运筹学基础与应用第四版胡运权主编课后练习答案

合集下载

运筹学(胡运权第四版及答案)

运筹学(胡运权第四版及答案)
管理运筹学
主讲:谢先达
2014.09
联系方式 办公室:QL643 87313663 手机: 13600512360 邮箱: xxdhz@


绪论
什么是运筹学?
运筹学发展历史 运筹学主要内容 运筹学的基本特征与基本方法
绪论
什么是运筹学?
定义:为决策机构在对其控制下业务活动进行决策 时,提供以数量化为基础的科学方法。
概念:可行解、最优解、最优值
第一章:线性规划及单纯形法
练习:靠近某河流有两个化工厂,流经第一化工厂的河流流量为每天 500万m3,在两个工厂之间有一条流量为每天200万m3支流,第一化工厂每 天排放含有某种有害物质的工业污水2万m3 ,第二化工厂每天排放这种 工业污水1.4万m3 。从第一化工厂排出的工业污水流到第二化工厂以前, 有20%可自净化。根据环保要求,河流中工业污水的含量应不大于0.2%, 这两个工厂都需各自处理一部分工业污水,第一化工厂处理工业污水的 成本是1000元/万m3 。第二化工厂处理污水的的成本是800元/万m3 。现 问在满足环保要求的条件下,每厂各应处理多少工业污水,使这两个工 厂总的处理工业污水费用最小。
-x1+x2+x3 = 4
-2x1+x2-x3 ≤ 6 x1 ≤ 0,x2 ≥ 0, x3取值无约束
第一章:线性规划及单纯形法
线性规划问题及其数学模型 线性规划图解法
单纯形法原理
单纯形法计算步骤
单纯形法的进一步讨论
第一章:线性规划及单纯形法
x2
目标函数: 约束条件: maxz=50x1+100x2 x1+x2≤300 2x1+x2≤400 x2≤250 x1≥0 ,x2≥0

第四版运筹学部分课后习题解答

第四版运筹学部分课后习题解答

运筹学部分课后习题解答P47 1.1 用图解法求解线性规划问题a)12121212min z=23466 ..424,0x xx xs t x xx x++≥⎧⎪+≥⎨⎪≥⎩解:由图1可知,该问题的可行域为凸集MABCN,且可知线段BA上的点都为最优解,即该问题有无穷多最优解,这时的最优值为min 3z=23032⨯+⨯=P47 1.3 用图解法和单纯形法求解线性规划问题a)12121212max z=10x5x349 ..528,0x xs t x xx x++≤⎧⎪+≤⎨⎪≥⎩解:由图1可知,该问题的可行域为凸集OABCO,且可知B点为最优值点,即112122134935282xx xx x x=⎧+=⎧⎪⇒⎨⎨+==⎩⎪⎩,即最优解为*31,2Tx⎛⎫= ⎪⎝⎭这时的最优值为max335z=101522⨯+⨯=单纯形法: 原问题化成标准型为121231241234max z=10x 5x 349..528,,,0x x x s t x x x x x x x +++=⎧⎪++=⎨⎪≥⎩ j c →105B CB Xb 1x2x3x4x0 3x 9 3 4 1 0 04x8[5] 2 0 1 j j C Z -105 0 0 0 3x 21/5 0 [14/5] 1 -3/5 101x8/51 2/5 0 1/5 j j C Z -1 0 -2 5 2x 3/2 0 1 5/14 -3/14 101x11 0 -1/72/7j j C Z --5/14 -25/14所以有*max 33351,,1015222Tx z ⎛⎫==⨯+⨯= ⎪⎝⎭P78 2.4 已知线性规划问题:1234124122341231234max24382669,,,0z x x x x x x x x x x x x x x x x x x x =+++++≤⎧⎪+≤⎪⎪++≤⎨⎪++≤⎪≥⎪⎩求: (1) 写出其对偶问题;(2)已知原问题最优解为)0,4,2,2(*=X ,试根据对偶理论,直接求出对偶问题的最优解。

