常微分方程第二章练习与答案
常微分方程第一、二、三次作业参考答案

1、给定一阶微分方程2dyx dx=: (1) 求出它的通解;解:由原式变形得:2dy xdx =.两边同时积分得2y x C =+.(2) 求通过点(2,3)的特解;解:将点(2,3)代入题(1)所求的得通解可得:1C =-即通过点(2,3)的特解为:21y x =-.(3) 求出与直线23y x =+相切的解;解:依题意联立方程组:223y x Cy x ⎧=+⎨=+⎩故有:2230x x C --+=。
由相切的条件可知:0∆=,即2(2)4(3)0C --⨯-+=解得4C =故24y x =+为所求。
(4) 求出满足条件33ydx =⎰的解。
解:将 2y x C =+代入330dy =⎰,可得2C =-故22y x =-为所求。
2、求下列方程的解。
1)3x y dydx-= 2)233331dy x y dx x y -+=--解:依题意联立方程组:23303310x y x y -+=⎧⎨-+=⎩ 解得:2x =,73y =。
则令2X x =-,73Y y =-。
故原式可变成:2333dY x ydX x y-=-. 令Yu X =,则dy Xdu udx =+,即有 233263u dxdu u u x-=-+.两边同时积分,可得122(263)||u u C X --+= .将732y u x -=-,2X x =-代入上式可得: 12227()614323|2|2(2)y y C x x x -⎛⎫- ⎪--+=- ⎪-- ⎪⎝⎭.即上式为所求。
3、求解下列方程:1)24dyxy x dx+=. 解:由原式变形得:22dyxdx y=-. 两边同时积分得:12ln |2|y x C --=+. 即上式为原方程的解。
2)()x dyx y e dx-=. 解:先求其对应的齐次方程的通解: ()0dyx y dx -=. 进一步变形得:1dy dx y=.两边同时积分得:x y ce =.利用常数变异法,令()x y c x e =是原方程的通解。
常微分方程第三版习题答案

常微分方程第三版习题答案常微分方程是数学中的一个重要分支,它研究的是描述自然界中变化规律的方程。
在学习常微分方程的过程中,习题是非常重要的一部分,通过解习题可以加深对理论知识的理解和应用能力的培养。
本文将为大家提供《常微分方程第三版》习题的部分答案,希望能对大家的学习有所帮助。
1. 习题一1.1 解:首先,我们根据题意列出方程:$\frac{dy}{dt} = 2y + t^2$这是一个一阶线性常微分方程,我们可以使用常数变易法来求解。
令$y = u(t)e^{2t}$,则$\frac{dy}{dt} = \frac{du}{dt}e^{2t} + 2ue^{2t}$将上述结果代入原方程,得到:$\frac{du}{dt}e^{2t} + 2ue^{2t} = 2(u(t)e^{2t}) + t^2$化简得到:$\frac{du}{dt}e^{2t} = t^2$两边同时除以$e^{2t}$,得到:$\frac{du}{dt} = t^2e^{-2t}$对上式两边同时积分,得到:$u = -\frac{1}{4}t^2e^{-2t} + C$将$u$代入$y = u(t)e^{2t}$,得到最终的解:$y = (-\frac{1}{4}t^2e^{-2t} + C)e^{2t}$1.2 解:首先,我们根据题意列出方程:$\frac{dy}{dt} = \frac{t}{y}$这是一个一阶可分离变量的常微分方程,我们可以通过分离变量来求解。
将方程变形,得到:$ydy = tdt$对上式两边同时积分,得到:$\frac{1}{2}y^2 = \frac{1}{2}t^2 + C$解得:$y^2 = t^2 + C$由于题目中给出了初始条件$y(0) = 1$,将初始条件代入上式,得到:$1 = 0 + C$解得:$C = 1$将$C$代入$y^2 = t^2 + C$,得到最终的解:$y^2 = t^2 + 1$2. 习题二2.1 解:首先,我们根据题意列出方程:$\frac{dy}{dt} = 2ty + t^2$这是一个一阶线性常微分方程,我们可以使用常数变易法来求解。
常微分方程第二章练习与答案

1 / 16习题2-1判断下列方程是否为恰当方程,并且对恰当方程求解: 1.0)12()13(2=++-dy x dx x解:13),(2-=x y x P , 12),(+=x y x Q ,则0=∂∂y P ,2=∂∂xQ, 所以 x Q y P ∂∂≠∂∂ 即 原方程不是恰当方程. 2.0)2()2(=+++dy y x dx y x 解:,2),(y x y x P +=,2),(y x y x Q -=则,2=∂∂y P ,2=∂∂xQ所以x Q y P ∂∂=∂∂,即 原方程为恰当方程 则,0)22(=-++ydy xdy ydx xdx两边积分得:.22222C y xy x =-+ 3.0)()(=+++dy cy bx dx by ax 〔a,b 和c 为常数〕. 