SqlServer索引及优化详解
sqlsqerver语句优化方法

sqlsqerver语句优化方法SQL Server是一种关系型数据库管理系统,可以使用SQL语句对数据进行操作和管理。
优化SQL Server语句可以提高查询和操作数据的效率,使得系统更加高效稳定。
下面列举了10个优化SQL Server语句的方法:1. 使用索引:在查询频繁的列上创建索引,可以加快查询速度。
但是要注意不要过度索引,否则会影响插入和更新操作的性能。
2. 避免使用SELECT *:只选择需要的列,避免不必要的数据传输和处理,提高查询效率。
3. 使用JOIN替代子查询:在进行关联查询时,使用JOIN操作比子查询更高效。
尽量避免在WHERE子句中使用子查询。
4. 使用EXISTS替代IN:在查询中使用EXISTS操作比IN操作更高效。
因为EXISTS只需要找到一个匹配的行就停止了,而IN需要对所有的值进行匹配。
5. 使用UNION替代UNION ALL:如果对多个表进行合并查询时,如果不需要去重,则使用UNION ALL操作比UNION操作更高效。
6. 使用TRUNCATE TABLE替代DELETE:如果要删除表中的所有数据,使用TRUNCATE TABLE操作比DELETE操作更高效。
因为TRUNCATE TABLE不会像DELETE一样逐行删除,而是直接删除整个表的数据。
7. 使用分页查询:在需要分页显示查询结果时,使用OFFSET和FETCH NEXT操作代替传统的使用ROW_NUMBER进行分页查询。
这样可以减少查询的数据量,提高效率。
8. 避免使用CURSOR:使用游标(CURSOR)会增加数据库的负载,降低查询效率。
如果可能的话,应该尽量避免使用游标。
9. 使用参数化查询:使用参数化查询可以减少SQL注入的风险,同时也可以提高查询的效率。
因为参数化查询会对SQL语句进行预编译,可以复用执行计划。
10. 定期维护数据库:定期清理过期数据、重建索引、更新统计信息等维护操作可以提高数据库的性能。
SQLSERVERSQL性能优化技巧

SQLSERVERSQL性能优化技巧1.选择最有效率的表名顺序(只在基于规则的优化器中有效)SQLSERVER的解析器按照从右到左的顺序处理FROM⼦句中的表名,因此FROM⼦句中写在最后的表(基础表driving table)将被最先处理,在FROM⼦句中包含多个表的情况下,必须选择记录条数最少的表作为基础表,当SQLSERVER处理多个表时,会运⽤排序及合并的⽅式连接它们,⾸先,扫描第⼀个表(FROM⼦句中最后的那个表)并对记录进⾏排序;然后扫描第⼆个表(FROM⼦句中最后第⼆个表);最后将所有从第⼆个表中检索出的记录与第⼀个表中合适记录进⾏合并例如: 表 TAB1 16,384 条记录表 TAB2 5 条记录,选择TAB2作为基础表 (最好的⽅法) select count(*) from tab1,tab2 执⾏时间0.96秒,选择TAB2作为基础表 (不佳的⽅法) select count(*) from tab2,tab1 执⾏时间26.09秒;如果有3个以上的表连接查询,那就需要选择交叉表(intersection table)作为基础表,交叉表是指那个被其他表所引⽤的表例如:EMP表描述了LOCATION表和CATEGORY表的交集SELECT *FROM LOCATION L,CATEGORY C,EMP EWHERE E.EMP_NO BETWEEN 1000 AND 2000AND E.CAT_NO = C.CAT_NOAND E.LOCN = L.LOCN将⽐下列SQL更有效率SELECT *FROM EMP E ,LOCATION L ,CATEGORY CWHERE E.CAT_NO = C.CAT_NOAND E.LOCN = L.LOCNAND E.EMP_NO BETWEEN 1000 AND 