运筹学____胡运权_课后答案

合集下载

运筹学教程(第二版)(胡运权)课后答案(清华大学出版社)

运筹学教程(第二版)(胡运权)课后答案(清华大学出版社)

运筹学教程(第⼆版)(胡运权)课后答案(清华⼤学出版社)运筹学教程(第⼆版)习题解答第⼀章习题解答运筹学教程1.1 ⽤图解法求解下列线性规划问题。

并指出问题具有惟⼀最优解、⽆穷多最优解、⽆界解还是⽆可⾏解。

1 2x , x ≥ 0 ? ≤ 2 2 1 ? .? 2 x 1 - x 2 ≥ 2st- 2 x + 3x (4) max Z = 5 x 1 + 6 x 2≤ 82 5 ≤ x ? 1 ? 5 ≤ x ≤ 10 .?max Z = x 1 + x 26 x 1 + 10 x 2 ≤ 120st ?(3) 1 2 x , x ≥ 0 ? 2 1 ? ? ? 4 x 1 + 6 x 2 ≥ 6st .?2 x + 2 x ≥ 4 (1) min Z = 2 x 1 +3 x 21 2 ? ≥ 12 2 1 ? x , x ≥ 0 .? ?2 x 1 + x 2 ≤ 2st ?3x + 4 x (2) max Z = 3x 1 + 2 x 2x , x ≥ 0 1 2该问题⽆解≥ 12 2 1 ? ? 2 x 1 + x 2 ≤ 2st .?3 x +4 x ( 2 ) max Z = 3 x 1 + 2 x 2第⼀章习题解答3 2 1x = 1, x = 1, Z = 3是⼀个最优解⽆穷多最优解,1 2x , x ≥ 0 ? 2 1 ? ? ? 4 x 1 + 6 x 2 ≥ 6st .?2 x + 2 x ≥ 4 (1) min Z = 2 x 1 +3 x 2该问题有⽆界解1 2x , x ≥ 0 ? ≤ 2 2 1 ? .? 2 x 1 - x 2 ≥ 2st- 2 x + 3x (4) max Z = 5x 1 + 6 x 2第⼀章习题解答唯⼀最优解, x 1 = 10, x 2 = 6, Z = 16 ≤ 82 5 ≤ x ?1 ? 5 ≤ x ≤ 10 .?max Z = x 1 + x 26 x 1 + 10 x 2 ≤ 120st ?(3)第⼀章习题解答运筹学教程1.2 将下述线性规划问题化成标准形式。

运筹学清华大学出版社胡运权着课后答案

运筹学清华大学出版社胡运权着课后答案

�12 x1 � 3 x2 � 6 x3 � 3 x4 � 9
(1)
st
��8 ��3
x1 x1
� �
x2 x6
� 4 x3 �0

2 x5
� 10
�� x j � 0�, j � 1,� ,6�
min Z � 5 x1 � 2 x2 � 3 x3 � 2 x4
� x1 � 2 x2 � 3 x3 � 4 x4 � 7
运筹学教程�第二版� 习题解答
运筹学教程
1.1 用图解法求解下列线性规划问题。并指出问 题具有惟一最优解、无穷多最优解、无界解还是无可 行解。
min Z � 2 x1 � 3 x2 � 4 x1 � 6 x2 � 6
(1) st .�� 2 x1 � 2 x2 � 4 �� x1 , x2 � 0
Z
0
0.5
2
0
5
0
0
1
1
5
2/5
0
11/5
0
43/5
page 10 6 January 2011
School of Management
运筹学教程
1.4 分别用图解法和单纯形法求解下述线性规划 问题�并对照指出单纯形表中的各基可行解对应图解 法中可行域的哪一顶点。
max Z � 10 x1 � 5 x2 �3 x1 � 4 x2 � 9
max Z � x1 � x2 �6 x1 � 10 x2 � 120 (3) st.�� 5 � x1 � 10 �� 5 � x2 � 8
max Z � 3x1 � 2 x2 �2 x1 � x2 � 2
(2) st.��3x1 � 4 x2 � 12 �� x1, x2 � 0