解:,),(by ax y x P +=,),(cy bx y x Q +=则,b y P =∂∂,b xQ =∂∂ 所以x Q y P ∂∂=∂∂,即 原方程为恰当方程 则,0=+++cydy bxdy bydx axdx两边积分得:.2222C cy bxy ax =++ 4.)0(0)()(≠=-+-b dy cy bx dx by ax解:,),(by ax y x P -=,),(cy bx y x Q -=则,b y P -=∂∂,b xQ=∂∂ 因为 0≠b , 所以x Q y P ∂∂≠∂∂,即 原方程不为恰当方程5.0sin 2cos )1(2=++udt t udu t解:,cos )1(),(2u t u t P +=u t u t Q sin 2),(=则,cos 2u t t P =∂∂,cos 2u t xQ=∂∂ 所以x Q y P ∂∂=∂∂,即 原方程为恰当方程则,0cos )sin 2cos (2=++udu udt t udu t2 / 16两边积分得:.sin )1(2C u t =+ 6.0)2()2(2=++++dy xy e dx y e ye xxx解: xy e y x Q y e ye y x P xxx2),(,2,(2+=++=,则,2y e y P x +=∂∂,2y e xQx +=∂∂ 所以x Q y P ∂∂=∂∂,即 原方程为恰当方程则,0])2()[(22=++++dy xy e dx y ye dx e xxx两边积分得:.)2(2C xy e y x=++7.0)2(ln )(2=-++dy y x dx x xy解:,2ln ),(),(2y x y x Q x xy y x P -=+=则,1x y P =∂∂,1x x Q =∂∂ 所以xQy P ∂∂=∂∂,即 原方程为恰当方程 则02)ln (2=-++ydy dx x xdy dx x y两边积分得:23ln 3y x y x -+.C = 8.),(0)(22为常数和c b a cxydy dx by ax =++解:,),(,),(22cxy y x Q by ax y x P =+=则,2by y P =∂∂,cy xQ =∂∂ 所以 当x Q y P ∂∂=∂∂,即 c b =2时, 原方程为恰当方程则0)(22=++cxydy dx by dx ax两边积分得:233bxy ax +.C = 而当c b ≠2时原方程不是恰当方程.9.01222=-+-dt ts s ds t s 解:,),(,12),(22ts s s t Q t s s t P -=-= 则,212t s t P -=∂∂,212tss Q -=∂∂ 所以x Q y P ∂∂=∂∂, 即原方程为恰当方程,两边积分得:C ts s =-2.3 / 1610.,0)()(2222=+++dy y x yf dx y x xf 其中)(⋅f 是连续的可微函数.解:),(),(),(),(2222y x yf y x Q y x xf y x P +=+=则,2f xy y P '=∂∂,2f xy xQ '=∂∂ 所以x Q y P ∂∂=∂∂, 即原方程为恰当方程,两边积分得:22()f xy dx C +=⎰,即原方程的解为C y x F =+)(22<其中F 为f 的原积分>.习题2-2. 1. 求解下列微分方程,并指出这些方程在平面上的有意义 的区域::〔1〕yx dx dy 2= 解:原方程即为:dx x ydy 2= 两边积分得:0,2332≠=-y C x y .〔2〕)1(32x y x dx dy += 解:原方程即为:dx xx ydy 321+=4 / 16两边积分得:1,0,1ln 2332-≠≠=+-x y C x y .〔3〕0sin 2=+x y dxdy解: 当0≠y 时原方程为:0sin 2=+xdx y dy两边积分得:0)cos (1=++y x c .又y=0也是方程的解,包含在通解中,则方程的通解为0)cos (1=++y x c .〔4〕221xy y x dx dy +++=;解:原方程即为:2(1)1dyx dx y =++ 两边积分得:c x x arctgy ++=22, 即 )2(2c x x tg y ++=. 〔5〕2)2cos (cos y x dxdy= 解:①当02cos ≠y 时原方程即为:dx x y dy 22)(cos )2(cos = 两边积分得:2222sin 2tg y x x c --=. ②y 2cos =0,即42ππ+=k y 也是方程的解. 〔N k ∈〕 〔6〕21y dxdyx-= 解:①当1±≠y 时 原方程即为:xdx y dy =-21 两边积分得:c x y =-ln arcsin . ②1±=y 也是方程的解.〔7〕.yxe y e x dx dy +-=- 解.原方程即为:dx ex dy e y xy)()(--=+5 / 16两边积分得:c e x e y x y++=+-2222, 原方程的解为:c ee x y xy=-+--)(222.2. 解下列微分方程的初值问题. 〔1〕,03cos 2sin =+ydy xdx 3)2(ππ=y ;解:两边积分得:c yx =+-33sin 22cos , 即c x y =-2cos 33sin 2因为 3)2(ππ=y , 所以 3=c .所以原方程满足初值问题的解为:32cos 33sin 2=-x y . 〔2〕.0=+-dy ye xdx x, 1)0(=y ; 解:原方程即为:0=+ydy dx xe x,两边积分得:c dy y dx e x x=+-2)1(2, 因为1)0(=y , 所以21-=c , 所以原方程满足初值问题的解为:01)1(22=++-dy y dx e x x.〔3〕.r d dr=θ, 2)0(=r ; 解:原方程即为:θd rdr=,两边积分得:c r =-θln ,因为2)0(=r , 所以2ln =c ,所以原方程满足初值问题的解为:2ln ln =-θr 即θe r 2=.