20002.WHERE⼦句中的连接顺序SQLSERVER采⽤⾃下⽽上的顺序解析WHERE⼦句,根据这个原理,表之间的连接必须写在其他WHERE条件之前,那些可以过滤掉最⼤数量记录的条件必须写在WHERE⼦句的末尾例如:(低效,执⾏时间156.3秒)SELECT *FROM EMP EWHERE SAL > 50000AND JOB = 'MANAGER'AND 25 < (SELECT COUNT(*) FROM EMP WHERE MGR=E.EMPNO);(⾼效,执⾏时间10.6秒)SELECT *FROM EMP EWHERE 25 < (SELECT COUNT(*) FROM EMP WHERE MGR=E.EMPNO)AND SAL > 50000AND JOB = 'MANAGER';3.SELECT⼦句中避免使⽤'*'。
SQLServer-索引详细教程(聚集索引,非聚集索引)

SQLServer-索引详细教程(聚集索引,⾮聚集索引)作者:(⼀)必读:深⼊浅出理解索引结构实际上,您可以把索引理解为⼀种特殊的⽬录。
微软的SQL SERVER提供了两种索引:聚集索引(clustered index,也称聚类索引、簇集索引)和⾮聚集索引(nonclustered index,也称⾮聚类索引、⾮簇集索引)。
下⾯,我们举例来说明⼀下聚集索引和⾮聚集索引的区别:其实,我们的汉语字典的正⽂本⾝就是⼀个聚集索引。
⽐如,我们要查“安”字,就会很⾃然地翻开字典的前⼏页,因为“安”的拼⾳是“an”,⽽按照拼⾳排序汉字的字典是以英⽂字母“a”开头并以“z”结尾的,那么“安”字就⾃然地排在字典的前部。
如果您翻完了所有以“a”开头的部分仍然找不到这个字,那么就说明您的字典中没有这个字;同样的,如果查“张”字,那您也会将您的字典翻到最后部分,因为“张”的拼⾳是“zhang”。
也就是说,字典的正⽂部分本⾝就是⼀个⽬录,您不需要再去查其他⽬录来找到您需要找的内容。
我们把这种正⽂内容本⾝就是⼀种按照⼀定规则排列的⽬录称为“聚集索引”。
如果您认识某个字,您可以快速地从⾃动中查到这个字。
但您也可能会遇到您不认识的字,不知道它的发⾳,这时候,您就不能按照刚才的⽅法找到您要查的字,⽽需要去根据“偏旁部⾸”查到您要找的字,然后根据这个字后的页码直接翻到某页来找到您要找的字。
但您结合“部⾸⽬录”和“检字表”⽽查到的字的排序并不是真正的正⽂的排序⽅法,⽐如您查“张”字,我们可以看到在查部⾸之后的检字表中“张”的页码是672页,检字表中“张”的上⾯是“驰”字,但页码却是63页,“张”的下⾯是“弩”字,页⾯是390页。
很显然,这些字并不是真正的分别位于“张”字的上下⽅,现在您看到的连续的“驰、张、弩”三字实际上就是他们在⾮聚集索引中的排序,是字典正⽂中的字在⾮聚集索引中的映射。
我们可以通过这种⽅式来找到您所需要的字,但它需要两个过程,先找到⽬录中的结果,然后再翻到您所需要的页码。
SQLServer数据库性能调优技巧

SQLServer数据库性能调优技巧第一章:SQLServer数据库性能调优概述SQLServer是一种常用的关系型数据库管理系统,在大型企业和云计算环境中广泛应用。
为了确保数据库的高性能和可靠性,进行数据库性能调优非常重要。
本章将介绍SQLServer数据库性能调优的概念和目标。
1.1 数据库性能调优的概念数据库性能调优是指通过分析和优化数据库的结构、查询、索引、存储和配置等方面的问题,以提高数据库系统的效率和性能。
优化数据库性能可以显著提升数据的访问速度、减少系统响应时间和提高数据库的处理能力。
1.2 数据库性能调优的目标数据库性能调优的主要目标是提高数据库的运行效率和用户的体验,具体目标包括:- 提高数据的访问速度:通过合理的查询优化和索引设计,加快数据的检索速度。
- 减少系统响应时间:通过调整数据库配置、优化SQL 查询和提高硬件性能等措施,缩短系统响应时间。
- 提高数据库的处理能力:通过合理的分区设计、并行处理和负载均衡等措施,提高数据库的并发处理能力。