清华大学《运筹学教程》胡运权主编课后习题答案

清华大学《运筹学教程》胡运权主编课后习题答案

3 x1 x2 x5 3
st
4 x1 3 x2 x3 x6
x1
2 x2
x4
4
6
x j 0(, j 1,,4)
cj
CB
xB
b
-M x5 3
-M
x6
6
0
x4
4
cj zj
-4 x1 1
-M x6 2
0
x4
3
cj zj
-4
-1 0
x1
x2
x3
3
1
0
4
3 -1
1
20
7M-4 4M-1 -M
小于0 ,因此已经得到唯一最优解,最优解为:
X * 2 5 ,9 / 5,1,0T
max Z 10x1 15x2 12x3
5x1 3x2 x3 9
(4)
st
5x1 2x1
6x2 x2 x3
15x3 5
15
x j 0(, j 1,,3)
39
1.8 已知某线性规划问题的初始单纯形
表和用单纯形法迭代后得到下面表格,试求括
弧中未知数a∼l值。
项目
X1 X2 X3 X4 X5
X4 6 (b) (c) (d) 1 0
X5 1 -1 3 (e) 0 1
Cj-Zj
a -1 2 0 0
X1 (f) (g) 2 -1 1/2 0
X5 4 (h) (i) 1 1/2 1
Cj-Zj
0 -7 (j) (k) (l)
6 4
x1 , x2 0
无穷多最优解
(蓝 色 线 段 上 的 点 都 是 最优 解 )
x1
6 5
,
x2

《运筹学(胡运权)》第五版课后习题答案

《运筹学(胡运权)》第五版课后习题答案
X2 0.000000 2.000000
X33.000000 0.000000
X1,X2,X3 0.000000 0.000000
ROW SLACK OR SURPLUS DUAL PRICES
2) 0.000000 0.200000
3) 0.000000 0.600000
4) 0.0000000.000000
6) 0.0000000.008571
7) 0.000000 0.110000
8) 0.000000 -1.500000
NO. ITERATIONS= 6
计算lindo截屏
2.1a:
对偶问题为:
maxz=2y1+3y2+5y3
s.t.
y1+2y2+y3≤2
3y3+y2+4y3≤2
4y1+3y2+3y3=4
A1 1200.000000 0.000000
A2 0.000000 9.640000
A3 285.714294 0.000000
B3 10000.0000000.000000
C1 0.000000 15.900000
B1 0.000000 0.230000
A4 342.857147 0.000000
X2 1.000000 2.000000 INFINITY
X3 4.000000 1.000000 1.500000
X1,X2,X3 0.000000 0.000000 INFINITY
RIGHTHAND SIDE RANGES
ROW CURRENT ALLOWABLE ALLOWABLE
RHS INCREASE DECREASE

运筹学基础及应用第四版胡运权主编课后练习答案

运筹学基础及应用第四版胡运权主编课后练习答案

运筹学基础及应用 习题解答习题一 P46 1。

1 (a)该问题有无穷多最优解,即满足210664221≤≤=+x x x 且的所有()21,x x ,此时目标函数值3=z . (b )用图解法找不到满足所有约束条件的公共范围,所以该问题无可行解。

1.2(a) 约束方程组的系数矩阵⎪⎪⎪⎭⎫ ⎝⎛--=1000030204180036312A4最优解()T x 0,0,7,0,10,0=。

(b) 约束方程组的系数矩阵⎪⎪⎭⎫ ⎝⎛=21224321A最优解Tx ⎪⎭⎫⎝⎛=0,511,0,52。

1。

3(a )(1) 图解法最优解即为⎩⎨⎧=+=+8259432121x x x x 的解⎪⎭⎫⎝⎛=23,1x ,最大值235=z(2)单纯形法首先在各约束条件上添加松弛变量,将问题转化为标准形式⎩⎨⎧=++=+++++=825943 ..00510 max 4213214321x x x x x x t s x x x x z则43,P P 组成一个基。