运筹学基础及应用第四版胡运权主编课后练习答案

运筹学基础及应用第四版胡运权主编课后练习答案

运筹学基础及应用习题解答z 3。

(b)用图解法找不到满足所有约束条件的公共范围,所以该问题无可行解。

(a)约束方程组的系数矩阵12 3 6 3 0A 8 1 4 0 23 0 0 0 0基基解是否基可行解目标函数值X1 X2 X3 X4 X5 X6P1 P2 P3163 7-60 0 0否P1 P2 P4 0 10 0 7 0 0 是10P1 P2 P50 3 0 0 72是 3习题一P46x i1-的所有X i,X2,此时目标函数值o(b)约束方程组的系数矩阵A 12 3 4A2 2 12⑻(1)图解法基 基解 是否基可行解 目标函数值X 1X 2X 3X 4P 1P 24 11否"2P 1P 3 2 0 110 是435 ~5~5P 1P 4111否—36P 2P 312是52P 2P 41否22P 3P 40 0 1 1是5最优解xT2 11 5吋omax z 10x 1 5x 2 0x 3 0x 4 3x i 4X 2 X 3st. 5x 1 2x 2 x 48 9 8 12。

min—,— — 5 3 5C j 105 0 0 C B基b X 1X 2X 3X 421143 0 X 3— 1—"5"5582110X 11C j 105 0 0 C B 基bX 1 X 2 X 3 X 4 0 X 3 9 341 0 0X 48[5] 20 1 C j Z j105令 X iX 20,0,9,8,由此列出初始单纯形表最优解即为3x1 4x2 9的解x5x 1 2x 2 81,-,最大值z 竺 2 2(2)单纯形法首先在各约束条件上添加松弛变量,将问题转化为标准形式则P 3,P 4组成一个基。

得基可行解xC j Z j0 1221 8320,min14 22新的单纯形表为C j 105 0 0 C B基b X 1X 2X 3X 435 3 5X 2— 01— —2141410X 11121—7525c jZ j14 143*35x i 1, x 2 - , X 3 0, X 4 0。

运筹学基础及指导应用第四版胡运权主编课后练习问题详解

运筹学基础及指导应用第四版胡运权主编课后练习问题详解

运筹学基础及应用 习题解答习题一 P46 1.1 (a)该问题有无穷多最优解,即满足210664221≤≤=+x x x 且的所有()21,x x ,此时目标函数值3=z 。

(b)用图解法找不到满足所有约束条件的公共围,所以该问题无可行解。

1.2(a) 约束方程组的系数矩阵⎪⎪⎪⎭⎫ ⎝⎛--=1000030204180036312A4最优解()T x 0,0,7,0,10,0=。

(b) 约束方程组的系数矩阵⎪⎪⎭⎫⎝⎛=21224321A最优解Tx ⎪⎭⎫⎝⎛=0,511,0,52。

1.3(a)(1) 图解法最优解即为⎩⎨⎧=+=+8259432121x x x x 的解⎪⎭⎫⎝⎛=23,1x ,最大值235=z(2)单纯形法首先在各约束条件上添加松弛变量,将问题转化为标准形式 ⎩⎨⎧=++=+++++=825943 ..00510 max 4213214321x x x x x x t s x x x x z则43,P P 组成一个基。

令021==x x得基可行解()8,9,0,0=x ,由此列出初始单纯形表 21σσ>。

5839,58min =⎪⎭⎫ ⎝⎛=θ02>σ,2328,1421min =⎪⎭⎫ ⎝⎛=θ0,21<σσ,表明已找到问题最优解0 , 0 , 231,4321====x x x x 。

最大值 235*=z (b)(1) 图解法最优解即为⎩⎨⎧=+=+524262121x x x x 的解⎪⎭⎫⎝⎛=23,27x ,最大值217=z(2) 单纯形法首先在各约束条件上添加松弛变量,将问题转化为标准形式1234523124125max 2000515.. 62245z x x x x x x x s t x x x x x x =+++++=⎧⎪++=⎨⎪++=⎩21=+x x 2621+x x则3P ,4P ,5P 组成一个基。