第二章:SQLServer数据库性能调优基础在进行SQLServer数据库性能调优之前,有几个基础概念需要了解,包括数据库的结构、查询执行计划和索引等。
2.1 数据库的结构SQLServer数据库由多个表组成,每个表由多个行和列组成。
表有一定的关系,通过主键和外键来建立关联。
了解数据库的结构对于进行性能调优非常重要。
2.2 查询执行计划查询执行计划是SQLServer数据库执行查询语句时的执行路径和操作过程的详细描述。
通过分析查询执行计划,可以找到潜在的性能问题,并进行相应的优化。
2.3 索引索引是一种特殊的数据库对象,用于加快查询速度。
常见的索引类型包括聚集索引、非聚集索引和全文索引等。
合理设计索引可以提高查询的性能。
第三章:SQLServer数据库性能调优技巧本章将介绍一些常用的SQLServer数据库性能调优技巧,包括查询优化、索引优化、配置优化和硬件优化等。
SQL深入了解sqlserver表连接join 及性能调优化

SQL深⼊了解sqlserver表连接join 及性能调优化 问题 : 1.什么是内连接(inner)和外联结(outer) 2. SQL server 表连接 (FROM--AND 法, JOIN -- ON 法)的区别. 3.表连接及多表连接的SQL语句执⾏顺序,和性能调优.1.第⼀个问题,⾸先要明⽩如何使⽤JOIN 和 ON 关键字作表连接。
申明:下⽂中所⽤的等价,可能指的是逻辑上的等价(即产⽣相同的结果集),也可能是执⾏顺序上的等价,甚⾄是所产⽣的执⾏计划或者执⾏效率等价。
因为很多时候⽤户只要写普通的sql ,⽽sql server 会跟据⾃⼰的优化配置和执⾏计划,产⽣执⾏步骤,这些步骤也许和你写的sql很符合,也许更优,当然也可能不符合你的需求。
这需要很多的积累,我也只是浅尝辄⽌,所以没有能⼒做过多论述。
具体问题具体分析,这⾥只能提供⼤体思路。
1)join 的5种⽅式: inner join ; left join; right join; full join; cross join; 其中inner join可以省去inner 关键字。
left/right join 与left/right out join 等价。
full join 与同时 left join 和 right join 等价。
cross join 为将两张表笛卡尔集 2) JOIN -- ON 语句的执⾏顺序: 例句:SELECT*FROM A LEFT JOIN B ON A.ID = B.ID AND A<>0WHERE ='x' 注意在作on 连接后的and ⼦句和where ⼦句。
他们有什么不同!。
逻辑上解释:(不考虑执⾏计划中执⾏步骤和作嵌套连接等具体⽅式,这⾥只讨论如何思考逻辑上的步骤) 执⾏顺序是: FROM --> JOIN --> ON -->AND--> LEFT--> WHERE -->SELECT A步骤. 先将两张表根据ON 条件作连接(逻辑上,相等于将两张表笛卡尔集后根据ID相等条件筛选数据,实际情况后⾯分析) B步骤. 根据ON 后⾯,WHERE 之前的 AND 条件筛选数据 C步骤. 跟据LEFT ⽆论如何,要保证A表的数据完整性。
sqlserver 空字段 索引

标题:SQL Server中空字段索引的使用及其优化方法目录1. SQL Server中空字段索引的作用2. SQL Server中空字段索引的使用方法3. SQL Server中空字段索引的优化方法一、SQL Server中空字段索引的作用在SQL Server数据库中,索引是一种用于加快数据查询速度的重要技术。
空字段索引是指在数据库表中对某个字段建立的索引,该字段允许为空值。
空字段索引的作用在于提高查询速度、优化数据检索效率,同时对于包含大量空值的字段,可以节约存储空间。
二、SQL Server中空字段索引的使用方法在SQL Server中,可以通过以下步骤对空字段建立索引:1. 分析数据表结构,确定哪些字段允许为空值且需要建立索引。
