16QAM-星形和矩形星座图调制解调MATLAB代码

合集下载

MATLAB环境下16QAM调制及解调仿真程序说明(精)

MATLAB环境下16QAM调制及解调仿真程序说明(精)

姓名:NikeyMATLAB环境下环境下环境下环境下16QAM调制及解调仿真调制及解调仿真调制及解调仿真调制及解调仿真程序说明程序说明程序说明程序说明一、正交调制及相干解调原理框图正交调制原理框图相干解调原理框图二、MQAM调制介绍及本仿真程序的几点说明 MQAM可以用正交调制的方法产生,本仿真中取M=16,即幅度和相位相结合的16个信号点的调制。

为了观察信道噪声对该调制方式的影响,我们在已调信号中又加入了不同强度的高斯白噪声,并统计其译码误码率。

为了简化程序和得到可靠的误码率,我们在解调时并未从已调信号中恢复载波,而是直接产生与调制时一模一样的载波来进行信号解调。

三、仿真结果图附源程序代码:main_plot.m clear;clc;echo off;close all;N=10000; %设定码元数量fb=1; %基带信号频率fs=32; %抽样频率fc=4; %载波频率,为便于观察已调信号,我们把载波频率设的较低Kbase=2; % Kbase=1,不经基带成形滤波,直接调制;% Kbase=2,基带经成形滤波器滤波后,再进行调制info=random_binary(N; %产生二进制信号序列[y,I,Q]=qam(info,Kbase,fs,fb,fc; %对基带信号进行16QAM调制y1=y; y2=y; %备份信号,供后续仿真用T=length(info/fb; m=fs/fb; nn=length(info;dt=1/fs; t=0:dt:T-dt;subplot(211;%便于观察,这里显示的已调信号及其频谱均为无噪声干扰的理想情况%由于测试信号码元数量为10000个,在这里我们只显示其总数的1/10plot(t(1:1000,y(1:1000,t(1:1000,I(1:1000,t(1:1000,Q(1:1000,[0 35],[0 0],'b:';title('已调信号(In:red,Qn:green';%傅里叶变换,求出已调信号的频谱n=length(y; y=fft(y/n; y=abs(y(1:fix(n/2*2;q=find(y<1e-04; y(q=1e-04; y=20*log10(y;f1=m/n; f=0:f1:(length(y-1*f1;subplot(223;plot(f,y,'r';grid on;title('已调信号频谱'; xlabel('f/fb';%画出16QAM调制方式对应的星座图subplot(224;constel(y1,fs,fb,fc; title('星座图';SNR_in_dB=8:2:24; %AWGN信道信噪比for j=1:length(SNR_in_dBy_add_noise=awgn(y2,SNR_in_dB(j; %加入不同强度的高斯白噪声y_output=qamdet(y_add_noise,fs,fb,fc; %对已调信号进行解调 numoferr=0; for i=1:Nif (y_output(i~=info(i,numoferr=numoferr+1;end;end;Pe(j=numoferr/N; %统计误码率end; figure;semilogy(SNR_in_dB,Pe,'red*-';grid on;xlabel('SNR in dB';ylabel('Pe';title('16QAM调制在不同信道噪声强度下的误码率';random_binary.m %产生二进制信源随机序列function [info]=random_binary(Nif nargin == 0, %如果没有输入参数,则指定信息序列为10000个码元 N=10000; end;for i=1:N,temp=rand;if (temp<0.5,info(i=0; % 1/2的概率输出为0elseinfo(i=1; % 1/2的概率输出为1endend;qam.m function [y,I,Q]=qam(x,Kbase,fs,fb,fc;%T=length(x/fb; m=fs/fb; nn=length(x;dt=1/fs; t=0:dt:T-dt;%串/并变换分离出I分量、Q分量,然后再分别进行电平映射I=x(1:2:nn-1; [I,In]=two2four(I,4*m;Q=x(2:2:nn; [Q,Qn]=two2four(Q,4*m;if Kbase==2; %基带成形滤波I=bshape(I,fs,fb/4; Q=bshape(Q,fs,fb/4;end;y=I.*cos(2*pi*fc*t-Q.*sin(2*pi*fc*t; %调制qamdet.m %QAM信号解调function [xn,x]=qamdet(y,fs,fb,fc;dt=1/fs; t=0:dt:(length(y-1*dt;I=y.*cos(2*pi*fc*t;Q=-y.*sin(2*pi*fc*t;[b,a]=butter(2,2*fb/fs; %设计巴特沃斯滤波器 I=filtfilt(b,a,I; Q=filtfilt(b,a,Q;m=4*fs/fb; N=length(y/m; n=(.6:1:N*m; n=fix(n;In=I(n; Qn=Q(n; xn=four2two([In Qn];%I分量Q分量并/串转换,最终恢复成码元序列xn nn=length(xn; xn=[xn(1:nn/2;xn(nn/2+1:nn];xn=xn(:; xn=xn';bshape.m %基带升余弦成形滤波器function y=bshape(x,fs,fb,N,alfa,delay;%设置默认参数if nargin<6; delay=8; end;if nargin<5; alfa=0.5; end;if nargin<4; N=16; end;b=firrcos(N,fb,2*alfa*fb,fs;y=filter(b,1,x;two2four.m %二进制转换成四进制function [y,yn]=two2four(x,m;T=[0 1;3 2]; n=length(x; ii=1;for i=1:2:n-1;xi=x(i:i+1+1;yn(ii=T(xi(1,xi(2;ii=ii+1;end;yn=yn-1.5; y=yn;for i=1:m-1;y=[y;yn];end;y=y(:'; %映射电平分别为-1.5;0.5;0.5;1.5four2two.m %四进制转换成二进制function xn=four2two(yn;y=yn; ymin=min(y; ymax=max(y; ymax=max([ymax abs(ymin];ymin=-abs(ymax; yn=(y-ymin*3/(ymax-ymin;%设置门限电平,判决I0=find(yn< 0.5; yn(I0=zeros(size(I0;I1=find(yn>=0.5 & yn<1.5; yn(I1=ones(size(I1;I2=find(yn>=1.5 & yn<2.5; yn(I2=ones(size(I2*2; I3=find(yn>=2.5; yn(I3=ones(size(I3*3;%一位四进制码元转换为两位二进制码元T=[0 0;0 1;1 1;1 0]; n=length(yn;for i=1:n;xn(i,:=T(yn(i+1,:;end;xn=xn'; xn=xn(:; xn=xn';constel.m %画出星座图function c=constel(x,fs,fb,fc;N=length(x; m=2*fs/fb; n=fs/fc;i1=m-n; i=1; ph0=(i1-1*2*pi/n;while i <= N/m;xi=x(i1:i1+n-1;y=2*fft(xi/n; c(i=y(2;i=i+1; i1=i1+m;end;%如果无输出,则作图if nargout<1;cmax=max(abs(c;ph=(0:5:360*pi/180;plot(1.414*cos(ph,1.414*sin(ph,'c';hold on;for i=1:length(c;ph=ph0-angle(c(i;a=abs(c(i/cmax*1.414;plot(a*cos(ph,a*sin(ph,'r*';end;plot([-1.5 1.5],[0 0],'k:',[0 0],[-1.5 1.5],'k:'; hold off; axis equal; axis([-1.5 1.5 -1.5 1.5]; end;。