〔4〕.,1ln 2yx dx dy+=0)1(=y ; 解:原方程即为:dx x dy y ln )1(2=+,两边积分得:3ln 3y y x x x c ++-=, 因为0)1(=y , 所以1=c ,所以原方程满足初值为:3ln 13y y x x x ++-=6 / 16〔5〕.321xy dxdyx=+, 1)0(=y ; 解:原方程即为:dx xx y dy 231+=, 两边积分得:c x y ++=--22121, 因为1)0(=y , 所以23-=c ,所以原方程满足初值问题的解为:311222=++yx .1. 解下列微分方程,并作出相应积分曲线的简图. 〔1〕.x dxdycos = 解:两边积分得:c x y +=sin . 积分曲线的简图如下:〔2〕.ay dxdy=, 〔常数0≠a 〕; 解:①当0≠y 时,原方程即为:dx ay dy = 积分得:c x y a +=ln 1, 即 )0(>=c cey ax②0=y 也是方程的解. 积分曲线的简图如下:7 / 16〔3〕.21y dxdy-=; 解:①当1±≠y 时,原方程即为:dx y dy =-)1(2 积分得:c x yy+=-+211ln ,即 1122+-=x x ce ce y .②1±=y 也是方程的解.积分曲线的简图如下:〔4〕.n y dx dy =, )2,1,31(=n ; 解:①当0≠y 时, ⅰ〕2,31=n 时,原方程即为 dx y dy n =,积分得:c y n x n=-+-111.8 / 16ⅱ〕1=n 时,原方程即为dx ydy= 积分得:c x y +=ln ,即 )0(>=c ce y x.②0=y 也是方程的解.积分曲线的简图如下:4. 跟踪:设某A 从xoy 平面上的原点出发,沿x 轴正方向前进;同时某9 / 16B 从点开始跟踪A,即B 与A 永远保持等距b .试求B 的光滑运动轨迹.解:设B 的运动轨迹为)(x y y =,由题意与导数的几何意义,则有22yb ydx dy --=,所以求B 的运动轨迹即是求此微分方程满足b y =)0(的解.解之得:222222ln21y b y b b y b b b x ----++=. 5. 设微分方程)(y f dxdy=〔2.27〕,其中f<y> 在a y =的某邻域〔例如,区间ε<-a y 〕内连续,而且a y y f =⇔=0)(,则在直线a y =上的每一点,方程〔2.27〕的解局部唯一,当且仅当瑕积分∞=⎰±εa ay f dy)(〔发散〕. 证明:〔⇒〕首先经过域1R :,+∞<<∞-x a y a <≤-ε 和域2R :,+∞<<∞-x ε+≤<a y a内任一点〔00,y x 〕恰有方程〔2.13〕的一条积分曲线, 它由下式确定00)(x x y f dyyy-=⎰. 〔*〕 这些积分曲线彼此不相交. 其次,域1R 〔2R 〕内的所有 积分曲线c x y f dy +=⎰)(都可由其中一条,比如0)(c x y f dy+=⎰ 沿着 x 轴的方向平移而得到。
常微分方程标准答案-一二章

习题1.24. 给定一阶微分方程2dyx dx=, (1). 求出它的通解; (2). 求通过点()1,4的特解; (3). 求出与直线23y x =+相切的解; (4). 求出满足条件102ydx =⎰的解;(5). 绘出(2),(3),(4)中的解得图形。
解:(1). 通解显然为2,y x c c =+∈;(2). 把1,4x y ==代入2y x c =+得3c =,故通过点()1,4的特解为23y x =+;(3). 因为所求直线与直线23y x =+相切,所以223y x cy x ⎧=+⎨=+⎩只有唯一解,即223x c x +=+只有唯一实根,从而4c =,故与直线23y x =+相切的解是24y x =+;(4). 把2y x c =+代入12ydx =⎰即得5c =,故满足条件12ydx =⎰的解是253y x =+;(5). 图形如下:-1.5-1-0.500.51 1.512345675. 求下列两个微分方程的公共解:242422,2y y x x y x x x y y ''=+-=++--解:由2424222y x x x x x y y +-=++--可得()()222210y x xy -++=所以2y x =或212y x =--,2y x =代入原微分方程满足,而212y x =--代入原微分方程不满足,故所求公共解是代入原微分方程不满足。
6. 求微分方程20y xy y ''+-=的直线积分曲线。
解:设所求直线积分曲线是y kx b =+,则将其代入原微分方程可得2200010k b k xk kx b k b k b k k -=⎧+--=⇒⇒====⎨-=⎩或所以所求直线积分曲线是0y =或1y x =+。
8. 试建立分别具有下列性质的曲线所满足的微分方程:(2). 曲线上任一点的切线介于两坐标轴之间的部分等于定长l ; (5). 曲线上任一点的切线的纵截距等于切点横坐标的平方。
(完整版)常微分方程基本概念习题及解答

(完整版)常微分方程基本概念习题及解答§1.2 常微分方程基本概念习题及解答1.dxdy =2xy,并满足初始条件:x=0,y=1的特解。