2. 使用CREATE INDEX语句来创建空字段索引,例如:```sqlCREATE INDEX idx_name ON table_name (column_name);```3. 使用SQL Server Management Studio(SSMS)或其他数据库管理工具来验证空字段索引的创建情况,并进行必要的优化和调整。
三、SQL Server中空字段索引的优化方法在使用空字段索引的过程中,可以通过以下方法来优化其性能:1. 确保索引列的数据类型和长度合理。
索引列的数据类型应尽量选择较小的类型,避免浪费存储空间。
2. 定期对空字段索引进行重新组织或重建。
由于数据的增删改会导致索引碎片化,因此需要定期对索引进行维护,以提高查询性能。
3. 根据业务需求和实际查询情况,合理选择索引类型。
在SQL Server 中,可以使用聚集索引、非聚集索引、覆盖索引等不同类型的索引,根据查询需求来选择最合适的索引类型。
4. 考虑在查询条件中对空字段进行合理的处理。
对于可能涉及到空字段的查询条件,需要针对性地优化查询语句,避免性能损耗。
总结在SQL Server中,空字段索引可以有效提高数据查询的速度和效率,但在使用过程中需要注意合理选择索引列、定期维护索引以及优化查询语句,以达到最佳的性能效果。
sqlserver数据库 提高效率方法

SQL Server 数据库是一种常见的关系型数据库管理系统,它被广泛应用于企业级应用程序和数据管理系统中。
然而,随着数据库规模的增大和日常操作的复杂性增加,数据库的性能和效率往往成为关注的焦点。
提高SQL Server数据库的效率不仅可以显著改善系统的响应速度和稳定性,也可以节约资源和降低成本。
本文将介绍一些提高SQL Server 数据库效率的方法,帮助管理员和开发人员更好地管理和优化数据库系统。
1. 使用合适的索引索引是数据库中用来加快对表中数据的访问速度的结构,它可以通过创建索引来优化查询的性能。
在SQL Server中,通过对经常进行搜索,排序和过滤的数据列创建合适的索引,可以显著提高查询性能。
定期对索引进行维护和优化也是提高数据库效率的关键步骤。
2. 优化查询语句优化SQL查询语句对于提高数据库效率至关重要。
在编写查询语句时,应避免使用全表扫描,尽量减少数据量,避免使用不必要的连接和子查询,合理使用排序和分组等操作,以及避免使用模糊查询和通配符查询等低效操作。
3. 定期备份和恢复定期备份数据库是保障数据库安全的重要手段,同时备份还能够减少数据库维护的风险。
在备份时,管理员应该选择合适的备份策略,并对备份文件进行存储和管理,以确保数据库在出现故障或灾难时能够快速恢复。
4. 使用存储过程和触发器存储过程和触发器是SQL Server中重要的数据库对象,它们可以提高数据库的安全性和可维护性,同时还能减少网络流量和客户端执行开销,提高数据库的效率。
在编写存储过程和触发器时,应遵循一些最佳实践,如避免多次嵌套存储过程和触发器,减少对数据库的锁定和阻塞。
5. 使用物理分区技术SQL Server支持对数据表进行物理分区,这可以帮助管理员更好地管理数据,并根据需求对数据进行调优。
通过物理分区,可以提高查询和数据加载的性能,同时也方便了数据备份和恢复。
总结通过上述方法,可以显著提高SQL Server数据库的性能和效率,使其能够更好地满足企业应用程序和数据管理系统的需求。
SqlServer数据库优化之索引、临时表

SqlServer数据库优化之索引、临时表问题:⼯作是查询⼀张500万多条数据的表时,查询总是很慢,于是进⾏优化。
--查询表所有索引
use RYTreasureDB
EXEC Sp_helpindex [RecordDrawScore]
--这张表没有主键,也没有索引
SELECT*FROM RecordDrawScore WHERE UserID IN (1,2,3,4,5);
1.添加索引