16QAM-星形和矩形星座图调制解调MATLAB代码

16QAM-星形和矩形星座图调制解调MATLAB代码

%% ------------------------------------------------------------% 软件无线电课程设计%% 方形、星形16QAM调制解调仿真%%%------------------------------------------------------------%%主程序clcclear%% 定义参数fd=250*10^6; %码元速率250Mfs=2500*10^6; %滤波器采样率fc=2500*10^6; %载波频率2.5Gf=10000*10^6; %对载波采样data_len=200000; %数据长度sym_len=data_len/4; %码元序列长度M_QAM=16;%QAM数k=log2(M_QAM);SNR=1:12;%白噪声信噪比,%% ------------------------------------------------------------bit_tx=randint(1,data_len);%产生随机序列echo off;rec_qam16=QamMod(bit_tx,16); %方形16QAM调制star_qam16=SrarQamMod(bit_tx); %星形16QAM调制base_rec=base_shape(fd,fs,f,rec_qam16); %基带成型滤波base_star=base_shape(fd,fs,f,star_qam16); %基带成型滤波for i=1:length(SNR) %信噪比从1dB到12dB计算误码率SNR_=i%方形映射16QAMrf_rec_qam16=CarrierMod(fc,f,base_rec); %载波调制rf_rec_qam16_n=awgn(rf_rec_qam16,SNR(i),'measured'); %加噪声[rec_qam16_rx base_rec_rx]=CarrierDemod(fd,fs,fc,f,rf_rec_qam16_n); %载波解调bit_rec_rx=QamDemod(rec_qam16_rx,16); %MQAM解调[num_qam16,perr_qam16_rec(i)]=biterr(bit_tx,bit_rec_rx);%误码率qam16_data_rec(i,:)=rec_qam16_rx;%scatterplot(rec_qam16_rx);16QAM星形映射%rf_star_qam16=CarrierMod(fc,f,base_star); %载波调制rf_star_qam16_n=awgn(rf_star_qam16,SNR(i),'measured'); %加噪声[star_qam16_rx base_star_rx]=CarrierDemod(fd,fs,fc,f,rf_star_qam16_n); %载波解调bit_star_rx=StarQamDemod(star_qam16_rx); %MQAM解调[num_qam16,perr_qam16_star(i)]=biterr(bit_tx,bit_star_rx);%误码率qam16_data_star(i,:)=star_qam16_rx;%scatterplot(star_qam16_rx);end%% 理论误码率计算SNRtheo=0:0.1:length(SNR);for i=1:length(SNRtheo)SNRdec=10.^(SNRtheo(i)/10);theo_perr_qam16(i)=(3/8)*erfc(sqrt(SNRdec*2/5));end%% 基带波形N=200;n=1:N;t=1:N*10;%发送端波形figure;stem(n,bit_tx(n)); title('发送序列'); %发送序列figure('Name','发送端基带信号');subplot(411);plot(t,real(base_rec(t))); title('方形映射-Q路');subplot(412);plot(t,imag(base_rec(t))); title('方形映射-I路');subplot(413);plot(t,real(base_star(t))); title('星形映射-Q路');subplot(414);plot(t,imag(base_star(t))); title('星形映射-I路');%接收端波形figure;subplot(211);stem(n,bit_rec_rx(n)); title('方形接收序列');subplot(212);stem(n,bit_star_rx(n)); title('星形接收序列');figure('Name','接收端基带信号');subplot(411);plot(t,real(base_rec_rx(t))); title('方形映射-Q路');subplot(412);plot(t,imag(base_rec_rx(t))); title('方形映射-I路');subplot(413);plot(t,real(base_star_rx(t))); title('星形映射-Q路');subplot(414);plot(t,imag(base_star_rx(t))); title('星形映射-I路');%基带眼图N1=20000;Tn=f/fd;eye_rex=base_rec(1:N1);eyediagram(eye_rex,Tn*4,Tn); title('方形基带眼图');eye_star=base_star(1:N1);eyediagram(eye_star,Tn*4,Tn); title('星形基带眼图');%% 接收端星座图%scatterplot(qam16_data_rec(12,:));figure('Name','方形16QAM接收端星座图');for i=3:3:12subplot(2,2,i/3);plot(real(qam16_data_rec(i,:)),imag(qam16_data_rec(i,:)),'.');xmax=5;axis([-xmax xmax -xmax xmax])title(['Snr=',num2str(SNR(i)),' dB']);endfigure('Name','星形16QAM接收端星座图');for i=3:3:12subplot(2,2,i/3);plot(real(qam16_data_star(i,:)),imag(qam16_data_star(i,:)),'.');xmax=3;axis([-xmax xmax -xmax xmax])grid on; title(['Snr=',num2str(SNR(i)),' dB']);end%% 功率谱密度f_plot;%% 误码率分析_x0016_QAM误码率曲线figure('Name','16QAM误码性能对比');% semilogy(SNRtheo,theo_perr_qam16);% hold on;semilogy(SNR,perr_qam16_rec,'*');hold on;semilogy(SNR,perr_qam16_star,'o');xlabel('SNR in dB');ylabel('Prb of Err');legend('方形16QAM','星形16QAM');title('16QAM误码性能对比');%-------------------------------------------------------------------------------%% 基带成型function base_info=base_shape(fd,fs,f,seq_16QAM)%平方根升余弦滤波器,滚降系数0.5,延迟3个采样点flt=rcosine(fd,fs,'sqrt',0.5);%I路和Q路seq_Q=real(seq_16QAM);seq_I=imag(seq_16QAM);%增采样R=fs/fd;up_seq_Q=upsample(seq_Q,R);up_seq_I=upsample(seq_I,R);%升余弦调制rcos_Q=conv(up_seq_Q,flt);rcos_I=conv(up_seq_I,flt);%提升rcos_Q_up=interp(rcos_Q,f/fs);rcos_I_up=interp(rcos_I,f/fs);base_info=rcos_Q_up+j*rcos_I_up;%--------------------------------------------------------------------%% 载波解调function [data_rx base_rx]=CarrierDemod(fd,fs,fc,f,receive)%% 分两路乘正交高频载波rc_length=length(receive);flt=rcosine(fd,fs,'sqrt',0.5);t=0:rc_length-1;rc_Q=receive .