大学物理练习题答案(上下) 施建青

合集下载

大学物理(上)课后习题答案

大学物理(上)课后习题答案

第1章 质点运动学 P211.8 一质点在xOy 平面上运动,运动方程为:x =3t +5, y =21t 2+3t -4. 式中t 以 s 计,x ,y 以m 计。

⑴以时间t 为变量,写出质点位置矢量的表示式;⑵求出t =1 s 时刻和t =2s 时刻的位置矢量,计算这1秒内质点的位移;⑶计算t =0 s 时刻到t =4s 时刻内的平均速度;⑷求出质点速度矢量表示式,计算t =4 s 时质点的速度;(5)计算t =0s 到t =4s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算t =4s 时质点的加速度(请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式)解:(1)j t t i t r)4321()53(2-+++=m⑵ 1=t s,2=t s 时,j i r5.081-= m ;2114r i j =+m∴ 213 4.5r r r i j ∆=-=+m⑶0t =s 时,054r i j =-;4t =s 时,41716r i j =+ ∴ 140122035m s 404r r r i j i j t --∆+====+⋅∆-v ⑷ 1d 3(3)m s d ri t j t-==++⋅v ,则:437i j =+v 1s m -⋅ (5) 0t =s 时,033i j =+v ;4t =s 时,437i j =+v 24041 m s 44ja j t --∆====⋅∆v v v (6) 2d 1 m s d a j t-==⋅v这说明该点只有y 方向的加速度,且为恒量。

1.9 质点沿x 轴运动,其加速度和位置的关系为226a x =+,a 的单位为m/s 2,x 的单位为m 。

质点在x =0处,速度为10m/s,试求质点在任何坐标处的速度值。

解:由d d d d d d d d x a t x t x===v v v v 得:2d d (26)d a x x x ==+v v 两边积分210d (26)d xx x =+⎰⎰vv v 得:2322250x x =++v∴ 1m s -=⋅v1.11 一质点沿半径为1 m 的圆周运动,运动方程为θ=2+33t ,式中θ以弧度计,t 以秒计,求:⑴ t =2 s 时,质点的切向和法向加速度;⑵当加速度的方向和半径成45°角时,其角位移是多少?解: t tt t 18d d ,9d d 2====ωβθω ⑴ s 2=t 时,2s m 362181-⋅=⨯⨯==βτR a2222s m 1296)29(1-⋅=⨯⨯==ωR a n ⑵ 当加速度方向与半径成ο45角时,有:tan 451n a a τ︒==即:βωR R =2,亦即t t 18)9(22=,解得:923=t 则角位移为:322323 2.67rad 9t θ=+=+⨯= 1.13 一质点在半径为0.4m 的圆形轨道上自静止开始作匀角加速度转动,其角加速度为α=0.2 rad/s 2,求t =2s 时边缘上各点的速度、法向加速度、切向加速度和合加速度。

《大学物理学》部分练习题参考答案(zwj)

《大学物理学》部分练习题参考答案(zwj)

《大学基础物理学》部分练习题参考答案(2010)2.1有两个同方向、同频率的简谐振动,它们的振动表式为:⎪⎭⎫ ⎝⎛+=π4310cos 05.01t x ,⎪⎭⎫ ⎝⎛+=π4110cos 06.02t x (SI 制)(1)求它们合成振动的振幅和初相位。

(2)若另有一振动)10cos(07.003ϕ+=t x ,问0ϕ为何值时,31x x +的振幅为最大;0ϕ为何值时,32x x +的振幅为最小。

解:根据题意,画出旋转矢量图 (1)848484398.39 65)(078.006.005.020021222221'︒=+='︒=︒====+=+=θϕϕθθA A tg m A A A(2)振幅最大21100 , 43x x +==πϕϕ。

振幅最小时或32200200 ,)43(45 , x x +-=±=±=-πππϕϕπϕϕ。

2.2已知平面简谐波的波动方程为)cos(Cx Bt A y -=,其中,A 、B 、C 为正常数。

试求:(1)波动的振幅、波速、频率、周期和波长;(2)在波传播方向上距原点为l 处某点的振动方程;(3)任意时刻在传播方向上相距为d 的两点间的相位差。

)(cos 222cos 222cos )cos(C B x t B A C x t B A C x B t A Cx Bt A y -=⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎭⎫ ⎝⎛-=-=ππππππ (1)振幅为A , 频率为2B f π=,波长2C πλ=,周期12T f Bπ==,波速B u f C λ== (2)把x=l 代入方程。

得cos()y A Bt Cl =-(3)11cos()y A Bt Cx =-,22cos()y A Bt Cx =-2112()()()Bt Cx Bt Cx C x x Cd∆Φ=---=-=2.3在图中S 1和S 2为同一介质中的两个相干波源,其振动方程分别为)2c o s(10.02ππ+=t y ty π2c o s 10.01=式中y 1和y 2的单位为m,t 的单位为s 。

