做的往复运动,系统离开平衡位置的位移是时间的周期性函数,即可表示为y = f(t)﹔波动是振动在连续介质中的传播过程,此时介质中所有质元都在各自的平衡位置附近作振动,因此介质中任一质元离开平衡位置的位移既是坐标位置×,又是时间t 的函数,即y = f (x, t) 。
(2)在谐振动方程y= f (t)中只有一个独立的变量时间t,它描述的是介质中一个质元偏离平衡位置的位移随时间变化的规律;平面谐波方程y = f (x,t)中有两个独立变量,即坐标位置×和时间t,它描述的是介质中所有质元偏离平衡位置的位移随坐标和时间变化的规律。
当谐波方程y = Acoso (t ),的坐标位置给定后,即可得到该点的振动方程,而波源持续不断地振动又是产生波动的必要条件之一。
(3)振动曲线y = f (t)描述的是一个质点的位移随时间变化的规律,因此,其纵轴为y,横轴为t﹔波动曲线y= f (x,t)描述的是介质中所有质元的位移随位置,随时间变化的规律,其纵轴为y,横轴为×.每一幅图只能给出某一时刻质元的位移随坐标位置×变化的规律,即只能给出某一时刻的波形图,不同时刻的波动曲线就是不同时刻的波形图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.28m 的楼顶, 花费了 3 s 的时间.在此过程中, 重力的冲 1.29 水平路面上两个点 A 、 B 的距离为 2 m , 某物体重 500 N , 与地面的摩擦系数为 0.2 , 物体由 A 运动至 B. 若物体沿着直线以 3 m/s 的速度运动, 摩擦力做功 Wf = −200 J 运动, 摩擦力做功 Wf = −200 J ; 若物体沿着长度为 4 m 的曲线运动, 摩擦力做功 Wf = −400 J ; 若鱼沿着直线以 5 m/s 的速度运动, 流体阻力
课堂练习答案 February 16, 2014
第一章 质点力学
1.1 找出下列表达式中的错误, 写出正确表达: (1) r=x+y 解答:r = xi + y j (2) v = vx i + vy j 解答:v = vx i + vy j (3) v = vx i + vy j 解答:v = vx i + vy j (4) v = vx i + vy j 解答:v = vx i + vy j
◦
; 在环绕地球
1.25 质 量 为 m 的 物 体 以 初 速 度 v0 ,仰 角 30 斜 上 抛,到 达 最 高 点.在 此 过 程 中,动 量 的 增 量 为 | Δp| = mv0 sin 30◦, 重力的冲量为 |I| = mv0 /2 1.26 光滑的冰面上由两个物体 A, B ,mA = 3 g ,vA = (i + 2j) m/s ,mB = 5 g ,vB = (9i + 2j) m/s , 两 物体碰撞后粘为一体, 其共同速度 v = (6i + 2j) m/s 1.27 直接用手按钉子, 很难将其钉入木头内; 若首先用 5 N 的力挥动锤子 2 s , 则锤子获得的动量大小 为 10 N · s ; 若该运动的锤子敲击钉子, 与钉子之间的相互作用持续 2 ms , 则锤子与钉子之间的作用 . , 重力做功 W = −1000 J , 此物体的重力势能增加量 ΔEp = 1000 J ; 若物体沿着直线以 5 m/s 的速度 力大小为 5 kN 量 |I| = 300 N · s
·1·
rad/s2 , 角速度为 1.5
课堂练习答案
第 1 章 质点力学
rad/s 解答:物体下落的距离等于滑轮边缘转动的距离, 物体下落的速度就是滑轮边缘的线速度, 物体下落的加 速度等于滑轮边缘的切线加速度. 1.11 半 径 为 0.1 m 的 轨 道 上 有 一 个 质 点,它 的 角 位 置 θ = π + t2 , 则任意时刻的切线加速度 , 法线加速度 an = 0.4t2 dθ dω 解答: ω = = 2t ,β = = 2, dt dt 2 at = R β ,an = Rω at = 0.2 1.12 半 径 为 1 m 的 轨 道 上 有 一 个 质 点,它 的 路 程 s = 2t − 0.5t2 , 则任意时刻的切线加速度 at = −1 解答: v = , 法线加速度 an = (2 − t)2 ds = 2 − t, dt dv v2 at = = −1 ,an = dt R 1.13 判定正误: (1) 以圆心为坐标原点的圆周运动满足 d r/ d t = 0 且 d r/ d t ̸= 0 ; · · · · · · · · · · · · · · · · · · · · · · · · · · [✓] (2) 匀速率圆周运动满足 d v/ d t = 0 且 d v/ d t = 0 ; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [×] (3) 匀速率曲线运动满足 d v/ d t = 0 且 d v/ d t ̸= 0 ; · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · [✓] (4) 法线加速度的效果是改变速度的方向; · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · [✓] (5) 