* sin(2*pi*fc*t/f);rc_I=receive .* cos(2*pi*fc*t/f);减采样后根升余弦匹配滤波,注意对齐采样点%.down_Q=downsample([0 rc_Q],f/fs);down_I=downsample(rc_I,f/fs);low_Q_rcos=conv(down_Q,flt);low_I_rcos=conv(down_I,flt);base_rx=low_Q_rcos(1:length(low_I_rcos))+j*low_I_rcos;%两次根升余弦滤波延迟,定位初始信号位置Tlay+1:end-delay-1R=fs/fd;delay=3*R*2;rc_Q_seq=(downsample(low_Q_rcos(delay+1:end-delay-1),R));rc_I_seq=(downsample(low_I_rcos(delay+1:end-delay-1),R)); 类型转换%data_rx=rc_Q_seq+j*rc_I_seq;%--------------------------------------------------------------------------%% 载波调制function transmit=CarrierMod(fc,f,base)%载波调制t=0:length(base)-1;high_freq_Q=real(base) .* sin(2*pi*fc*t/f);high_freq_I=imag(base) .* cos(2*pi*fc*t/f);transmit=high_freq_Q+high_freq_I;%------------------------------------------------------------------------------%码元还原为二进制数据QAM 解调程序,将MQAM%QAM码元数据入口参数:data_QAM:%的大小中M_QAM:MQAMM %出口参数:二进制数据比特流%%------------------------------------------------------------------------function data_out=QamDemod(data_QAM,M_QAM)进制码元的Mbit数每个k=log2(M_QAM);% 码元长度data_len=length(data_QAM);%%-------------------------------------------------------------------%QAM信号放缩至与发送端相同比例data_temp=data_QAM(find(real(data_QAM>0))); aver=mean(real(data_temp));data_Qam_temp=data_QAM/aver*(2^(k/2-1));%------------------------------------------------------------------------%平移到第一象限data_Qam_temp2=(data_Qam_temp+(2^(k/2)-1)*(1+j))/2;%----------------------------------------------------------------------%将实部虚部分别映射为二进制数据%实部data_real=round(real(data_Qam_temp2));%实部判决data_real(find(data_real>(2^(k/2)-1)))=2^(k/2)-1;%大于2^(k/2)-1的数据判定为2^(k/2)-1data_real(find(data_real<0))=0;%小于0的数据判为0bit_real=abs(dec2bin(data_real))-'0';%虚部data_imag=round(imag(data_Qam_temp2));%虚部判决data_imag(find(data_imag>(2^(k/2)-1)))=2^(k/2)-1;%大于2^(k/2)-1的数据判定为2^(k/2)-1data_imag(find(data_imag<0))=0;%小于0的数据判为0bit_imag=abs(dec2bin(data_imag))-'0';%------------------------------------------------------------------------%还原为二进制比特流bit_rec=[bit_real,bit_imag]';data_out=reshape(bit_rec,1,data_len*k);%-------------------------------------------------------------------------------------------------------------%% QAM调制程序,实现二进制到MQam调制% 入口参数:binary:二进制数据% M_QAM:MQAM中M的大小% 返回参数:MQAM码元%------------------------------------------------------------------------function data_M = QamMod(binary,M_QAM)k=log2(M_QAM);%每个M进制码元的bit数data_len=length(binary);%比特长度binary_rec=reshape(binary,k,data_len/k)';%转化为data_len/k行,k列,的矩阵,以便转化为16进制M进制%计算实部data_str1=num2str(binary_rec(:,1:k/2));data_m_real=bin2dec(data_str1);%计算虚部data_str2=num2str(binary_rec(:,k/2+1:k));data_m_imag=bin2dec(data_str2);%实部虚部映射到MQamdata_M=((data_m_real*2-2^(k/2)+1)+j*(data_m_imag*2-2^(k/2)+1)).';%---------------------------------------------------------------------------------%% 星形16QAM映射function data_m16 = SrarQamMod(binary)%binary=randint(1,100);%产生随机序列data_len=length(binary);%比特长度binary_rec=reshape(binary,4,data_len/4)';%转化为data_len/4行,4列,的矩阵,以便转化为16进制data_str=num2str(binary_rec);data_dec=bin2dec(data_str);data_mm16=(floor(data_dec/8)+1).*exp(j*45/180*pi*mod(data_dec,8));data_m16=reshape(data_mm16,1,data_len/4);%------------------------------------------------------------------------------%% 星形16QAM解调function data_bit = StarQamDemod(qam_rev)%qam_rev=xing_qam16_noise(1:10);am=abs(qam_rev);%幅度判定am(find(am>2))=2;%幅度大于2的判定为2am(find(am<1.5))=1;%幅度大于2的判定为2%相位判定ang=angle(qam_rev)/pi*180;%将-180度到0度变为180度到360度ang(find(ang<0))=ang(find(ang<0))+360;ang_n=round(ang/45);ang_n(find(ang_n>7))=0;data_dec=8*(round(am)-1)+ang_n;úta_dec(find(data_dec>15))=15;%大于15的判定为15úta_dec(find(data_dec<0))=0;%小于0的判定为0data_bit_rec=dec2bin(data_dec);data_bit=reshape(data_bit_rec',1,length(qam_rev)*4)-'0';。