《新编大学物理》(上、下册)习题答案

《新编大学物理》(上、下册)习题答案

第1章 质点运动学一、选择题 题1.1 答案:[B]提示:明确∆r 与r ∆的区别题1.2: 答案:[A]题1.3: 答案:[D]提示:A 与规定的正方向相反的加速运动, B 切向加速度, C 明确标、矢量的关系,加速度是d dtv题1.4: 答案:[C] 提示: 21r r r ∆=-,12,R R r j r i ==-,21v v v ∆=-,12,v v v i v j =-=-题1.5: 答案:[D]提示:t=0时,x=5; t=3时,x=2得位移为-3m ;仅从式x=t 2-4t+5=(t-2)2+1,抛物线的对称轴为2,质点有往返题1.6: 答案:[D]提示:a=2t=d dt v,2224t v tdt t ==-⎰,02tx x vdt -=⎰,即可得D 项题1.7:答案:[D]北v 风v 车1v 车2提示: 21=2v v 车车,理清=+v v v 绝相对牵的关系二、填空题 题1.8:答案: 匀速(直线),匀速率题1.9:答案:2915t t -,0.6 提示: 2915dxv t t dt==-,t=0.6时,v=0题1.10:答案:(1)21192y x =-(2)24t -i j 4-j(3)411+i j 26-i j 3S提示: (1) 联立22192x t y t =⎧⎨=-⎩,消去t 得:21192y x =-,dx dydt dt =+v i j (2) t=1s 时,24t =-v i j ,4d dt==-va j (3) t=2s 时,代入22(192)x y t t =+=+-r i j i j 中得411+i j t=1s 到t=2s ,同样代入()t =r r 可求得26r∆=-i j ,r 和v 垂直,即0∙=r v ,得t=3s题1.11: 答案:212/m s 提示:2(2)2412(/)dv d x a v x m s dt dt=====题1.12: 答案:1/m s22π提示: 200t dvv v dt t dt =+=⎰,11/t vm s ==,201332tv dt t R θπ===⎰,222r R π∆==题1.13:答案:2015()2t v t gt -+-i j 提示: 先对20(/2)v tg t =-r j 求导得,0()y v gt =-v j 与5=v i 合成得05()v gt =-+-v i j 合 201=5()2t v t gt -+-∴⎰r v i j t合0合dt=题1.14: 答案:8, 264t提示:8dQ v R Rt dt τ==,88a R τ==,2264n dQ a R t dt ⎛⎫== ⎪⎝⎭三、计算题 题1.15:解:(1)3t dv a t dt == 003v tdv tdt =∴⎰⎰ 232v t ∴=又232ds v t dt == 20032stds t dt =∴⎰⎰ 312S t =∴(2)又S R θ= 316S t R θ==∴ (3)当a 与半径成45角时,n a a τ=2434n v a t R == 4334t t =∴ 34t S =∴题1.16:解:(1)dv a kv dt ==- 0v tdvkdt v =-∴⎰⎰, 0ln v kt v =-(*)当012v v =时,1ln 2kt =-,ln 2t k=∴ (2)由上式:0kt v v e-=0kt dxv e dt -=∴,000xtkt dx v e dt -=⎰⎰ 0(1)kt v x e k-=-∴第2章 质点动力学一、选择题 题2.1: 答案:[C]提示:A .错误,如:圆周运动B .错误,m =p v ,力与速度方向不一定相同 D .后半句错误,如:匀速圆周运动题2.2: 答案:[B]提示:y 方向上做匀速运动:2y y S v t t == x 方向上做匀加速运动(初速度为0),Fa m=22tx v a d t t ==⎰,223tx x t S v dt ==⎰ 2223t t =+∴S i j题2.3: 答案:[B]提示:受力如图MgF杆'F 猫mg设猫给杆子的力为F ,由于相对于地面猫的高度不变'F mg = 'F F = 杆受力 1()F Mg F M m g =+=+1()F M m g a M M+==题2.4 :答案:[D] 提示:Ba BTTa A Tmg22A BAB m g T m a T m a a a ⎧⎪-=⎪=⎨⎪⎪=⎩ 得45A a g = (2A B a a =,通过分析滑轮,由于A 向下走过S ,B 走过2S) 2A B a a =∴题2.5: 答案:[C]提示: 由题意,水平方向上动量守恒, 故 0(cos60)()1010m mv m v =+共 0=22v v 共题2.6: 答案:[C] 提示:RθθRh-R由图可知cos h RRθ-=分析条件得,只有在h 高度时,向心力与重力分量相等所以有22cos ()mv mg v g h R Rθ=⇒=- 由机械能守恒得(以地面为零势能面)2200112()22mv mv mgh v gh g h R =+⇒=+-题2.7: 答案:[B]提示: 运用动量守恒与能量转化题2.8: 答案:[D] 提示:θv 0v x v y由机械能守恒得20122mgh mv v gh =⇒= 0sin y v v θ=sin 2Gy Pmgv mg gh θ==∴题2.9: 答案: [C]题2.10: 答案: [B]提示: 受力如图fT Fx由功能关系可知,设位移为x (以原长时为原点)2()xF mg Fx mgx kxdx x kμμ--=⇒=⎰弹性势能 2212()2p F mg E kx kμ-==二、填空题题2.11: 答案:2mb提示: '2v x bt == '2a v b == 2F m a m b==∴题2.12:答案:2kg 4m/s 2 提示:4N 8Nxy 0由题意,22/x a m s = 4x F N =8y F N = 2Fm k ga== 24/y y F a m s m==题2.13: 答案:75,1110提示: 由题意,32()105F a t m ==+ 27/5v adt m s ⇒==⎰ 当t=2时,1110a =题2.14: 答案:180kg提示:由动量守恒,=m S -S m 人人人船相对S ()=180kg m ⇒船题2.15: 答案:11544+i j 提示:各方向动量守恒题2.16:答案: ()mv +i j ,0,-mgR提示:由冲量定义得 ==()()mv mv mv --=+I P P i j i j 末初- 由动能定律得 0k k E W E ∆=⇒∆=,所以=0W 合 =W m g R -外题2.17: 答案:-12提示:3112w Fdx J -==⎰题2.18:答案: mgh ,212kx ,MmG r - h=0,x=0,r =∞ 相对值题2.19: 答案:02mg k ,2mg ,0mg k题2.20: 答案: +=0A∑∑外力非保守力三、计算题 题2.21:解:(1)=m F xg L 重 ()mf L xg L μ=- (2)1()(1)ga F f x g m Lμμ=-=+-重(3)dv a v dx =,03(1)v LL g vdv x g dx L μμ⎡⎤=+-⎢⎥⎣⎦⎰⎰,2(2)3v Lg μ=-题2.22: 解:(1)以摆车为系统,水平方向不受力,动量守恒。