解:ydy =2xdx 两边积分有:ln|y|=x 2+c y=e 2x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0原方程的通解为y= cex 2,x=0 y=1时 c=1特解为y= e 2x .2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。
解:y 2dx=-(x+1)dy 2y dy dy=-11+x dx 两边积分: -y1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c 另外y=0,x=-1也是原方程的解x=0,y=1时 c=e特解:y=|)1(|ln 1+x c 3.dx dy =yx xy y 321++ 解:原方程为:dxdy =y y 21+31x x + y y 21+dy=31x x +dx 两边积分:x(1+x 2)(1+y 2)=cx 24. (1+x)ydx+(1-y)xdy=0解:原方程为: y y -1dy=-xx 1+dx 两边积分:ln|xy|+x-y=c另外 x=0,y=0也是原方程的解。
5.(y+x )dy+(x-y)dx=0解:原方程为:dx dy =-yx y x +- 令xy =u 则dx dy =u+x dx du 代入有: -112++u u du=x 1dx ln(u2+1)x 2=c-2arctgu即 ln(y 2+x 2)=c-2arctg2x y . 6. x dxdy -y+22y x -=0 解:原方程为:dx dy =x y +x x ||-2)(1x y - 则令x y =u dx dy =u+ x dx du 211u - du=sgnx x1dx arcsin xy =sgnx ln|x|+c 7. tgydx-ctgxdy=0解:原方程为:tgy dy =ctgxdx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny=x c cos 1=xc cos 另外y=0也是原方程的解,而c=0时,y=0. 所以原方程的通解为sinycosx=c. 8 dx dy +ye xy 32+=0 解:原方程为:dx dy =y e y 2e x 32 e x 3-3e 2y -=c.9.x(lnx-lny)dy-ydx=0解:原方程为:dx dy =x y ln xy 令xy =u ,则dx dy =u+ x dx du u+ x dxdu =ulnu ln(lnu-1)=-ln|cx| 1+lnx y =cy. 10. dxdy =e y x - 解:原方程为:dx dy =e x e y - e y =ce x 11 dxdy =(x+y)2 解:令x+y=u,则dx dy =dx du -1 dxdu -1=u 2 211u +du=dx arctgu=x+carctg(x+y)=x+c 12. dx dy =2)(1y x + 解:令x+y=u,则dx dy =dx du -1 dx du -1=21uu-arctgu=x+cy-arctg(x+y)=c. 13. dx dy =1212+-+-y x y x解: 原方程为:(x-2y+1)dy=(2x-y+1)dxxdy+ydx-(2y-1)dy-(2x+1)dx=0dxy-d(y 2-y)-dx 2+x=cxy-y 2+y-x 2-x=c 14: dx dy =25--+-y x y x 解:原方程为:(x-y-2)dy=(x-y+5)dxxdy+ydx-(y+2)dy-(x+5)dx=0dxy-d(21y 2+2y)-d(21x 2+5x)=0 y 2+4y+x 2+10x-2xy=c. 15:dxdy =(x+1) 2+(4y+1) 2+8xy 1+ 解:原方程为:dxdy =(x+4y )2+3 令x+4y=u 则dx dy =41dx du -41 41dx du -41=u 2+3 dxdu =4 u 2+13 u=23tg(6x+c)-1 tg(6x+c)=32(x+4y+1). 16:证明方程y x dxdy =f(xy),经变换xy=u 可化为变量分离方程,并由此求下列方程:1)y(1+x 2y 2)dx=xdy2)y x dx dy =2222x -2 y x 2y+ 证明:令xy=u,则xdx dy +y=dxdu 则dx dy =x 1dx du -2x u ,有: u x dx du =f(u)+1)1)((1+u f u du=x1dx 所以原方程可化为变量分离方程。
常微分方程第二章

m
6:x
dy x− y =e dx 解:变量分离, e dy = e dx 两边积分得: e =e +c 11.
2 dy = ( x + y) dx y x y x
变量分离得:2
1 +1
12. 解
令x + y = t,则 变量分离
t2 dt = dx,两边积分t − arctgt = x + c,代回变量 t 2 +1 x + y − arctg ( x + y) = x + c dy 2 x − y − 1 = dx x − 2 y + 1
2
ww
w.
e
y x
解:变量分离,得
9 : x (ln x − ln y )dy − ydx = 0 y y 解:方程可变为: − ln • dy − dx = 0 x x y 1 ln u 令u = , 则有: dx = − d ln u x x 1 + ln u y 代回原变量得:cy = 1 + ln 。 x dy x− y 10: = e dx 解:变量分离 e dy = e dx 两边积分 e = e + c
w.