令021==x x得基可行解()8,9,0,0=x ,由此列出初始单纯形表 21σσ>。

5839,58min =⎪⎭⎫ ⎝⎛=θ02>σ,2328,1421min =⎪⎭⎫⎝⎛=θ0,21<σσ,表明已找到问题最优解0 , 0 , 23 1,4321====x x x x 。

最大值 235*=z(b)(1) 图解法最优解即为⎩⎨⎧=+=+524262121x x x x 的解⎪⎭⎫⎝⎛=23,27x ,最大值217=z(2) 单纯形法首先在各约束条件上添加松弛变量,将问题转化为标准形式1234523124125max 2000515.. 62245z x x x x x x x s t x x x x x x =+++++=⎧⎪++=⎨⎪++=⎩21=+x x 2621+x x则3P ,4P ,5P 组成一个基。

令021==x x得基可行解()0,0,15,24,5x =,由此列出初始单纯形表21σσ>。

运筹学(胡运权)第五版课后答案,运筹作业

运筹学(胡运权)第五版课后答案,运筹作业

运筹学(胡运权)第五版课后答案,运筹作业47页1.1b⽤图解法找不到满⾜所有约束条件的公共范围,所以该问题⽆可⾏解47页1.1d⽆界解1.2(b)约束⽅程的系数矩阵A= 1 2 3 4( )2 1 1 2P1 P2 P3 P4最优解A=(0 1/2 2 0)T和(0 0 1 1)T49页13题设Xij为第i⽉租j个⽉的⾯积minz=2800x11+2800x21+2800x31+2800x41+4500x12+4500x22+4500x32+6000x13 +6000x23+7300x14s.t.x11+x12+x13+x14≥15x12+x13+x14+x21+x22+x23≥10x13+x14+x22+x23+x31+x32≥20x14+x23+x32+x41≥12Xij≥0⽤excel求解为:⽤LINDO求解:LP OPTIMUM FOUND A T STEP 3OBJECTIVE FUNCTION V ALUE1) 118400.0VARIABLE V ALUE REDUCED COST Z 0.000000 1.000000 X11 3.000000 0.000000X21 0.000000 2800.000000X31 8.000000 0.000000X41 0.000000 1100.000000X12 0.000000 1700.000000X22 0.000000 1700.000000X32 0.000000 0.000000X13 0.000000 400.000000X23 0.000000 1500.000000X14 12.000000 0.000000ROW SLACK OR SURPLUS DUAL PRICES2) 0.000000 -2800.0000003) 2.000000 0.0000004) 0.000000 -2800.0000005) 0.000000 -1700.000000NO. ITERATIONS= 3答若使所费租借费⽤最⼩,需第⼀个⽉租⼀个⽉租期300平⽅⽶,租四个⽉租期1200平⽅⽶,第三个⽉租⼀个⽉租期800平⽅⽶,50页14题设a1,a2,a3, a4, a5分别为在A1, A2, B1, B2, B3加⼯的Ⅰ产品数量,b1,b2,b3分别为在A1, A2, B1加⼯的Ⅱ产品数量,c1为在A2,B2上加⼯的Ⅲ产品数量。