16QAM调制与解调的MATLAB实现及调制性能分析

16QAM调制与解调的MATLAB实现及调制性能分析

通信原理课程设计报告书课题名称16QAM 调制与解调 的MATLAB 实现及调制性能分析姓名 学号学院通信与电子工程学院 专 通信工程※※※※※※※※※※※※※ ※※※※※※※※※※※2009级通信工程专业 通信原理课程设计业指导李梦醒教师2012年 01 月 01日16QAM 调制与解调的MATLAB 实现及调制性能分析 1 设计目的(1) 掌握16QAM 调制与解调的原理。

(2) 掌握星座图的原理并能熟悉星座图的应用。

(3) 熟悉并掌握MATLAB 的使用方法。

(4) 通过对16QAM 调制性能的分析了解16QAM 调制相对于其它调制方式的优缺点。

2 设计原理正交振幅调制(Quadrature Amplitude Modulation,QAM )是一种振幅和相位联合键控。

虽然MPSK 和MDPSK 等相移键控的带宽和功率方面都具有优势,即带宽占用小和比特噪声比要求低。

但是由图1可见,在MPSK 体制中,随着8/15π图 1 8PSK 信号相位8/5π8/3π8/π8/7π8/9π8/11π8/13πM 的增大,相邻相位的距离逐渐减小,使噪声容限随之减小,误码率难于保证。

为了改善在M 大时的噪声容限,发展出了QAM 体制。

在QAM 体制中,信号的振幅和相位作为两个独立的参量同时受到调制。

这种信号的一个码元可以表示为0()cos() (1)k k k s t A t kT t k T ωθ=+<≤+ (2—1)式中:k=整数;k A 和k θ分别可以取多个离散值。

式(2—1)可以展开为00()cos cos sin sin k k k k k s t A t A t θωθω=- (2—2)令 X k = A k cosk , Y k = -A k sin k 则式(2—1)变为00()cos sin k k k s t X t Y t ωω=+ (2—3)k X 和k Y 也是可以取多个离散的变量。