添加索引后,SELECT时不会对整个表⼀⾏⼀⾏去遍历,只对UserID字段进⾏筛选。
CREATE INDEX RecordDrawScore_userID ON[RecordDrawScore](UserID);
由于我需要对表进⾏多次查询,所以第⼆步建临时表,减少对数据表的操作。
2.建⽴临时表
--添加(NOLOCK) 后查询表不会锁表
SELECT userid INTO #Temp FROM[RecordDrawScore](NOLOCK) re
--给临时表添加索引
CREATE INDEX Temp_userID ON #Temp(UserID);
--当临时表⽤完后要删除它,删除表和UserID都会同时删除索引
IF object_id('tempdb..#ScoreTemp') is not null
BEGIN
DROP TABLE #ScoreTemp;
END
添加完后,效率提升了很多。
合理的建⽴索引会⼤⼤提⾼效率,反正也会⼤⼤降低效率。
转载请标明出处,谢谢!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SqlServer索引及优化详解(一)深入浅出理解索引结构实际上,您可以把索引理解为一种特殊的目录。
微软的SQL SERVER提供了两种索引:聚集索引(clustered index,也称聚类索引、簇集索引)和非聚集索引(nonclustered index,也称非聚类索引、非簇集索引)。
下面,我们举例来说明一下聚集索引和非聚集索引的区别:其实,我们的汉语字典的正文本身就是一个聚集索引。
比如,我们要查“安”字,就会很自然地翻开字典的前几页,因为“安”的拼音是“an”,而按照拼音排序汉字的字典是以英文字母“a”开头并以“z”结尾的,那么“安”字就自然地排在字典的前部。
如果您翻完了所有以“a”开头的部分仍然找不到这个字,那么就说明您的字典中没有这个字;同样的,如果查“张”字,那您也会将您的字典翻到最后部分,因为“张”的拼音是“zhang”。
也就是说,字典的正文部分本身就是一个目录,您不需要再去查其他目录来找到您需要找的内容。
我们把这种正文内容本身就是一种按照一定规则排列的目录称为“聚集索引”。
如果您认识某个字,您可以快速地从自动中查到这个字。
但您也可能会遇到您不认识的字,不知道它的发音,这时候,您就不能按照刚才的方法找到您要查的字,而需要去根据“偏旁部首”查到您要找的字,然后根据这个字后的页码直接翻到某页来找到您要找的字。
但您结合“部首目录”和“检字表”而查到的字的排序并不是真正的正文的排序方法,比如您查“张”字,我们可以看到在查部首之后的检字表中“张”的页码是672页,检字表中“张”的上面是“驰”字,但页码却是63页,“张”的下面是“弩”字,页面是390页。
很显然,这些字并不是真正的分别位于“张”字的上下方,现在您看到的连续的“驰、张、弩”三字实际上就是他们在非聚集索引中的排序,是字典正文中的字在非聚集索引中的映射。
我们可以通过这种方式来找到您所需要的字,但它需要两个过程,先找到目录中的结果,然后再翻到您所需要的页码。
我们把这种目录纯粹是目录,正文纯粹是正文的排序方式称为“非聚集索引”。
通过以上例子,我们可以理解到什么是“聚集索引”和“非聚集索引”。
进一步引申一下,我们可以很容易的理解:每个表只能有一个聚集索引,因为目录只能按照一种方法进行排序。
(二)何时使用聚集索引或非聚集索引下面的表总结了何时使用聚集索引或非聚集索引(很重要)。
事实上,我们可以通过前面聚集索引和非聚集索引的定义的例子来理解上表。
如:返回某范围内的数据一项。
比如您的某个表有一个时间列,恰好您把聚合索引建立在了该列,这时您查询2004年1月1日至2004年10月1日之间的全部数据时,这个速度就将是很快的,因为您的这本字典正文是按日期进行排序的,聚类索引只需要找到要检索的所有数据中的开头和结尾数据即可;而不像非聚集索引,必须先查到目录中查到每一项数据对应的页码,然后再根据页码查到具体内容。