切线加速度的效果是改变速度的大小; · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · [✓] (6) 圆周运动中, 若 an 是常量, 则 at 为零; · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · [✓] (7) 圆周运动中, 若 at 是常量, 则 an 也是常量;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [×] 1.14 物体下落, 受到重力 mg 以及空气阻力 f = kv , 则终极速度 vT = mg/k √ 终极速度 vT = mg/k 1.15 判定正误: (1) 物体质量越大, 惯性越大; · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · [✓] (2) 物体的速度越大, 惯性越大; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [×] 1.16 选择: 用水平力 FN 把一个物体压着靠在粗糙的竖直墙面上保持静止, 当 FN 逐渐增大时, 物体所受 的静摩擦力 Ff 的大小 【 A 】 A.不为零, 但保持不变; C.达到某一最大值后, 就保持不变; 1.17 选择: 一段路面水平的公路, 转弯处轨道半径为 R , 汽车轮胎与路面间的摩擦因数为 μ , 要使汽车不 至于发生侧向打滑, 汽车在该处的行驶速率 【 C 】 √ A.不得小于 μgR; √ C.不得大于 μgR; √ B.必须等于 μgR; D.还需汽车的质量 m 决定; B.随 FN 成正比地增大; , 若阻力 f = kv 2 , 则
2 2 2 1/2 (5) v = ( vx + vy + vz ) 2 2 2 1/2 解答:v = (vx + vy + vz )
1.2 已知 r = 2ti − 4t2 j , 第 1 秒内的位移 Δr = 2i − 4j a(t) = −8j 加速度 a(t) = 10j , 轨迹方程为 y = −x
2
, 任意时刻的速度 v(t) = 2i − 8tj
, 加速度
1.3 平抛物体的运动学方程 x = 5t , y = 5t2 , 则任意时刻的位矢 r = 5ti + 5t2 j , 速度 v(t) = 5i + 10tj , , 轨道方程为 x2 = 5y 1.4 直线运动的点, 其速度 v (t) = e−t , 初始位置为 x0 = 2 , 则 x(t) = 3 − e−t ˆ t t e−t d t = 2 + (− e−t ) = 2 + (− e−t +1) 解答: x(t) = x0 + 1.5 从地面上抛一个物体, 其高度 h = 10t − 5t2 , 任意时刻的速度 v (t) = 10 − 10t 是t = 1 解答:从物理角度来看, 在最高点处, 物体的速度为零 v = d h/ d t = 10 − 10t = 0 , 得 t = 1. 从数学角度理解,h(t) 是时间的函数, 该函数取得极値的条件是 d h/ d t = 0 . 1.6 判定正误: (1) 直线运动的物体达到最小速度时, 加速度一定为零; · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · [✓] (2) 直线运动的物体达到最大位置时, 速度一定为零; · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · [✓] 1.7 选择: 若质点的位矢为 r , 速度为 v , 速率为 v , 路程为 s , 则必有 【 B 】 A.| Δr| = Δs = Δr B.| Δr| ̸= Δs ̸= Δr, 当 Δt → 0 时, 有 | d r| = d s ̸= d r C.| Δr| ̸= Δs ̸= Δr, 当 Δt → 0 时, 有 | d r| = d r ̸= d s D.| Δr| ̸= Δs ̸= Δr, 当 Δt → 0 时, 有 | d r| = d r = d s 1.8 选择: 根据上题的符号, 则必有 【 C 】 A.|v| = v, |v| = v C.|v| = v, |v| ̸= v B.|v| ̸= v, |v| ̸= v D.|v| ̸= v, |v| = v
·2·
课堂练习答案
第 1 章 质点力学
解答:南风是由南向北吹的, 人是由东向⻄跑, 二者的速度是相互垂直的.人感受的风速是风相对于人的 √ 2 2 速度, 即 v风人 = v风 − v人 ,v风人 = v风 + v人 1.21 火车沿着直线铁路以 30 m/s 的速率匀速行驶, 车厢内的一名乘务员从车头走向车尾, 速率为 1 m/s , 乘务员相对于地面的速度大小为 29 m/s 1.22 飞船点火起飞时, 航天员会感受到大于其体重数倍的重力, 这个现象称为 超重 的太空舱内, 宇航员可以自由漂移, 这个现象叫做 失重 1.23 质量为 2 kg 的质点沿直线运动, 速度由 1 m/s 增加至 3 m/s , 则外力的冲量大小为 4 N · s 1.24 细绳将一个质量为 m 的小球悬挂在天花板下, 球在水平面内匀速圆周运动, 周期为 T , 在小球运行 一周的过程中, 重力的冲量为 |I| = mgT , 动量的增量为 | Δp| = 0