0
19. 已知 f(x) ∫ f ( x)dt = 1, x ≠ 0, 试求函数f ( x)的一般表达式 .
x
1 y = − 2 y' 1 y 解:设 f(x)=y, 则原方程化为 ∫ f (x)dt = 两边求导得 y 0 − y3 = dy 1 1 1 1 ; ; ; ; ; ; ; ; ; ; dx = − 3 ; ; ; ; ; ; ; ; ; ; ; ; 两边积分得x + c = ; ; ; ; ; 所以y = ± 2 dx 2y y dy 2x + c 1 代入
常微分方程第四版课后练习题含答案

常微分方程第四版课后练习题含答案第一章:常微分方程基本概念和初值问题1.2 课后练习题1.2.1(1)y′=2y+3,y(0)=1,求解y(t);(2)y′+ty=1,y(0)=0,求解y(t)。
解答:(1)该微分方程为一阶线性常微分方程,其通解为$$y(t)=Ce^{2t}-\\frac{3}{2}$$代入初始条件y(0)=1,可得$$C=\\frac{5}{2}$$所以$$y(t)=\\frac{5}{2}e^{2t}-\\frac{3}{2}$$(2)首先设$u(t)=e^{\\frac{t^2}{2}}y(t)$,则$u'(t)=e^{\\frac{t^2}{2}}(y'+ty)$。
代入原方程可得$$u'(t)=e^{\\frac{t^2}{2}}$$对其积分得$$u(t)=\\int e^{\\frac{t^2}{2}} dt +C=\\frac{\\sqrt{2\\pi}}{2}erf\\frac{t}{\\sqrt{2}}+C$$其中$erf(x)=\\frac{2}{\\sqrt{\\pi}}\\int_0^x e^{-t^2} dt$称为误差函数。
进一步解得$$y(t)=e^{-\\frac{t^2}{2}}u(t)-ue^{-\\frac{t^2}{2}}=-\\frac{\\sqrt{2\\pi}}{2}erf\\frac{t}{\\sqrt{2}}e^{-\\frac{t^2}{2}}$$ 代入初始条件y(0)=0即可得到最终解答。
第二章:一阶线性微分方程2.2 课后练习题2.2.1求下列方程的通解:(1)(2x+1)y′+y=1;(2)(x−1)y′−y=2x;(3)$(2+\\cos x)y'-y=2-x\\cos x$。
解答:(1)该微分方程为一阶线性常微分方程,设方程的通解为$y=Ce^{-\\int \\frac{1}{2x+1} dx}+\\frac{1}{2x+1}$。
常微分方程与动力系统第二章课后题参考答案

常微分方程与动力系统第二章习题参考答案 1.证明:因为()t Φ是线性齐次系统(LH )的一个基本解矩阵,由定理2.5知()t Φ在区间J 上满足矩阵微分系统()M LH ,即.()()()t A t t Φ=Φ,.1()()()A t t t -=ΦΦ所以由()A t 确定的线性齐次系统(LH )必唯一。
2.证明:因为()t ϕ,()t ψ分别是.()x A t x=和.()T x A t x =-的解,所以111()()()nk k k nnk k k a d t A t t dt a ϕϕϕϕ==⎛⎫ ⎪ ⎪== ⎪ ⎪⎪ ⎪⎝⎭∑∑ ,11211111122222*121()()()nn k k k n n kn kn n n nnk a a a a a a a d t A t t dta a a a ψψψψψψ==⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪=-ψ=-=- ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎝⎭∑∑ 因而1111112211(,)(,)(,),,nnk k k k k k nnkn k k nk k n n k a a d d d dt dt dt a a ψϕϕψψϕϕψϕψψϕψϕψϕ====⎡⎤⎛⎫⎡⎤⎛⎫⎛⎫⎛⎫⎢⎥ ⎪-⎢⎥ ⎪⎪ ⎪⎢⎥ ⎪⎢⎥ ⎪ ⎪ ⎪⎢⎥=+= ⎪+⎢⎥ ⎪ ⎪ ⎪⎢⎥ ⎪-⎢⎥ ⎪⎪ ⎪⎢⎥⎪⎝⎭⎢⎥⎝⎭⎝⎭ ⎪⎣⎦⎢⎥⎝⎭⎣⎦∑∑∑∑ 11111111()0nnn n nnnnn n nnm m m m i ij j i ij j i mk k km k mk k km m m m m i j i j k k k k a a a a a a ϕψψϕϕψϕψϕψϕψ============-=+=-=-=∑∑∑∑∑∑∑∑∑∑∑∑所以(),()()()1nt t t t k kk ϕψϕψ≡≡∑=常数。
3.证明:设)t Φ(为系统.()x A t x=的一个基本解矩阵,则由定理2.11知[]1()Tt -Φ是系统.()Tx At x =-的基本解矩阵,由定理2.4知系统.()x A t x=满足初始条件00()x t x =的特解为100()))t t t x ϕ-=Φ(Φ(,[)0,0,t t ∈+∞由题可知)t Φ(与[]1()Tt -Φ在[)0,+∞上有界,从而由定理2.24知110()0k k t ∃=>和220()0k k t =>使得10120(),(),T t k t t t k t t -⎧Φ≤≤<+∞⎪⎨Φ≤≤<+∞⎪⎩,利用常数变易法公式(2.32),可知式.()()y A t y B t y=+的初始条件为00()y t y =的解满足1()()()()()()tt y t t t s B s y s ds ϕ-=+ΦΦ⎰因为1111()()(Ttttt---ΦΦ≤Φ所以12120()()(),tt y t k kx k k B s y s≤+≥⎰,利用格朗瓦尔不等式有12()120().tt k k B s dsy t k k x e⎰≤记12()12tt k k B s dsC k k e ⎰=设0()B t dt M +∞=<+∞⎰则()()tt B s ds B t dt M+∞≤=⎰⎰有1212k k MCk k e≤从而00(),y t C x t t ≤≥所以系统.