MATLAB环境下16QAM调制及解调仿真程序说明

MATLAB环境下16QAM调制及解调仿真程序说明

姓名:Nikey之阳早格格创做MATLAB环境下16QAM调造及解调仿实步调证明一、正接调造及相搞解调本理框图正接调造本理框图相搞解调本理框图二、MQAM调造介绍及本仿实步调的几面证明MQAM不妨用正接调造的要领爆收,本仿实中与M=16,即幅度战相位相分散的16个旗号面的调造.为了瞅察疑讲噪声对于该调造办法的做用,咱们正在已调旗号中又加进了分歧强度的下斯黑噪声,并统计其译码误码率.为了简化步调战得到稳当的误码率,咱们正在解调时并已从已调旗号中回复载波,而是间接爆收与调造时一模一般的载波去举止旗号解调.三、仿实截止图附源步调代码:clear;clc;echo off;close all;N=10000; %设定码元数量fb=1; %基戴旗号频次fs=32; %抽样频次fc=4; %载波频次,为便于瞅察已调旗号,咱们把载波频次设的较矮Kbase=2; % Kbase=1,不经基戴成形滤波,间接调造;% Kbase=2,基戴经成形滤波器滤波后,再举止调造info=random_binary(N); %爆收二进造旗号序列[y,I,Q]=qam(info,Kbase,fs,fb,fc); %对于基戴旗号举止16QAM调造y1=y; y2=y; %备份旗号,供后绝仿实用T=length(info)/fb; m=fs/fb;nn=length(info);dt=1/fs; t=0:dt:T-dt;subplot(211);%便于瞅察,那里隐现的已调旗号及其频谱均为无噪声搞扰的理念情况%由于尝试旗号码元数量为10000个,正在那里咱们只隐现其总数的1/10plot(t(1:1000),y(1:1000),t(1:1000),I(1:1000),t(1:1000),Q(1:1000),[0 35],[0 0],'b:');title('已调旗号(In:red,Qn:green)');%傅里叶变更,供出已调旗号的频谱n=length(y); y=fft(y)/n; y=abs(y(1:fix(n/2)))*2;q=find(y<1e-04); y(q)=1e-04; y=20*log10(y);f1=m/n; f=0:f1:(length(y)-1)*f1;subplot(223);plot(f,y,'r');grid on;title('已调旗号频谱'); xlabel('f/fb');%绘出16QAM调造办法对于应的星座图subplot(224);constel(y1,fs,fb,fc); title('星座图');SNR_in_dB=8:2:24; %AWGN疑讲疑噪比for j=1:length(SNR_in_dB)y_add_noise=awgn(y2,SNR_in_dB(j)); %加进分歧强度的下斯黑噪声y_output=qamdet(y_add_noise,fs,fb,fc); %对于已调旗号举止解调 numoferr=0;for i=1:Nif (y_output(i)~=info(i)),numoferr=numoferr+1;end;end;Pe(j)=numoferr/N; %统计误码率end;figure;semilogy(SNR_in_dB,Pe,'red*-');grid on;xlabel('SNR in dB');ylabel('Pe');title('16QAM调造正在分歧疑讲噪声强度下的误码率');random_binary.m%爆收二进造疑源随机序列function [info]=random_binary(N)if nargin == 0, %如果不输进参数,则指定疑息序列为10000个码元N=10000;end;for i=1:N,temp=rand;if (temp<0.5),info(i)=0; % 1/2的概率输出为0elseinfo(i)=1; % 1/2的概率输出为1endend;function [y,I,Q]=qam(x,Kbase,fs,fb,fc);%T=length(x)/fb; m=fs/fb;nn=length(x);dt=1/fs; t=0:dt:T-dt;%串/并变更分散出I分量、Q分量,而后再分别举止电仄映射I=x(1:2:nn-1); [I,In]=two2four(I,4*m);Q=x(2:2:nn); [Q,Qn]=two2four(Q,4*m);if Kbase==2; %基戴成形滤波I=bshape(I,fs,fb/4); Q=bshape(Q,fs,fb/4);end;y=I.*cos(2*pi*fc*t)-Q.*sin(2*pi*fc*t); %调造%QAM旗号解调function [xn,x]=qamdet(y,fs,fb,fc);dt=1/fs; t=0:dt:(length(y)-1)*dt;I=y.*cos(2*pi*fc*t);Q=-y.*sin(2*pi*fc*t);[b,a]=butter(2,2*fb/fs); %安排巴特沃斯滤波器I=filtfilt(b,a,I);Q=filtfilt(b,a,Q);m=4*fs/fb;N=length(y)/m; n=(.6:1:N)*m; n=fix(n);In=I(n); Qn=Q(n); xn=four2two([In Qn]);%I分量Q分量并/串变更,最后回复成码元序列xn nn=length(xn); xn=[xn(1:nn/2);xn(nn/2+1:nn)];xn=xn(:); xn=xn';%基戴降余弦成形滤波器function y=bshape(x,fs,fb,N,alfa,delay);%树立默认参数if nargin<6; delay=8; end;if nargin<5; alfa=0.5; end;if nargin<4; N=16; end;b=firrcos(N,fb,2*alfa*fb,fs);y=filter(b,1,x);two2four.m%二进造变更成四进造function [y,yn]=two2four(x,m);T=[0 1;3 2]; n=length(x); ii=1;for i=1:2:n-1;xi=x(i:i+1)+1;yn(ii)=T(xi(1),xi(2));ii=ii+1;end;yn=yn-1.5; y=yn;for i=1:m-1;y=[y;yn];end;%四进造变更成二进造function xn=four2two(yn);y=yn; ymin=min(y); ymax=max(y); ymax=max([ymax abs(ymin)]); ymin=-abs(ymax); yn=(y-ymin)*3/(ymax-ymin);%树立门限电仄,判决I0=find(yn< 0.5); yn(I0)=zeros(size(I0));I1=find(yn>=0.5 & yn<1.5); yn(I1)=ones(size(I1));I2=find(yn>=1.5 & yn<2.5); yn(I2)=ones(size(I2))*2;I3=find(yn>=2.5); yn(I3)=ones(size(I3))*3;%一位四进造码元变更为二位二进造码元T=[0 0;0 1;1 1;1 0];n=length(yn);for i=1:n;xn(i,:)=T(yn(i)+1,:);end;xn=xn'; xn=xn(:); xn=xn';%绘出星座图function c=constel(x,fs,fb,fc);N=length(x); m=2*fs/fb;n=fs/fc;i1=m-n; i=1; ph0=(i1-1)*2*pi/n; while i <= N/m;xi=x(i1:i1+n-1);y=2*fft(xi)/n; c(i)=y(2);i=i+1; i1=i1+m;end;%如果无输出,则做图if nargout<1;cmax=max(abs(c));ph=(0:5:360)*pi/180;plot(1.414*cos(ph),1.414*sin(ph),'c'); hold on;for i=1:length(c);ph=ph0-angle(c(i));a=abs(c(i))/cmax*1.414;plot(a*cos(ph),a*sin(ph),'r*');end;plot([-1.5 1.5],[0 0],'k:',[0 0],[-1.5 1.5],'k:'); hold off; axis equal; axis([-1.5 1.5 -1.5 1.5]); end;。