(三)结合实际,谈索引使用的误区理论的目的是应用。
虽然我们刚才列出了何时应使用聚集索引或非聚集索引,但在实践中以上规则却很容易被忽视或不能根据实际情况进行综合分析。
下面我们将根据在实践中遇到的实际问题来谈一下索引使用的误区,以便于大家掌握索引建立的方法。
1、主键就是聚集索引这种想法笔者认为是极端错误的,是对聚集索引的一种浪费。
虽然SQL SERVER默认是在主键上建立聚集索引的。
通常,我们会在每个表中都建立一个ID列,以区分每条数据,并且这个ID列是自动增大的,步长一般为1。
我们的这个办公自动化的实例中的列Gid就是如此。
此时,如果我们将这个列设为主键,SQL SERVER会将此列默认为聚集索引。
这样做有好处,就是可以让您的数据在数据库中按照ID进行物理排序,但笔者认为这样做意义不大。
显而易见,聚集索引的优势是很明显的,而每个表中只能有一个聚集索引的规则,这使得聚集索引变得更加珍贵。
从我们前面谈到的聚集索引的定义我们可以看出,使用聚集索引的最大好处就是能够根据查询要求,迅速缩小查询范围,避免全表扫描。
在实际应用中,因为ID号是自动生成的,我们并不知道每条记录的ID号,所以我们很难在实践中用ID号来进行查询。
这就使让ID号这个主键作为聚集索引成为一种资源浪费。
其次,让每个ID号都不同的字段作为聚集索引也不符合“大数目的不同值情况下不应建立聚合索引”规则;当然,这种情况只是针对用户经常修改记录内容,特别是索引项的时候会负作用,但对于查询速度并没有影响。
在办公自动化系统中,无论是系统首页显示的需要用户签收的文件、会议还是用户进行文件查询等任何情况下进行数据查询都离不开字段的是“日期”还有用户本身的“用户名”。
通常,办公自动化的首页会显示每个用户尚未签收的文件或会议。
虽然我们的where 语句可以仅仅限制当前用户尚未签收的情况,但如果您的系统已建立了很长时间,并且数据量很大,那么,每次每个用户打开首页的时候都进行一次全表扫描,这样做意义是不大的,绝大多数的用户1个月前的文件都已经浏览过了,这样做只能徒增数据库的开销而已。
事实上,我们完全可以让用户打开系统首页时,数据库仅仅查询这个用户近3个月来未阅览的文件,通过“日期”这个字段来限制表扫描,提高查询速度。
如果您的办公自动化系统已经建立的2年,那么您的首页显示速度理论上将是原来速度8倍,甚至更快。
在这里之所以提到“理论上”三字,是因为如果您的聚集索引还是盲目地建在ID这个主键上时,您的查询速度是没有这么高的,即使您在“日期”这个字段上建立的索引(非聚合索引)。
下面我们就来看一下在1000万条数据量的情况下各种查询的速度表现(3个月内的数据为25万条):(1)仅在主键上建立聚集索引,并且不划分时间段:Select gid,fariqi,neibuyonghu,title from tgongwen 用时:128470毫秒(即:128秒)(2)在主键上建立聚集索引,在fariq上建立非聚集索引:select gid,fariqi,neibuyonghu,title from Tgongwen where fariqi> dateadd(day,-90,getdate()) 用时:53763毫秒(54秒)(3)将聚合索引建立在日期列(fariqi)上:select gid,fariqi,neibuyonghu,title from Tgongwen where fariqi> dateadd(day,-90,getdate()) 用时:2423毫秒(2秒)虽然每条语句提取出来的都是25万条数据,各种情况的差异却是巨大的,特别是将聚集索引建立在日期列时的差异。
事实上,如果您的数据库真的有1000万容量的话,把主键建立在ID列上,就像以上的第1、2种情况,在网页上的表现就是超时,根本就无法显示。
这也是我摒弃ID列作为聚集索引的一个最重要的因素。