大学物理上下册课后习题答案

大学物理上下册课后习题答案

习题1-1. 已知质点位矢随时间变化的函数形式为r =R(cosωt i+sinωt j) 其中ω为常量.求:(1)质点的轨道;(2)速度和速率。

解:1)由r=R(cosωt i+sinωt j)知x = R cosωty = R sinωt消去t可得轨道方程x2+y2=R22)v=ddtr= −ωR sinωt i+ωRcosωt jv =[(−ωR sinωt)2+(ωR cosωt)2]12=ωR1-2. 已知质点位矢随时间变化的函数形式为r=4t2i+(3+2t)j,式中r的单位为m,t的单位为s.求:(1)质点的轨道;(2)从t=0到t=1秒的位移;(3)t =0和t =1秒两时刻的速度。

解:1)由r=4t2i+(3+2t)j可知x = 4t2y = 3 + 2t消去t得轨道方程为:x=(y−3)22)v =d d rt = 8t i + 2 jr =∫1v dt =∫1(8t i + 2 j )dt = 4i + 2 j3) v (0) = 2 jv (1) = 8i + 2 j1-3. 已知质点位矢随时间变化的函数形式为r = t 2 i + 2t j ,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速 度和法向加速度。

解:1)v =d d rt = 2t i + 2j a =d d v t = 2i2)v = [(2t)2+ 4] 12= 2(t 2+1) 12a t = dv = 2tdt t 2+1a = a 2 − a 2 =2n tt 2 +11-4. 一升降机以加速度a 上升,在上升过程中有一螺钉从天花板上松落,升 降机的天花板与底板相距为d ,求螺钉从天花板落到底板上所需的时间。

解:以地面为参照系,坐标如图,升降机与螺丝的运动方程分别为y = v t + 1at 2(1)图 1-41 0 21gt 2y 2 = h + v 0t − (2)2 y 1 = y 2(3)解之t =2d g + a1-5. 一质量为m 的小球在高度h 处以初速度v 0 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程;(3)落地前瞬时小球的d r, d v , d v .d t d t d t 解:(1)x = v 0 t式(1)y = h − 1gt 2式(2) 21 gt2 ) jr (t) = v 0 t i + (h -2(2)联立式(1)、式(2)得y = h − gx 22v 02(3)d r = v 0 i - gt j 而 落地所用时间 t = 2hgdt 所以 d r = v 0i - 2gh j d v = −g j dtdtv = v 2x + v 2y = v 02 + (−gt)2dv = g 2 t = g 2ghdt [ v 2 + ( gt ) 2 ] 1 2 ( v 2 + 2gh ) 120 01-6. 路灯距地面的高度为h 1 ,一身高为h 2 的人在路灯下以匀速v 1 沿直线行走。