MATLAB环境下16QAM调制及解调仿真程序说明

MATLAB环境下16QAM调制及解调仿真程序说明

创作编号:BG7531400019813488897SX创作者:别如克*姓名:NikeyMATLAB环境下16QAM调制及解调仿真程序说明一、正交调制及相干解调原理框图正交调制原理框图相干解调原理框图二、MQAM调制介绍及本仿真程序的几点说明MQAM可以用正交调制的方法产生,本仿真中取M=16,即幅度和相位相结合的16个信号点的调制。

为了观察信道噪声对该调制方式的影响,我们在已调信号中又加入了不同强度的高斯白噪声,并统计其译码误码率。

为了简化程序和得到可靠的误码率,我们在解调时并未从已调信号中恢复载波,而是直接产生与调制时一模一样的载波来进行信号解调。

三、仿真结果图附源程序代码:main_plot.mclear;clc;echo off;close all;N=10000; %设定码元数量fb=1; %基带信号频率fs=32; %抽样频率fc=4; %载波频率,为便于观察已调信号,我们把载波频率设的较低Kbase=2; % Kbase=1,不经基带成形滤波,直接调制;% Kbase=2,基带经成形滤波器滤波后,再进行调制info=random_binary(N); %产生二进制信号序列[y,I,Q]=qam(info,Kbase,fs,fb,fc); %对基带信号进行16QAM调制y1=y; y2=y; %备份信号,供后续仿真用T=length(info)/fb; m=fs/fb; nn=length(info);dt=1/fs; t=0:dt:T-dt;subplot(211);%便于观察,这里显示的已调信号及其频谱均为无噪声干扰的理想情况%由于测试信号码元数量为10000个,在这里我们只显示其总数的1/10plot(t(1:1000),y(1:1000),t(1:1000),I(1:1000),t(1:1000),Q(1:1000),[0 35],[0 0],'b:');title('已调信号(In:red,Qn:green)');%傅里叶变换,求出已调信号的频谱n=length(y); y=fft(y)/n; y=abs(y(1:fix(n/2)))*2;q=find(y<1e-04); y(q)=1e-04; y=20*log10(y);f1=m/n; f=0:f1:(length(y)-1)*f1;subplot(223);plot(f,y,'r');grid on;title('已调信号频谱'); xlabel('f/fb');%画出16QAM调制方式对应的星座图subplot(224);constel(y1,fs,fb,fc); title('星座图');SNR_in_dB=8:2:24; %AWGN信道信噪比for j=1:length(SNR_in_dB)y_add_noise=awgn(y2,SNR_in_dB(j)); %加入不同强度的高斯白噪声y_output=qamdet(y_add_noise,fs,fb,fc); %对已调信号进行解调numoferr=0;for i=1:Nif (y_output(i)~=info(i)),创作编号:BG7531400019813488897SX创作者:别如克*numoferr=numoferr+1;end;end;Pe(j)=numoferr/N; %统计误码率end;figure;semilogy(SNR_in_dB,Pe,'red*-');grid on;xlabel('SNR in dB');ylabel('Pe');title('16QAM调制在不同信道噪声强度下的误码率');random_binary.m%产生二进制信源随机序列function [info]=random_binary(N)if nargin == 0, %如果没有输入参数,则指定信息序列为10000个码元N=10000;end;for i=1:N,temp=rand;if (temp<0.5),info(i)=0; % 1/2的概率输出为0elseinfo(i)=1; % 1/2的概率输出为1endend;qam.mfunction [y,I,Q]=qam(x,Kbase,fs,fb,fc);%T=length(x)/fb; m=fs/fb; nn=length(x);dt=1/fs; t=0:dt:T-dt;%串/并变换分离出I分量、Q分量,然后再分别进行电平映射I=x(1:2:nn-1); [I,In]=two2four(I,4*m);Q=x(2:2:nn); [Q,Qn]=two2four(Q,4*m);if Kbase==2; %基带成形滤波I=bshape(I,fs,fb/4); Q=bshape(Q,fs,fb/4);end;y=I.*cos(2*pi*fc*t)-Q.*sin(2*pi*fc*t); %调制qamdet.m%QAM信号解调function [xn,x]=qamdet(y,fs,fb,fc);dt=1/fs; t=0:dt:(length(y)-1)*dt;I=y.*cos(2*pi*fc*t);Q=-y.*sin(2*pi*fc*t);[b,a]=butter(2,2*fb/fs); %设计巴特沃斯滤波器I=filtfilt(b,a,I);Q=filtfilt(b,a,Q);m=4*fs/fb; N=length(y)/m; n=(.6:1:N)*m; n=fix(n);In=I(n); Qn=Q(n); xn=four2two([In Qn]);%I分量Q分量并/串转换,最终恢复成码元序列xnnn=length(xn); xn=[xn(1:nn/2);xn(nn/2+1:nn)];xn=xn(:); xn=xn';bshape.m%基带升余弦成形滤波器function y=bshape(x,fs,fb,N,alfa,delay);%设置默认参数if nargin<6; delay=8; end;if nargin<5; alfa=0.5; end;if nargin<4; N=16; end;b=firrcos(N,fb,2*alfa*fb,fs);y=filter(b,1,x);two2four.m创作编号:BG7531400019813488897SX创作者:别如克*%二进制转换成四进制function [y,yn]=two2four(x,m);T=[0 1;3 2]; n=length(x); ii=1;for i=1:2:n-1;xi=x(i:i+1)+1;yn(ii)=T(xi(1),xi(2));ii=ii+1;end;yn=yn-1.5; y=yn;for i=1:m-1;y=[y;yn];end;y=y(:)'; %映射电平分别为-1.5;0.5;0.5;1.5four2two.m%四进制转换成二进制function xn=four2two(yn);y=yn; ymin=min(y); ymax=max(y); ymax=max([ymax abs(ymin)]);ymin=-abs(ymax); yn=(y-ymin)*3/(ymax-ymin);%设置门限电平,判决I0=find(yn< 0.5); yn(I0)=zeros(size(I0));I1=find(yn>=0.5 & yn<1.5); y n(I1)=ones(size(I1));I2=find(yn>=1.5 & yn<2.5); y n(I2)=ones(size(I2))*2;I3=find(yn>=2.5); yn(I3)=ones(size(I3))*3;%一位四进制码元转换为两位二进制码元T=[0 0;0 1;1 1;1 0]; n=length(yn);for i=1:n;xn(i,:)=T(yn(i)+1,:);end;xn=xn'; xn=xn(:); xn=xn';constel.m%画出星座图function c=constel(x,fs,fb,fc);N=length(x); m=2*fs/fb; n=fs/fc;i1=m-n; i=1; ph0=(i1-1)*2*pi/n;while i <= N/m;xi=x(i1:i1+n-1);y=2*fft(xi)/n; c(i)=y(2);i=i+1; i1=i1+m;end;%如果无输出,则作图if nargout<1;cmax=max(abs(c));ph=(0:5:360)*pi/180;plot(1.414*cos(ph),1.414*sin(ph),'c');hold on;for i=1:length(c);ph=ph0-angle(c(i));a=abs(c(i))/cmax*1.414;plot(a*cos(ph),a*sin(ph),'r*');end;plot([-1.5 1.5],[0 0],'k:',[0 0],[-1.5 1.5],'k:');hold off; axis equal; axis([-1.5 1.5 -1.5 1.5]);end;创作编号:BG7531400019813488897SX创作者:别如克*。