()()y A t y B t y =+的一切解都在[)0,+∞上有界。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习 题 2-1判断下列方程是否为恰当方程,并且对恰当方程求解: 1.0)12()13(2=++-dy x dx x解:13),(2-=x y x P , 12),(+=x y x Q ,则0=∂∂y P ,2=∂∂x Q , 所以 xQy P ∂∂≠∂∂ 即 原方程不是恰当方程.2.0)2()2(=+++dy y x dx y x解:,2),(y x y x P += ,2),(y x y x Q -=则,2=∂∂y P ,2=∂∂x Q 所以xQy P ∂∂=∂∂,即 原方程为恰当方程 则,0)22(=-++ydy xdy ydx xdx两边积分得:.22222C y xy x =-+ 3.0)()(=+++dy cy bx dx by ax (a,b 和c 为常数). 解:,),(by ax y x P += ,),(cy bx y x Q +=则,b y P =∂∂,b x Q =∂∂ 所以xQy P ∂∂=∂∂,即 原方程为恰当方程 则,0=+++cydy bxdy bydx axdx两边积分得:.2222C cy bxy ax =++ 4.)0(0)()(≠=-+-b dy cy bx dx by ax解:,),(by ax y x P -= ,),(cy bx y x Q -=则,b y P -=∂∂,b x Q =∂∂ 因为 0≠b , 所以xQ y P ∂∂≠∂∂,即 原方程不为恰当方程5.0sin 2cos )1(2=++udt t udu t解:,cos )1(),(2u t u t P += u t u t Q sin 2),(=则,cos 2u t t P =∂∂,cos 2u t x Q =∂∂ 所以xQy P ∂∂=∂∂,即 原方程为恰当方程则,0cos )sin 2cos (2=++udu udt t udu t 两边积分得:.sin )1(2C u t =+ 6.0)2()2(2=++++dy xy e dx y e ye x x x解: xy e y x Q y e ye y x P x x x 2),(,2,(2+=++=,则,2y e yP x +=∂∂,2y e x Q x +=∂∂ 所以x Qy P ∂∂=∂∂,即 原方程为恰当方程则,0])2()[(22=++++dy xy e dx y ye dx e x x x 两边积分得:.)2(2C xy e y x =++7.0)2(ln )(2=-++dy y x dx x xy解:,2ln ),(),(2y x y x Q x xy y x P -=+=则,1x y P =∂∂,1x x Q =∂∂ 所以xQy P ∂∂=∂∂,即 原方程为恰当方程则02)ln (2=-++ydy dx x xdy dx xy两边积分得:23ln 3y x y x -+.C = 8.),(0)(22为常数和c b a cxydy dx by ax =++解:,),(,),(22cxy y x Q by ax y x P =+=则,2by y P =∂∂,cy x Q =∂∂ 所以 当xQy P ∂∂=∂∂,即 c b =2时, 原方程为恰当方程则0)(22=++cxydy dx by dx ax两边积分得:233bxy ax +.C = 而当c b ≠2时原方程不是恰当方程.9.01222=-+-dt ts s ds t s 解:,),(,12),(22ts s s t Q t s s t P -=-= 则,212t s t P -=∂∂,212t s s Q -=∂∂ 所以xQ y P ∂∂=∂∂, 即原方程为恰当方程,两边积分得:C ts s =-2. 10.,0)()(2222=+++dy y x yf dx y x xf 其中)(⋅f 是连续的可微函数.解:),(),(),(),(2222y x yf y x Q y x xf y x P +=+=则,2f xy yP '=∂∂,2f xy x Q '=∂∂ 所以x Qy P ∂∂=∂∂, 即原方程为恰当方程,两边积分得:22()f xy dx C +=⎰,即原方程的解为C y x F =+)(22 (其中F 为f 的原积分).习 题 2-2. 1. 求解下列微分方程,并指出这些方程在平面上的有意义 的区域::(1)yx dx dy 2=解:原方程即为:dx x ydy 2= 两边积分得:0,2332≠=-y C x y .(2))1(32x y x dx dy += 解:原方程即为:dx xx ydy 321+= 两边积分得:1,0,1ln 2332-≠≠=+-x y C x y .(3)0sin 2=+x y dxdy解: 当0≠y 时原方程为:0sin 2=+xdx ydy两边积分得:0)cos (1=++y x c .又y=0也是方程的解,包含在通解中,则方程的通解为0)cos (1=++y x c .(4)221xy y x dxdy+++=; 解:原方程即为:2(1)1dyx dx y =++ 两边积分得:c x x arctgy ++=22, 即 )2(2c x x tg y ++=. (5)2)2cos (cos y x dxdy= 解:①当02cos ≠y 时原方程即为:dx x y dy 22)(cos )2(cos = 两边积分得:2222sin 2tg y x x c --=. ②y 2cos =0,即42ππ+=k y 也是方程的解. (N k ∈) (6)21y dxdyx-= 解:①当1±≠y 时 原方程即为:xdx y dy =-21 两边积分得:c x y =-ln arcsin .