(完整版)大学物理练习题答案(上下)施建青

(完整版)大学物理练习题答案(上下)施建青

大学物理(上册)练习解答练习1 在笛卡尔坐标系中描述质点的运动1-1 (1)D ;(2)D ;(3)B ;(4)C 1-2 (1)8 m ;10 m ;(2)x = (y -3)2;(3)10 m/s 2,-15 m/s 2 1-3 解:(1)2192x y =-(2)24t =-v i j 4=-a j(3)垂直时,则0=r v22(192)(24)0t t t ⎡⎤+--=⎣⎦i j i j0t =s ,3s t =-(舍去)1-4 解:设质点在x 处的速度为v ,62d d d d d d 2x txx t a +=⋅==v v ()x x xd 62d 02⎰⎰+=v v v()2 213xx +=v1-5 解: yt y y t a d d d d d d d d v v v v === 又-=a ky ,所以-k =y v d v / d yd d ky y -=⎰⎰v v221122ky C -=+v 已知=y y 0 ,=v v 0 则20202121ky C --=v)(220202y y k -+=v v 1-6 证:2d d d d d d d d v xv v t x x v t v K -==⋅= d v /v =-K d x⎰⎰-=x x K 0d d 10v v vv , Kx -=0ln v v v =v 0e-Kx练习2 在自然坐标系中描述质点的运动、相对运动2-1 (1)C ;(2)A ;(3)B ;(4)D ;(5)E2-2(1)g sin θ ,g cos θ ;(2)g /cos 0220θv ;(3)-c ,(b -ct )2/R ;(4)69.8 m/s ;(5)331ct ,2ct ,c 2t 4/R 2-3 解:(1)物体的总加速度a 为t n =+a a a()22t t a R Rt a a a a an t t t n t ===ααot a Rt tc =(2)αot R t a S t c 21212==2-4解:质点的运动方程可写成 S = bt , 式中b 为待定常量。

大学物理学上册习题解答完整版

大学物理学上册习题解答完整版

大学物理学上册习题解答HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】大学物理学习题答案习题一答案习题一1.1 简要回答下列问题:(1)位移和路程有何区别在什么情况下二者的量值相等在什么情况下二者的量值不相等(2) 平均速度和平均速率有何区别在什么情况下二者的量值相等(3) 瞬时速度和平均速度的关系和区别是什么瞬时速率和平均速率的关系和区别又是什么(4)质点的位矢方向不变,它是否一定做直线运动质点做直线运动,其位矢的方向是否一定保持不变(5) (6)r ∆和r ∆有区别吗?v ∆和v ∆有区别吗?0dv dt =和0d v dt=各代表什么运动? (7)设质点的运动方程为:()x x t =,()y y t =,在计算质点的速度和加速度时,有人先求出r =dr v dt= 及 22d r a dt =而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v = 及 a = 你认为两种方法哪一种正确两者区别何在(7) 如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系是否也是线性的?(8)“物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此其法向加速度也一定为零.”这种说法正确吗?(9)(9) 任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么?(10) 质点沿圆周运动,且速率随时间均匀增大,n a 、t a 、a 三者的大小是否随时间改变?(11) 一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中如果石子抛出后,火车以恒定加速度前进,结果又如何1.2 一质点沿x 轴运动,坐标与时间的变化关系为224t t x -=,式中t x ,分别以m 、s 为单位,试计算:(1)在最初s 2内的位移、平均速度和s 2末的瞬时速度;(2)s 1末到s 3末的平均加速度;(3)s 3末的瞬时加速度。