令021==x x得基可行解()0,0,15,24,5x =,由此列出初始单纯形表21σσ>。

第四版运筹学部分课后习题解答(内容参考)

第四版运筹学部分课后习题解答(内容参考)

运筹学部分课后习题解答P47 1.1 用图解法求解线性规划问题a)12121212min z=23466 ..424,0x xx xs t x xx x++≥⎧⎪+≥⎨⎪≥⎩解:由图1可知,该问题的可行域为凸集MABCN,且可知线段BA上的点都为最优解,即该问题有无穷多最优解,这时的最优值为min 3z=23032⨯+⨯=P47 1.3 用图解法和单纯形法求解线性规划问题a)12121212max z=10x5x349 ..528,0x xs t x xx x++≤⎧⎪+≤⎨⎪≥⎩解:由图1可知,该问题的可行域为凸集OABCO,且可知B点为最优值点,即112122134935282xx xx x x=⎧+=⎧⎪⇒⎨⎨+==⎩⎪⎩,即最优解为*31,2Tx⎛⎫= ⎪⎝⎭这时的最优值为max335z=101522⨯+⨯=单纯形法: 原问题化成标准型为121231241234max z=10x 5x 349..528,,,0x x x s t x x x x x x x +++=⎧⎪++=⎨⎪≥⎩ j c →105B CB X b 1x2x3x4x0 3x 9 3 4 1 0 04x8[5] 2 0 1 j j C Z -105 0 0 0 3x 21/5 0 [14/5] 1 -3/5 101x8/51 2/5 0 1/5 j j C Z -1 0 -2 5 2x 3/2 0 1 5/14 -3/14 101x11 0 -1/72/7j j C Z --5/14 -25/14所以有*max 33351,,1015222Tx z ⎛⎫==⨯+⨯= ⎪⎝⎭P78 2.4 已知线性规划问题:1234124122341231234max24382669,,,0z x x x x x x x x x x x x x x x x x x x =+++++≤⎧⎪+≤⎪⎪++≤⎨⎪++≤⎪≥⎪⎩求: (1) 写出其对偶问题;(2)已知原问题最优解为)0,4,2,2(*=X ,试根据对偶理论,直接求出对偶问题的最优解。

清华大学《运筹学教程》胡运权主编课后习题答案

清华大学《运筹学教程》胡运权主编课后习题答案

3 x1 x2 x5 3
st
4 x1 3 x2 x3 x6
x1
2 x2
x4
4
6
x j 0(, j 1,,4)
cj
CB
xB
b
-M x5 3
-M
x6
6
0
x4
4
cj zj
-4 x1 1
-M x6 2
0
x4
3
cj zj
-4
-1 0
x1
x2
x3
3
1
0
4
3 -1
1
20
7M-4 4M-1 -M
小于0 ,因此已经得到唯一最优解,最优解为:
X * 2 5 ,9 / 5,1,0T
max Z 10x1 15x2 12x3
5x1 3x2 x3 9
(4)
st
5x1 2x1
6x2 x2 x3
15x3 5
15
x j 0(, j 1,,3)
39
1.8 已知某线性规划问题的初始单纯形
表和用单纯形法迭代后得到下面表格,试求括
弧中未知数a∼l值。
项目
X1 X2 X3 X4 X5
X4 6 (b) (c) (d) 1 0
X5 1 -1 3 (e) 0 1
Cj-Zj
a -1 2 0 0
X1 (f) (g) 2 -1 1/2 0
X5 4 (h) (i) 1 1/2 1
Cj-Zj
0 -7 (j) (k) (l)
6 4
x1 , x2 0
无穷多最优解
(蓝 色 线 段 上 的 点 都 是 最优 解 )
x1
6 5
,
x2

运筹学胡运权 部分课后习题答案

运筹学胡运权 部分课后习题答案

第一章P43-1.1(1)当取A (6/5,1/5)或B (3/2,0)时,z 取最小值3。

所以该问题有无穷多最优解,所有线段AB 上的点都是最优解。

P43-1.2(1)令''4'44x x x -=,z z -='''4'4321'55243max x x x x x z +-+-=,,,,,,232142222465''4'43216''4'43215''4'4321''4'4321≥=-+-++-=+-+-+=-+-+-x x x x x x x x x x x x x x x x x x x x x x x xP43-1.4(1) 图解法:A(0,9/4),Z 1=45/4;B(1,3/2),Z 2=35/2;C(8/5,0),Z 3=16。