16QAM-星形与矩形星座图调制解调MATLAB代码

16QAM-星形与矩形星座图调制解调MATLAB代码

%% ------------------------------------------------------------% 软件无线电课程设计%% 方形、星形16QAM调制解调仿真%%%------------------------------------------------------------%%主程序clcclear%% 定义参数fd=250*10^6。

%码元速率250Mfs=2500*10^6。

%滤波器采样率fc=2500*10^6。

%载波频率2.5Gf=10000*10^6。

%对载波采样data_len=200000。

%数据长度sym_len=data_len/4。

%码元序列长度M_QAM=16。

%QAM数k=log2(M_QAM)。

SNR=1:12。

%白噪声信噪比,%% ------------------------------------------------------------bit_tx=randint(1,data_len)。

%产生随机序列echo off。

rec_qam16=QamMod(bit_tx,16)。

%方形16QAM调制star_qam16=SrarQamMod(bit_tx)。

%星形16QAM调制base_rec=base_shape(fd,fs,f,rec_qam16)。

%基带成型滤波base_star=base_shape(fd,fs,f,star_qam16)。

%基带成型滤波for i=1:length(SNR) %信噪比从1dB到12dB计算误码率SNR_=i%方形映射16QAMrf_rec_qam16=CarrierMod(fc,f,base_rec)。

%载波调制rf_rec_qam16_n=awgn(rf_rec_qam16,SNR(i),'measured')。

%加噪声[rec_qam16_rx base_rec_rx]=CarrierDemod(fd,fs,fc,f,rf_rec_qam16_n)。

16QAM调制与解调的MATLAB实现及调制性能分析

16QAM调制与解调的MATLAB实现及调制性能分析

通信原理课程设计报告书课题名称16QAM 调制与解调的MATLAB 实现及调制性能分析姓 名学 号 学 院 通信与电子工程学院专 业 通信工程 指导教师李梦醒2012年 01 月 01日※※※※※※※※※ ※※ ※※ ※※2009级通信工程专业通信原理课程设计16QAM 调制与解调的MATLAB 实现及调制性能分析1 设计目的(1) 掌握16QAM 调制与解调的原理。

(2) 掌握星座图的原理并能熟悉星座图的应用。

(3) 熟悉并掌握MATLAB 的使用方法。

(4) 通过对16QAM 调制性能的分析了解16QAM 调制相对于其它调制方式的优缺点。

2 设计原理正交振幅调制(Quadrature Amplitude Modulation,QAM )是一种振幅和相位联合键控。

虽然MPSK 和MDPSK 等相移键控的带宽和功率方面都具有优势,即带宽占用小和比特噪声比要求低。

但是由图1可见,在MPSK 体制中,随着8/15π图 1 8PSK 信号相位M 的增大,相邻相位的距离逐渐减小,使噪声容限随之减小,误码率难于保证。

为了改善在M 大时的噪声容限,发展出了QAM 体制。

在QAM 体制中,信号的振幅和相位作为两个独立的参量同时受到调制。

这种信号的一个码元可以表示为0()cos() (1)k k k s t A t kT t k T ωθ=+<≤+ (2—1)式中:k=整数;k A 和k θ分别可以取多个离散值。