大学物理(下册)施建青主编练习解答

大学物理(下册)施建青主编练习解答
在岐山的背后,在遥远的鞍山山脉,有一个高寒的雪峰站在天空下,就像一个嵌在天空和地球上的轮廓,只能看到寂寞而高亢的姿势,让人屏住呼吸。在当地的原住民语言中,这个雪峰被称为“格雷戈里”,意思是“孤独的天堂女神”。当卫报之家的军队尚未踏上这片土地时,副 监护人杨功看到了孤独的山峰直立在海上山中,他脱口而出“谁是天通寿的朋友?”穿越万里的第一个高峰“。这是天下人民到来后唯一没有改名的山峰。它仍然被称为女神峰。有一个夏季和夏季的灯塔,有传言说那里那是一场篝火,甚至当地人都能看到它。当张宇正在看的时候,他 的脚步声开始响起,赵翔接过来和他并肩站在一起。他看着他面前的风景。他说感慨地说:“当关正在这里守护时,他说,'日月,瑞光已经出国了,而首都瑞光也是以它命名的。”张玉道:“杜甫远程领域的人们说道。福瑞市就在这里。那些住在这里的人,穷人可以得到足够的食物 和饮料,富人可以享受到最后的结局。“赵相成叹了口气说:”我希望如此,对,张少浪,你到了首都后,你能拥有吗?一个住宿的地方?“张玉道:“我从未来通过首都,没有熟悉的地方。”赵向成从袖口拿了一个名字,递给他。他说:“这个城市南部有一个安镇住所。这是我巡逻 的行业。如果你什么都不说,安全是无辜的。你抱着我。着名的职位将会在那里,会有会招待你的人。“张宇接过来说:“那我就是不尊重。”赵向成笑道:“小事。”这三艘战舰充满了风帆。好的,速度非常快,看到瑞光市后不久,就进入了香港水域以外的城市。目前,港口停泊着 数百艘大小船只。白色的风帆是树木丛生的,人声和海鸥的声音远近。在内陆水道开通之前,它是杜甫的第一个军事港口,有七个码头,可以容纳四十艘船并同时停放。现在从腾海群岛和内陆河流运输的货物大多聚集在这里。挥动#97;88诗歌 ;
查了一下,没有任何遗漏,也没有被翻转的迹象。事实上,除了他之前描述的一些奇怪的图画之外,没有那么多有价值的东西。重新包装后,他忍不住想起赵祥祥的忏悔。平心而论,进入环沿有很多好处。过早假装成标签并不是件好事。他在首都的目的是学习新的法律并找到更多 的物品来补充神灵。目前,他不想参与腾海岛与首都之间的斗争。当然,他也知道有些事情是无法避免的,但前提是他们有足够的力量来确保他们不被轻易操纵。来到案子后,他坐下来。他把夏剑从剑鞘中拉出来,用荧光的玉色看着刀片。他从仪式上拿出一块精美的天鹅绒,仔细擦了 擦。这把剑是乐器。杀死敌人后,没有血也没有灰尘。一般情况下,不需要进行特殊清洁。这种行为实际上是与剑交流的一种方式。与他战争结束后,他觉得他的精神已经升华,人与剑之间有着微妙的牵连。此刻想要呼吸几次,我觉得这把剑就像生命一样。通过他的呼吸,它保持了一 个美妙的节奏。它似乎是由他的思想驱动,并将飞走。他不知道这种感觉来自哪里,但据他的老师说,当人和剑完全融合在一起时,会有各种各样的神奇外表,例如刀片上出现的剑的名字,刀片变得更加敏锐。甚至在天空中飞翔等等。只是因为他认为不会有这样的一天,因为这把剑毕 竟不是一种自我牺牲。毕竟,在心理上存在这样的差距,但在这个阶段没有必要考虑这一点。此刻,直到一天结束,这个时候人才的帮助处理了蟑螂的尸体,他们准备回到空中。

《新编大学物理》(上、下册)教材习题答案#优选.

《新编大学物理》(上、下册)教材习题答案#优选.