② 1±=y 也是方程的解.(7).yxe y e x dx dy +-=- 解.原方程即为:dx e x dy e y x y )()(--=+两边积分得:c e x e y x y++=+-2222, 原方程的解为:c e e x y x y =-+--)(222.2. 解下列微分方程的初值问题.(1),03cos 2sin =+ydy xdx 3)2(ππ=y ;解:两边积分得:c yx =+-33sin 22cos , 即 c x y =-2cos 33sin 2因为 3)2(ππ=y , 所以 3=c .所以原方程满足初值问题的解为:32cos 33sin 2=-x y .(2).0=+-dy ye xdx x, 1)0(=y ;解:原方程即为:0=+ydy dx xe x ,两边积分得:c dy y dx e x x=+-2)1(2, 因为1)0(=y , 所以21-=c , 所以原方程满足初值问题的解为:01)1(22=++-dy y dx e x x .(3).r d dr=θ, 2)0(=r ; 解:原方程即为:θd rdr=,两边积分得:c r =-θln , 因为2)0(=r , 所以2ln =c ,所以原方程满足初值问题的解为:2ln ln =-θr 即θe r 2=.(4).,1ln 2y x dx dy+= 0)1(=y ;解:原方程即为:dx x dy y ln )1(2=+,两边积分得:3ln 3y y x x x c ++-=,因为0)1(=y , 所以1=c ,所以原方程满足初值为:3ln 13y y x x x ++-= (5).321xy dxdyx=+, 1)0(=y ; 解:原方程即为:dx xx y dy 231+=,两边积分得:c x y ++=--22121, 因为1)0(=y , 所以23-=c ,所以原方程满足初值问题的解为:311222=++y x .1. 解下列微分方程,并作出相应积分曲线的简图. (1).x dxdycos = 解:两边积分得:c x y +=sin . 积分曲线的简图如下:(2).ay dxdy=, (常数0≠a ); 解:①当0≠y 时,原方程即为:dx aydy= 积分得:c x y a +=ln 1,即 )0(>=c ce y ax②0=y 也是方程的解. 积分曲线的简图如下:(3).21y dxdy-=; 解:①当1±≠y 时,原方程即为:dx y dy =-)1(2 积分得:c x y y+=-+211ln ,即 1122+-=x x ce ce y .②1±=y 也是方程的解.积分曲线的简图如下:(4).n y dx dy =, )2,1,31(=n ; 解:①当0≠y 时, ⅰ)2,31=n 时,原方程即为 dx ydyn =, 积分得:c y n x n=-+-111.ⅱ)1=n 时,原方程即为dx ydy=积分得:c x y +=ln ,即)0(>=c ce y x.②0=y 也是方程的解.积分曲线的简图如下:4. 跟踪:设某A 从xoy 平面上的原点出发,沿x 轴正方向前进;同时某B 从点开始跟踪A ,即B 与A 永远保持等距b .试求B 的光滑运动轨迹.解:设B 的运动轨迹为)(x y y =,由题意及导数的几何意义,则有22yb ydx dy --=,所以求B 的运动轨迹即是求此微分方程满足b y =)0(的解.解之得:222222ln 21y b y b b y b b b x ----++=.5. 设微分方程)(y f dxdy=(2.27),其中f(y) 在a y =的某邻域(例如,区间ε<-a y )内连续,而且a y y f =⇔=0)(,则在直线a y =上的每一点,方程(2.27)的解局部唯一,当且仅当瑕积分∞=⎰±εa ay f dy)((发散). 证明:(⇒)首先经过域1R :,+∞<<∞-x a y a <≤-ε 和域2R :,+∞<<∞-x ε+≤<a y a内任一点(00,y x )恰有方程(2.13)的一条积分曲线, 它由下式确定00)(x x y f dyyy-=⎰. (*) 这些积分曲线彼此不相交. 其次,域1R (2R )内的所有 积分曲线c x y f dy +=⎰)(都可由其中一条,比如0)(c x y f dy+=⎰ 沿着 x 轴的方向平移而得到。
因此只需详细考虑经过1R 内某一点),(0ε-a x 的积分曲线, 它由(*)式确定.若⎰-aa y f dyε)(收敛,即存在 1x x = ,使得01)(x x y f dyaa -=⎰-ε, 即所讨论的积分曲线当 1x x = 时达到直线a y =上点(a x ,1). 由(*)式易看出,所论积分曲线在(a x ,1)处与a y = 相切,在这种情形下,经过此直线上的一点就不只有一条积分曲线,与局部唯一矛盾,所以⎰-aa y f dyε)(发散.若积分⎰-aa y f dyε)(发散,此时由(*)式易看出,所论的经过),(0ε-a x 的积分曲线,不可能达到直线 a y =上,而以直线a y =为渐近线,又注意到a y =也是(2.13)的积分曲线,所以(2.13)过),(0ε-a x 的解是唯一的. 注:对于2R 内某点(ε+a x ,0)完全可类似地证明.6. 作出下列微分方程积分曲线族的大致图形. (1).y dxdy =;(2).⎩⎨⎧=≠=00ln y y yy dx dy()⇐习 题 2-31.