运筹学(胡运权版)第三章运输问题课后习题答案

运筹学(胡运权版)第三章运输问题课后习题答案

P66: 8.某部门有3个生产同类产品的工厂(产地),生产的产品由4个销售点出售,各工厂A 1, A 2,A 3的生产量、各销售点B 1,B 2,B 3,B 4的销售量(假定单位为t )以及各工厂到销售点的单位运价(元/t )示于下表中,问如何调运才能使总运费最小?解:一、该运输问题的数学模型为:可以证明:约束矩阵的秩为r (A) = 6. 从而基变量的个数为 6.34333231242322213141141312116115893102114124min x x x x x x x x x x x x x c z i j ij ij +++++++++++==∑∑==⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧==≥=++=++=++=++=+++=+++=+++4,3,2,1;3,2,1,01412148221016342414332313322212312111343332312423222114131211j i x x x x x x x x x x x x x x x x x x x x x x x x x ij 111213142122232431323334x x x x x x x x x x x x 712111111111111111111111111⨯⎛⎫ ⎪⎪⎪ ⎪⎪⎪ ⎪⎪ ⎪⎝⎭二、给出运输问题的初始可行解(初始调运方案)1. 最小元素法思想:优先满足运价(或运距)最小的供销业务。

其余(非基)变量全等于零。

此解满足所有约束条件,且基变量(非零变量)的个数为6(等于m+n-1=3+4-1=6).总运费为(目标函数值) ,1013=x ,821=x ,223=x ,1432=x ,834=x ,614=x ∑∑===3141i j ij ij x c Z 246685143228116410=⨯+⨯+⨯+⨯+⨯+⨯=2. 伏格尔(Vogel)法伏格尔法的基本思想:运输表中各行各列的最小运价与次小运价之差值(罚数)应尽可能地小。

胡运权运筹学教程答案

胡运权运筹学教程答案

胡运权运筹学教程答案胡运权运筹学教程答案【篇一运筹学基础及应用第四版胡运权主编课后练习答案】txt 习题一p461.1a23。

b用亂解法找到满足所打约柬条仲的公it范w,所以该问题无可行解。

1.2a约束方程组的系数矩阵r最优解a.o,iao,7,o,ob约束方程组的系数矩阵fi234、4l22i2,最优解1八,0,11,0八v551.3a1图解法⑵单纯形法首先在各约朿条件上添加松弛变铽,将问题转化为标准形式maxz10a-,5a20x30a4[3a-.4义2a39si.[5a-j2x2a48则a,p4组成个猫令a;c20得-站可行解a_0.0.9,8,山此列出初始单纯形表cr20,0-minj2a新的单纯形农为a,xoxax21414mtq.qco,表明已找到问题垴优解._5__25xi,a-30,a4(b)(1)图解法17最优解即为严aixy52x224的解x卩,2v最大值zii22/单纯形法(2)苘先在外约朿条件.h添加松弛变m,将问题转化为标准形式maxz2.v,x2ox30.v4oa55a2156.y,2x2.v424【篇二运筹学(第五版)习题答案】章(39页)1.1用图解法求解下列线性规划问题,并指出问题是具有唯一最优解、无穷多最优解、无界解还是无可行解。

(1)maxzx1x25x110x250x1x21x24x1,x20x13x23x1x22x1,x20(3)maxz2x12x2x1-x2-1-0.5x1x22x1,x20(4)maxzx1x2x1-x203x1-x2-3x1,x20解(1)(图略)有唯一可行解,maxz14(2)(图略)有唯一可行解,minz9/4(3)(图略)无界解(4)(图略)无可行解1.2将下列线性规划问题变换成标准型,并列出初始单纯形表。

(1)minz-3x14x2-2x35x44x1-x22x3-x4-2x1x23x3-x414-2x13x2-x32x42 x1,x2,x30,x4无约束(2)maxszkpkzkaikxiki1k1xk1mik1i1,...,nxikOi1n;k1,,m1解设z-z,x4x5-x6,x5,x60标准型maxz3x1-4x22x3-5x5-x60x70x8-mx9-mx10s.t.-4x1x2-2x3x5-x6x10 2x1x23x3-x5x6x714-2x13x2-x32x5-2x6-x8x92x1,x2,x3,x5,x6,x7,x8 ,x9,x100⑵解加入人工变量x1,x2,x3,xn,得maxs1/pki1nk1mikxik-mx1-mx2-..-mxns.t.xixik1i1,2,3,nk1mxik0,xi 0,i1,2,3n;k1,2.,m是任意正整数1.3在下面的线性规划问题中找出满足约束条件的所有基解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档