第1章 质点运动学一、选择题题1.1 :答案:[B]提示:明确∆r 与r ∆的区别题1.2:答案:[A]题1.3:答案:[D]提示:A 与规定的正方向相反的加速运动, B 切向加速度, C 明确标、矢量的关系,加速度是d dtv题1.4:答案:[C]提示: 21r r r ∆=-,12,R R r j r i ==-,21v v v ∆=-,12,v v v i v j =-=-题1.5:答案:[D]提示:t=0时,x=5;t=3时,x=2得位移为-3m ;仅从式x=t 2-4t+5=(t-2)2+1,抛物线的对称轴为2,质点有往返题1.6:答案:[D]提示:a=2t=d dt v ,2224t v tdt t ==-⎰,02tx x vdt -=⎰,即可得D 项 题1.7:答案:[D] 北v 风v 车1v 车2提示: 21=2v v 车车,理清=+v v v 绝相对牵的关系二、填空题题1.8:答案: 匀速(直线),匀速率题1.9:答案:2915t t -,0.6提示: 2915dx v t t dt ==-,t=0.6时,v=0题1.10:答案:(1)21192y x =- (2)24t -i j 4-j(3)411+i j 26-i j 3S提示: (1) 联立22192x t y t=⎧⎨=-⎩,消去t 得:21192y x =-,dx dy dt dt =+v i j (2) t=1s 时,24t =-v i j ,4d dt==-v a j (3) t=2s 时,代入22(192)x y t t =+=+-r i j i j 中得411+i jt=1s 到t=2s ,同样代入()t =r r 可求得26r∆=-i j , r 和v 垂直,即0•=r v ,得t=3s题1.11:答案:212/m s 提示:2(2)2412(/)dv d x a v x m s dt dt =====题1.12:答案:1/m sπ 提示: 200t dv v v dt t dt =+=⎰,11/t v m s ==,201332tv dt t R θπ===⎰,r π∆==题1.13:答案:2015()2t v t gt -+-i j 提示: 先对20(/2)v t gt =-r j 求导得,0()y v gt =-v j 与5=v i 合成得05()v gt =-+-v i j 合 201=5()2t v t gt -+-∴⎰r v i j t合0合dt=题1.14:答案:8, 264t 提示:8dQ v R Rt dt τ==,88a R τ==,2264n dQ a R t dt ⎛⎫== ⎪⎝⎭三、计算题题1.15: 解:(1)3t dv a t dt == 003v t dv tdt =∴⎰⎰ 232v t ∴= 又232ds v t dt == 20032s t ds t dt =∴⎰⎰ 312S t =∴ (2)又S R θ= 316S t R θ==∴ (3)当a 与半径成45角时,n a a τ= 2434n v a t R == 4334t t =∴t =∴题1.16:解:(1)dv a kv dt ==- 00v t dv kdt v =-∴⎰⎰, 0ln v kt v =-(*) 当012v v =时,1ln 2kt =-,ln 2t k=∴ (2)由(*)式:0kt v v e-= 0kt dx v e dt -=∴,000x t kt dx v e dt -=⎰⎰ 0(1)kt v x e k-=-∴第2章 质点动力学一、选择题题2.1:答案:[C]提示:A .错误,如:圆周运动B .错误,m =p v ,力与速度方向不一定相同D .后半句错误,如:匀速圆周运动题2.2:答案:[B]提示:y 方向上做匀速运动:2y y S v t t ==x 方向上做匀加速运动(初速度为0),F a m= 202t x v adt t ==⎰,2023tx x t S v dt ==⎰ 2223t t =+∴S i j题2.3:答案:[B]提示:受力如图MgF 杆'F 猫mg 设猫给杆子的力为F ,由于相对于地面猫的高度不变'F mg = 'F F = 杆受力 1()F Mg F M m g =+=+1()F M m g a M M+==题2.4 :答案:[D]提示:a a A22A B A B mg T ma T ma a a ⎧⎪-=⎪=⎨⎪⎪=⎩ 得45A a g = (2A B a a =,通过分析滑轮,由于A 向下走过S ,B 走过2S ) 2A B a a =∴题2.5:答案:[C]提示: 由题意,水平方向上动量守恒, 故0(cos60)()1010m m v m v =+共 0=22v v 共题2.6:答案:[C]提示:R θθRh-R 由图可知cos h R Rθ-=分析条件得,只有在h 高度时,向心力与重力分量相等 所以有22cos ()mv mg v g h R Rθ=⇒=- 由机械能守恒得(以地面为零势能面)22001122mv mv mgh v =+⇒=题2.7:答案:[B]提示: 运用动量守恒与能量转化题2.8:答案:[D]提示:v v y由机械能守恒得2012mgh mv v =⇒=0sin y v v θ=sin G y P mgv mg ==∴题2.9:答案: [C]题2.10:答案: [B]提示: 受力如图f TF由功能关系可知,设位移为x (以原长时为原点)02()xF mg Fx mgx kxdx x kμμ--=⇒=⎰ 弹性势能 2212()2p F mg E kx kμ-== 二、填空题题2.11:答案:2mb提示: '2v x bt == '2a v b ==2F ma mb ==∴题2.12:答案:2kg 4m/s 2提示: 4N 8Nxy由题意,22/x a m s = 4x F N =8y F N = 2F m kg a== 24/y y F a m s m ==题2.13:答案: 75,1110提示: 由题意,32()105F a t m ==+ 207/5v adt m s ⇒==⎰ 当t=2时,1110a =题2.14:答案:180kg 提示:由动量守恒,=m S -S m 人人人船相对S ()=180kg m ⇒船题2.15:答案: 11544+i j 提示:各方向动量守恒题2.16:答案: ()mv +i j ,0,-mgR提示:由冲量定义得 ==()()mv mv mv --=+I P P i j i j 末初-由动能定律得 0k k E W E ∆=⇒∆=,所以=0W 合=W mgR -外题2.17:答案:-12提示:3112w Fdx J -==⎰题2.18: 答案: mgh ,212kx ,Mm G r - h=0,x=0,r =∞ 相对值题2.19:答案: 02mg k ,2mg,题2.20:答案:+=0A ∑∑外力非保守力三、计算题题2.21: 解:(1)=m F xg L 重 ()m f L x g Lμ=- (2)1()(1)g a F f x g m Lμμ=-=+-重 (3)dv a v dx =,03(1)v L L g vdv x g dx L μμ⎡⎤=+-⎢⎥⎣⎦⎰⎰,v =题2.22:解:(1)以摆车为系统,水平方向不受力,动量守恒。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大学物理(上册)练习解答练习1 在笛卡尔坐标系中描述质点的运动1-1 (1)D ;(2)D ;(3)B ;(4)C 1-2 (1)8 m ;10 m ;(2)x = (y -3)2;(3)10 m/s 2,-15 m/s 2 1-3 解:(1)2192x y =-(2)24t =-v i j 4=-a j(3)垂直时,则0=r v22(192)(24)0t t t ⎡⎤+--=⎣⎦i j i j0t =s ,3s t =-(舍去)1-4 解:设质点在x 处的速度为v ,62d d d d d d 2x txx t a +=⋅==v v ()x x xd 62d 02⎰⎰+=v v v()2 213xx +=v1-5 解: yt y y t a d d d d d d d d v v v v === 又-=a ky ,所以-k =y v d v / d yd d ky y -=⎰⎰v v221122ky C -=+v 已知=y y 0 ,=v v 0 则20202121ky C --=v)(220202y y k -+=v v 1-6 证:2d d d d d d d d v xv v t x x v t v K -==⋅= d v /v =-K d x⎰⎰-=x x K 0d d 10v v vv , Kx -=0ln v v v =v 0e-Kx练习2 在自然坐标系中描述质点的运动、相对运动2-1 (1)C ;(2)A ;(3)B ;(4)D ;(5)E2-2(1)g sin θ ,g cos θ ;(2)g /cos 0220θv ;(3)-c ,(b -ct )2/R ;(4)69.8 m/s ;(5)331ct ,2ct ,c 2t 4/R 2-3 解:(1)物体的总加速度a 为t n =+a a a()22t t a R Rt a a a a an t t t n t ===ααot a Rt tc =(2)αot R t a S t c 21212==2-4解:质点的运动方程可写成 S = bt , 式中b 为待定常量。