单纯形法:10 5 0 0C b X b b x1x2x3x4θ0 x39 3 4 1 0 30 x48 5 2 0 1 8/5δ10 5 0 00 x321/5 0 14/5 1 -3/5 3/210 x18/5 1 2/5 0 1/5 4δ0 1 0 -25 x23/2 0 1 5/14 -3/1410 x1 1 1 0 -1/7 2/7δ0 0 -5/14 -25/14依次相当于:原点;C;B。

P44-1.7(1)2 -1 2 0 0 0 -M -M -MC b X b b x1x2x3x4x5x6x7x8x9θ无界解。

两阶段法:阶段二:P45-1.10证明:CX (0)>=CX*,C*X*>=C*X (0) CX (0)-CX*+C*X*-C*X (0)>=0,即(C*-C)(X*-X (0))>=0。

P45-1.13设饲料i 使用x i (kg ),则543218.03.04.07.02.0m in x x x x x z ++++=s.t. 7001862354321≥++++x x x x x 305.022.05.054321≥++++x x x x x1008.022.05.054321≥++++x x x x x0,,,,54321≥x x x x x第二章P74-2.1(1)321532m ax y y y w ++=22321≤++y y y 243321≤++y y y 4334321=++y y y 无约束321,0,0y y y ≤≥P75-2.4(1),06353322232max 212121212121≥≥≤-≤+≤-≤++=y y y y y y y y y y y y w(2) (8/5,1/5)(3) 无穷多最优解。

清华大学《运筹学教程》胡运权主编课后习题答案

清华大学《运筹学教程》胡运权主编课后习题答案

-4 x1 1
-M x 6 2
0
x4
3
cj zj
-4
-1 0
x1
x2
x3
[3]
1
0
4
3 -1
1
20
7M-4 4M-1 -M
1
1/3 0
0 [5/3] -1
0
5/3 0
0 5M/3+1/3 -M
0 -M -M
i
x4
x5
x6
0
10
1
0
0 1 3/2
1
00
4
0
00
0 1/3 0 3
0 -4/3 1 6/5 1 -1/3 0 9/5 0 -7M/3+4/3 0
0
16/3
-7/6
(x2,x4,x6)
0
10
0
(x2,x5,x6)
0
3
0
(x3,x4,x6)
0
0
-5/2
(x3,x5,x6)
0
0
3/2
(x4,x5,x6)
0
0
0
x4
x5
x6
是否基
Z
可行解
0
0
0

-7
0
0

0
7/2
0

3
0
0
21/4

8
0
0

0
8
0

3
0
0
3

3
5
0

0
-2
0
15/4

0
2
9/4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

运筹学基础及应用 习题解答习题一 P46 1.1 (a)该问题有无穷多最优解,即满足210664221≤≤=+x x x 且的所有()21,x x ,此时目标函数值3=z 。

(b)用图解法找不到满足所有约束条件的公共范围,所以该问题无可行解。

1.2(a) 约束方程组的系数矩阵4⎪⎪⎪⎭⎫ ⎝⎛--=1000030204180036312A最优解()T x 0,0,7,0,10,0=。

(b) 约束方程组的系数矩阵⎪⎪⎭⎫⎝⎛=21224321A最优解Tx ⎪⎭⎫⎝⎛=0,511,0,52。

1.3 (a) (1) 图解法最优解即为⎩⎨⎧=+=+8259432121x x x x 的解⎪⎭⎫⎝⎛=23,1x ,最大值235=z(2)单纯形法首先在各约束条件上添加松弛变量,将问题转化为标准形式 ⎩⎨⎧=++=+++++=825943 ..00510 max 4213214321x x x x x x t s x x x x z则43,P P 组成一个基。