求解微分方程:(1)x xe y dxdy-=+2; 解:,2)(=x p xxe x q -=)(,由公式得:x x xx x x e xe cedx e xe c e y ------+=+=⎰222)(, 原方程的解为:x x x e xe ce y ----+=2.(2)x ytgx dxdy2sin =+; 解:,)(tgx x p = x x q 2sin )(=,c x dx xx d dx x x tgxdx dx x p +-=-===⎰⎰⎰⎰cos ln cos )(cos cos sin )(, 则有xx c x c x dx xxc x dx ex c ey xx2cos ln cos ln cos 2cos )cos 2(cos )cos 2sin (cos )2sin (-=-=+=+=⎰⎰-原方程的解为:x x c y 2cos 2cos -=.(3),sin 2x y dx dy x=+ ππ1)(=y ; 解:原方程即为:x x y x dx dy sin 2=+,则x xx q x x p sin )(,2)(==,c x dx xdx x p +==⎰⎰2ln 2)(, 则有)sin cos (1)sin (1)sin (22ln ln 22x x x c x xdx x c x e xx c e y x x +-=+=+=⎰⎰- 因为ππ1)(=y , 所以0=c .原方程满足初值问题的解为:x xx x y sin 1cos 12+-= . (4)x y x dx dy +=--1112,1)0(=y ; 解:x x q x x p +=-=1)(,11)(2, 2111ln )(⎰+-=x x dx x p 则2111ln+-=x x ey ⎰++)1((x c )2111lndx ex x -+⎪⎪⎩⎪⎪⎨⎧<-+-+>-+-+=⎰⎰1)1(111)1(1122x dx x c xx x dx x c x x要求满足初值问题1)0(=y 的解 只需求⎩⎨⎧<-+-+⎰1)1(112x dx x c xx)121a r c s i n 21(112x x x c x x -++-+=代入初值得1=c所以满足初值问题的解为)121a r c s i n 211(112x x x x x y -++-+=. 2. 将下列方程化为线性微分方程:(1)yy x dx dy 222+=; 解:令z y =2, 则原方程化为:2x z dxdz+=. (2)2yx ydx dy +=; 解:由原方程得:,yy x dy dx 2+=, 即 y x y dy dx +=1 . (3)03332=++x y dxdyxy; 解:令z y =3, 则原方程化为:21x z xdx dz --=.(4)xtgy ydx dy +=cos 1; 解:原方程即为:yyx y dx dy cos sin cos 1+= 即y x dxydysin 1cos +=. 令y z sin =, 则 1+=xz dxdz. 3. 设)(x y φ=满足微分不等式)0(,0)(≥≤+'x y x a y .求证:,)0()(0)(⎰≤-xdss a e x φφ )0(≥x证明:将0)(≤+'y x a y 两边同乘0()xa s ds e⎰ 则有⎰xdss a e 0)(+'y ⎰xds s a e 0)(0)(≤y x a即0))((0)(≤⎰dxx e d xdss a φ 从0到x 积分得:⎰xds s a e0)()0()(φφ≤x ,得证.4. 用常数变易法求解非齐次线性方程)()(x q y x p dxdy=+. 解:设方程有形如⎰=-dxx p e x c y )()(的解,将其代入方程则有 解:设方程有形如⎰=-dx x p e x c y )()(的解,将其代入方程则有-⎰-dxx p e dxx dc )()(+⎰-dx x p e x p x c )()()()()()()(x q e x p x c dx x p =⎰- 即)()()(x q e dx x dc dxx p =⎰-, 则c e x q x c dx x p +⎰=⎰)()()(, 所以方程的解为⎰=-dx x p e y )())(()(c e x q dxx p +⎰⎰.5. 考虑方程)()(x q y x p dxdy=+,其中)(x p 和)(x q 都是以0>ω为周期的连续函数.试证:(1)若0)(=x q ,则方程的任一非零解以ω为周期⇔)(x p 的平均值⎰==ωω0)(1dx x p p .(2)若0)(≠x q ,则方程的有唯一的ω周期解⇔0≠p .试求出此解.证明:(1)设)(x y φ=是方程的任一非零解 则,0)(⎰-=xx dxx p cey 且,0)(⎰++-=wx x dxw x p cey 也是解⇔⎰-xx dxx p e 0)(,0)(⎰++-=wx x dxw x p e⎰⎰+--=wx x dxx p xx dxx p ee)(0)( 10)(=⇔⎰ωdxx p e⎰=⇔ω00)(dx x p(2) 方程的通解为+=⎰-xdxx p cey 0)(⎰⎰-xdt t p xse s q 0)()( 选择常数c 使)(x y 成为 ω周期函数,即)()(x y w x y =+(*)我们先来证明,要使(*)对所有x 成立,其实只需对某一特定 x (例如0=x )成立,即只需)0()(y y =ω.事实上,由于)(x y 是方程的解, 且)()(x p w x p =+)()(x q w x q =+, 所以)(w x y +也是解. 因此,函数)()()(x y w x y x u -+=是相应齐次方程0)(=+'y x p y 满足初始条件0)0(=y 的解。