由此可求得0d d d d d d 22=====t St a b t S t v , v , ρ2b a n ==ρv 2 由此可知,质点作匀速率曲线运动,加速度就等于法向加速度。

又由于质点自外向内运动,ρ 越来越小,而b 为常数,所以该质点加速度的大小是越来越大。

2-5 解: 设下标A 指飞机,F 指空气,E 指地面,由题可知:v FE =60 km/h 正西方向 v AF =180 km/h 方向未知 v AE 大小未知, 正北方向所以AE AF FE =+v v vAE v 、 AF v 、AE v 构成直角三角形,可得170 km/h AE ==v 4.19/tg1==-AE FE v v θ飞机应取向北偏东19.4︒的航向。

练习3 牛顿运动定律3-1 (1)C ;(2)D ;(3)D ;(4)B ;(5)B3-2 (1)l/cos 2θ;(2)2%3-3 解:(1)先计算公路路面倾角θ 。

设计时轮胎不受路面左右方向的力,而法向力应在水平方向上.因而有R m N /sin 21v =θ mg N =θcos所以西aRg21tg v =θ(2)当有横向运动趋势时,轮胎与地面间有摩擦力,最大值为μN ′,这里N ′为该时刻地面对车的支持力。

由牛顿定律R m N N /cos sin 22v ='-'θμθ mg N N ='-'θμθsin cos所以θθθθμcos sin cos sin 2222Rg Rg +-=v v 将Rg21tg v =θ代入得078.021222221=+-=Rg Rgv v v v μ3-4 解: (1) 设同步卫星距地面的高度为h ,距地心的距离r =R +h 。

由22/ωmr r GMm = ①又由mg R GMm =2/得2gR GM =,代入①式得3/122)/(ωgR r = ②同步卫星的角速度51027.7-⨯=ω rad/s ,解得=r 71022.4⨯m , 41058.3⨯=-=R r h km(2) 由题设可知卫星角速度ω的误差限度为10105.5-⨯=∆ωrad/s由②式得223/ωgR r = ωln 2ln ln 32-=)(gR r取微分并令d r =∆r ,d ω =∆ω,且取绝对值,有3∆ r/r =2∆ω/ω ∆r=2r ∆ω /(3ω) =213 m 3-5 解: x m t x x m t m xk f d d d d d d d d 2vv v v =⋅==-= ⎰⎰-=-=4/202d d ,d d A A x mxkmx x k v v v v v 练习4 质心系和动量守恒定律4-1 (1) C ;(2)C ;(3)C4-2 (1)0.003 s , 0.6 N·s ,2 g ;(2)0)21(gy m +,0v m 21;(3)F t m m ∆+112,F t F t m m m ∆∆++11122;(4)v v v v '+-'+'+=+M u m u m M m )()()2(;(5)18 N ·s4-3 解:设沙子落到传送带时的速度为v 1,随传送带一起运动的速度为v 2,则取直角坐标系,x 轴水平向右,y 轴向上。