令021==x x得基可行解()8,9,0,0=x ,由此列出初始单纯形表21σσ>。

5839,58min =⎪⎭⎫ ⎝⎛=θ02>σ,2328,1421min =⎪⎭⎫ ⎝⎛=θ 新的单纯形表为0,21<σσ,表明已找到问题最优解0 , 0 , 231,4321====x x x x 。

最大值 235*=z(b) (1) 图解法最优解即为⎩⎨⎧=+=+524262121x x x x 的解⎪⎭⎫⎝⎛=23,27x ,最大值217=z(2) 单纯形法首先在各约束条件上添加松弛变量,将问题转化为标准形式1234523124125max 2000515.. 62245z x x x x x x x s t x x x x x x =+++++=⎧⎪++=⎨⎪++=⎩则3P ,4P ,5P 组成一个基。

令021==x x得基可行解()0,0,15,24,5x =,由此列出初始单纯形表21=+x x 2621+x x21σσ>。

245min ,,461θ⎛⎫=-= ⎪⎝⎭02>σ,1533min ,24,522θ⎛⎫== ⎪⎝⎭新的单纯形表为0,21<σσ,表明已找到问题最优解11x =,27 2x =,3152x =,40x =,50x =。

最大值 *172z = 1.6(a) 在约束条件中添加松弛变量或剩余变量,且令()0,0 ''2'2''2'22≥≥-=x x x x x ,z z x x -=-=' ,3'3该问题转化为⎪⎪⎩⎪⎪⎨⎧≥=-+-=---+=++-+++-+--=0,,,,,633824124332x ..0023' max 54'3''2'21'3''2'215'3''2'214'3''2'2154'3''2'21x x x x x x x x x x x x x x x x x x x t s x x x x x x z其约束系数矩阵为⎪⎪⎪⎭⎫⎝⎛------=003113102114014332A在A 中人为地添加两列单位向量87,P P ⎪⎪⎪⎭⎫ ⎝⎛------100031130110211400014332 令7654'3''2'210023' max Mx Mx x x x x x x z --++-+--= 得初始单纯形表(b) 在约束条件中添加松弛变量或剩余变量,且令()''''''333330,0x x x x x =-≥≥,'z z =-该问题转化为'''123345'''12334'''12335'''1233'''123345max '3500x 2623316.. 5510,,,,,0z x x x x x x x x x x x x x x x s t x x x x x x x x x x =--+-++⎧++--=⎪+--+=⎪⎨++-=⎪⎪≥⎩其约束系数矩阵为121110************A --⎛⎫⎪=-- ⎪⎪-⎝⎭在A 中人为地添加两列单位向量87,P P121110102133010011550001--⎛⎫ ⎪- ⎪ ⎪-⎝⎭令'''12334567max '3500z x x x x x x Mx Mx =--+-++-- 得初始单纯形表1.7(a)解1:大M 法在上述线性规划问题中分别减去剩余变量468,,,x x x 再加上人工变量579,,,x x x 得123456789max 22000z x x x x Mx x Mx x Mx =-++-+-+-1234513672389123456789622,,20,,,,,,,,0x x x x x x x x x s t x x x x x x x x x x x x x ++-+=⎧⎪-+-+=⎪⎨--+=⎪⎪≥⎩其中M 是一个任意大的正数。

据此可列出单纯形表由单纯形表计算结果可以看出,40σ>且40(1,2,3)i a i <=,所以该线性规划问题有无界解解2:两阶段法。

现在上述线性规划问题的约束条件中分别减去剩余变量468,,,x x x 再加上人工变量579,,,x x x 得第一阶段的数学模型据此可列出单纯形表第一阶段求得的最优解*T 377X (,,,0,0,0,0,0,0)442=,目标函数的最优值*0ω=。