得出以上速度的方法是:在各个select语句前加:declare @d datetime set @d=getdate()并在select语句后加:select [语句执行花费时间(毫秒)]=datediff(ms,@d,getdate())2、只要建立索引就能显著提高查询速度事实上,我们可以发现上面的例子中,第2、3条语句完全相同,且建立索引的字段也相同;不同的仅是前者在fariqi字段上建立的是非聚合索引,后者在此字段上建立的是聚合索引,但查询速度却有着天壤之别。
所以,并非是在任何字段上简单地建立索引就能提高查询速度。
从建表的语句中,我们可以看到这个有着1000万数据的表中fariqi字段有5003个不同记录。
在此字段上建立聚合索引是再合适不过了。
在现实中,我们每天都会发几个文件,这几个文件的发文日期就相同,这完全符合建立聚集索引要求的:“既不能绝大多数都相同,又不能只有极少数相同”的规则。
由此看来,我们建立“适当”的聚合索引对于我们提高查询速度是非常重要的。
3、把所有需要提高查询速度的字段都加进聚集索引,以提高查询速度上面已经谈到:在进行数据查询时都离不开字段的是“日期”还有用户本身的“用户名”。
既然这两个字段都是如此的重要,我们可以把他们合并起来,建立一个复合索引(compound index)。
很多人认为只要把任何字段加进聚集索引,就能提高查询速度,也有人感到迷惑:如果把复合的聚集索引字段分开查询,那么查询速度会减慢吗?带着这个问题,我们来看一下以下的查询速度(结果集都是25万条数据):(日期列fariqi首先排在复合聚集索引的起始列,用户名neibuyonghu排在后列)(1)select gid,fariqi,neibuyonghu,title from Tgongwen where fariqi>'2004-5-5' 查询速度:2513毫秒(2)select gid,fariqi,neibuyonghu,title from Tgongwen where fariqi>'2004-5-5' and neibuyonghu='办公室' 查询速度:2516毫秒(3)select gid,fariqi,neibuyonghu,title from Tgongwen where neibuyonghu='办公室' 查询速度:60280毫秒从以上试验中,我们可以看到如果仅用聚集索引的起始列作为查询条件和同时用到复合聚集索引的全部列的查询速度是几乎一样的,甚至比用上全部的复合索引列还要略快(在查询结果集数目一样的情况下);而如果仅用复合聚集索引的非起始列作为查询条件的话,这个索引是不起任何作用的。
当然,语句1、2的查询速度一样是因为查询的条目数一样,如果复合索引的所有列都用上,而且查询结果少的话,这样就会形成“索引覆盖”,因而性能可以达到最优。
同时,请记住:无论您是否经常使用聚合索引的其他列,但其前导列一定要是使用最频繁的列。
(四)其他书上没有的索引使用经验总结1、用聚合索引比用不是聚合索引的主键速度快下面是实例语句:(都是提取25万条数据)select gid,fariqi,neibuyonghu,reader,title from Tgongwen where fariqi='2004-9-16' 使用时间:3326毫秒select gid,fariqi,neibuyonghu,reader,title from Tgongwen where gid<=250000 使用时间:4470毫秒这里,用聚合索引比用不是聚合索引的主键速度快了近1/4。
2、用聚合索引比用一般的主键作order by时速度快,特别是在小数据量情况下select gid,fariqi,neibuyonghu,reader,title from Tgongwen order by fariqi 用时:12936select gid,fariqi,neibuyonghu,reader,title from Tgongwen order by gid 用时:18843这里,用聚合索引比用一般的主键作order by时,速度快了3/10。