3===v j v i 12-, 4设质量为∆m 的砂子在∆t 时间内平均受力为F ,则(3)m m m t t t∆⨯-∆⨯∆∆===+∆∆∆p v v F i j 214由上式即可得到砂子所受平均力的方向,设力与x 轴的夹角为α,则tg =α-1(4/3)= 53°力方向斜向上。

4-4 解:人到达最高点时,只有水平方向速度v = v 0cos α,此人于最高点向后抛出物体m 。

设抛出后人的速度为v 1,取人和物体为一系统,则该系统水平方向的动量守恒。

即)()(11u m M m M -+=+v v v)/(1m M mu ++=v v由于抛出物体而引起人在水平方向的速度增量为)/(1m M mu +=-=∆v v v因为人从最高点落到地面的时间为g t /sin 0αv =故人跳的水平距离增加量为gM m mu t x )(sin 0+==∆∆αv v4-5 解:(1) 以炮弹与炮车为系统,以地面为参考系,水平方向动量守恒.设炮车相对于地面的速率为V x ,则有0)cos (=++x x V u m MV α )/(cos m M mu V x +-=α即炮车向后退。

(2) 以u (t )表示发炮过程中任一时刻炮弹相对于炮身的速度,则该瞬时炮车的速度应为)/(cos )()(m M t mu t V x +-=α 通过积分,可求炮车后退的距离⎰=∆tx tt V xd )(0()cos d tm u t t M m α=-+⎰ cos ml x M mα∆=-+即向后退。

练习5 机械能守恒定律5-1 (1)B ;(2)A ;(3)D ;(4)C5-2 (1)18 J ,6 m/s ;(2))131(R R GMm - 或 RGMm 32-;(3)k mg F 2)(2μ-;(4))(mr k ,)2(r k -5-3 解:(1)建立如图坐标。

某一时刻桌面上全链条长为y,则摩擦力大小为g l y mf μ=摩擦力的功⎰⎰--==0d d a l al f ygy l my f W μ202()22l amgmgy l a l lμμ-==--(2)以链条为对象,应用质点的动能定理2201122W mv mv =-P f W W W =+,00v =22()d d 2llP a a mg mg l a W P x x x l l-===⎰⎰ la l mg W f 2)(2--=μ222221)(22)(v m a l l mg l a l mg =---μ[]21222)()(a l a l l g ---=μv5-4 解:陨石落地过程中,万有引力的功)(d 2h R R GMmhrr GMm W Rh R +=-=⎰+根据动能定理222121)(v v m m h R R GMmh -=+22()h v GMv R R h =++5-5 解:如图所示,设l 为弹簧的原长,O 处为弹性势能零点;x 0为挂上物体后的伸长量,O '为物体的平衡位置;取弹簧伸长时物体所达到的O "处为重力势能的零点.由题意得物体在O '处的机械能为 αsin )(2102001x x mg kx E E K -++= 在O " 处,其机械能为2222121kx m E +=v由于只有保守力做功,系统机械能守恒,即2202002121sin )(21kx m x x mg kx E K +=-++v α 在平衡位置有mg sin α =kx 0k mg x αsin 0=代入上式整理得O "O 'x 0xOla-ax题5-3解图kmg kx mgx E m K 2)sin (21sin 212202αα--+=v 练习6 碰撞、角动量守恒定律6-1 (1)C ;(2)E6-2 (1)m ω ab ,0;(2)1 N·m·s ,1 m/s ;(3)2275 kgm 2·s -1,13 m·s -16-3 解:A 、B 两球发生弹性正碰撞,由水平方向动量守恒与机械能守恒,得 B B A A A A m m m v v v +=0 ①2220212121BB A A A A m m m v v v += ② 联立解出0A B A B A A m m m m v v +-=, 02A BA AB m m m v v +=由于二球同时落地,所以 0>A v ,B A m m >。

且B B A A L L v v //=。

故52==B A B A L L v v , 522=-A B A m m m 所以5/=B A m m6-4 解:物体因受合外力矩为零,故角动量守恒。

设开始时和绳被拉断时物体的切向速度、转动惯量、角速度分别为v 0、I 0、ω0和v 、I 、ω.则00I I ωω= ①R mR R mR //20020v v =整理后得v v /00R R =②物体作圆周运动的向心力由绳的张力提供R m F /2v =由②式可得3/12020)/(F mR R v =当F = 600 N 时,绳刚好被拉断,此时物体的转动半径为R = 0.3 m 分6-5 解:A 对B 所在点的角动量守恒.设粒子A 到达距B 最短距离为d 时的速度为v 。

相关文档
最新文档