因人工变量5790x x x ===,所以*T 377(,,,0,0,0,0,0,0)442X =是原线性规划问题的基可行解。

于是可以进行第二阶段运算。

将第一阶段的最终表中的人工变量取消,并填入原问题的目标函数的系数,进行第二阶段的运算,见下表。

由表中计算结果可以看出,40σ>且40(1,2,3)i a i <=,所以原线性规划问题有无界解。

(b)解1:大M 法在上述线性规划问题中分别减去剩余变量468,,,x x x 再加上人工变量579,,,x x x 得1234567min 2300z x x x x x Mx Mx =+++++-123461257123456789428326,,,,,,,,,,0x x x x x x x x x s t x x x x x x x x x ++-+=⎧⎪+-+=⎪⎨⎪⎪≥⎩其中M 是一个任意大的正数。

据此可列出单纯形表由单纯形表计算结果可以看出,最优解*T (,,0,0,0,0,0)55X =,目标函数的最优解值*4923755z =⨯+⨯=。

X 存在非基变量检验数30σ=,故该线性规划问题有无穷多最优解。

解2:两阶段法。

现在上述线性规划问题的约束条件中分别减去剩余变量45,,x x 再加上人工变量67,,x x 得第一阶段的数学模型67min x x ω=+123461257123456789428326,,,,,,,,,,0x x x x x x x x x s t x x x x x x x x x ++-+=⎧⎪+-+=⎪⎨⎪⎪≥⎩ 据此可列出单纯形表第一阶段求得的最优解*T (,,0,0,0,0,0)55X =,目标函数的最优值*0ω=。

因人工变量670x x ==,所以T49(,,0,0,0,0,0)55是原线性规划问题的基可行解。

于是可以进行第二阶段运算。

将第一阶段的最终表中的人工变量取消,并填入原问题的目标函数的系数,进行第二阶段的运算,见下表。

由单纯形表计算结果可以看出,最优解*T (,,0,0,0,0,0)55X =,目标函数的最优解值*4923755z =⨯+⨯=。

由于存在非基变量检验数30σ=,故该线性规划问题有无穷多最优解。

1.8表1-23表1-241.10最后一个表为所求。

习题二 P76 2.1 写出对偶问题 (a)⎪⎪⎩⎪⎪⎨⎧≥=++≤+++≥++++=无约束3213214321321321,0,534332243 ..422 min x x x x x x y x x x x x x t s x x x z 对偶问题为:⎪⎪⎩⎪⎪⎨⎧≤≥=++≤++≤++++=无约束321321321321321,0,0433424322 ..532max y y y y y y y y y y y y t s y y y w (b)⎪⎪⎩⎪⎪⎨⎧≤≥≤++≥-+-=++++=0,0,837435522 ..365max 321321321321321x x x x x x x x x x x x t s x x x z 无约束 对偶问题为: ⎪⎪⎩⎪⎪⎨⎧≥≤≤+-≥++=+-++=0,0,332675254 ..835 min 321321321321321y y y y y y y y y y y y t s y y y w 无约束 2.2(a)错误。

原问题存在可行解,对偶问题可能存在可行解,也可能无可行解。

(b)错误。

线性规划的对偶问题无可行解,则原问题可能无可行解,也可能为无界解。

(c)错误。

(d)正确。

2.6 对偶单纯形法(a)⎪⎩⎪⎨⎧≥≥+≥+++=0,,522 33 ..18124 min 3213231321x x x x x x x t s x x x z 解:先将问题改写为求目标函数极大化,并化为标准形式()⎪⎩⎪⎨⎧=≥-=+---=+--++---=5,,10522 3 3 ..0018124'max 53243154321 i x x x x x x x t s x x x x x z i列单纯形表,用对偶单纯形法求解,步骤如下最优解为Tx ⎪⎭⎫ ⎝⎛=23,1,0, 目标值39=z 。

(b)⎪⎩⎪⎨⎧≥≥++≥++++=0,,1053642 3 ..425 min 321321321321x x x x x x x x x t s x x x z 解:先将问题改写为求目标函数极大化,并化为标准形式()⎪⎩⎪⎨⎧=≥-=+----=+---++---=5,,101053642 3 ..00425'max 5321432154321 i x x x x x x x x x t s x x x x x z i列单纯形表,用对偶单纯形法求解最优解为()T x 2,0,0=, 目标值8=z 。

相关文档
最新文档