式(2—1)可以展开为00()cos cos sin sin k k k k k s t A t A t θωθω=- (2—2)令 X k = A k cosq k , Y k = -A k sinq k8/5π8/3π8/π8/7π8/9π8/11π8/13π则式(2—1)变为00()cos sin k k k s t X t Y t ωω=+ (2—3)k X 和k Y 也是可以取多个离散的变量。

(完整版)16QAM仿真代码(matlab)

(完整版)16QAM仿真代码(matlab)

(完整版)16QAM仿真代码(matlab)% 16QAM 系统仿真function [ ber_AWGN,ber_Ray] = M16QAM()EbN0dB=1:3:30;EbN0dB1=1:10;N=4*100000;for ii=1:length(EbN0dB)sigma2(ii)=2.5/(2*4*(10^(EbN0dB(ii)/10)));sigma21(ii)=2.5/(2*4*(10^(EbN0dB1(ii)/10)));bits=randint(1,N);%调制s=M16QAM_modulate(bits,length(bits(:)));% Rayleign信道干扰noise=sqrt(sigma2(ii))*( randn(1,N/4)+ 1i*randn(1,N/4) );h= sqrt(0.5)*(randn(1,N/4) + 1i*randn(1,N/4) );receiver=s.*h+noise; %Rayleign 衰减信道% 高斯信道干扰noise1=sqrt(sigma21(ii))*( randn(1,N/4)+ 1i*randn(1,N/4) );receiver1=s+noise1; %高斯信道% 信道均衡receiver = receiver./h;%解调并计算误码率Rayleign信道demodata = M16QAM_demodulate( receiver,length(receiver(:)) );errCount=sum(abs(bits-demodata));ber_Ray(ii)=errCount/N;%解调并计算误码率高斯信道demodata = M16QAM_demodulate( receiver1,length(receiver1(:)) );errCount=sum(abs(bits-demodata));ber_AWGN(ii)=errCount/N;endend% 16QAM 调制function [ s ] = M16QAM_modulate( bits,N)ii=0;for i=1:4:Nii=ii+1;ifbits(i)==0&&bits(i+1)==0&&bits(i+2)==0&&bits(i+3)==0 s(ii)=sqrt(2)/2*exp(1i*pi/4);elseifbits(i)==1&&bits(i+1)==0&&bits(i+2)==0&&bits(i+3)==0 s(ii)=sqrt(2)/2*exp(1i*3*pi/4);elseifbits(i)==1&&bits(i+1)==0&&bits(i+2)==1&&bits(i+3)==0 s(ii)=sqrt(2)/2*exp(1i*5*pi/4);elseifbits(i)==0&&bits(i+1)==0&&bits(i+2)==1&&bits(i+3)==0 s(ii)=sqrt(2)/2*exp(1i*7*pi/4);elseifbits(i)==0&&bits(i+1)==1&&bits(i+2)==0&&bits(i+3)==0 s(ii)=sqrt(10)/2*exp(1i*atan(1/3));elseifbits(i)==0&&bits(i+1)==0&&bits(i+2)==0&&bits(i+3)==1 s(ii)=sqrt(10)/2*exp(1i*atan(3));elseifbits(i)==1&&bits(i+1)==0&&bits(i+2)==0&&bits(i+3)==1 s(ii)=sqrt(10)/2*exp(1i*(atan(1/3)+pi/2));elseifbits(i)==1&&bits(i+1)==1&&bits(i+2)==0&&bits(i+3)==0 s(ii)=sqrt(10)/2*exp(1i*(pi-atan(1/3)));elseifbits(i)==1&&bits(i+1)==1&&bits(i+2)==1&&bits(i+3)==0 s(ii)=sqrt(10)/2*exp(1i*(atan(1/3)+pi));elseifbits(i)==1&&bits(i+1)==0&&bits(i+2)==1&&bits(i+3)==1 s(ii)=sqrt(10)/2*exp(1i*(3*pi/2-atan(1/3)));elseifbits(i)==0&&bits(i+1)==0&&bits(i+2)==1&&bits(i+3)==1 s(ii)=sqrt(10)/2*exp(1i*(atan(1/3)+3*pi/2));elseifbits(i)==0&&bits(i+1)==1&&bits(i+2)==1&&bits(i+3)==0 s(ii)=sqrt(10)/2*exp(1i*(2*pi-atan(1/3)));elseifbits(i)==0&&bits(i+1)==1&&bits(i+2)==0&&bits(i+3)==1 s(ii)=sqrt(2)*3/2*exp(1i*pi/4);elseifbits(i)==1&&bits(i+1)==1&&bits(i+2)==0&&bits(i+3)==1 s(ii)=sqrt(2)*3/2*exp(1i*3*pi/4);elseifbits(i)==1&&bits(i+1)==1&&bits(i+2)==1&&bits(i+3)==1 s(ii)=sqrt(2)*3/2*exp(1i*5*pi/4);elseifbits(i)==0&&bits(i+1)==1&&bits(i+2)==1&&bits(i+3)==1 s(ii)=sqrt(2)*3/2*exp(1i*7*pi/4);endendend% 16 QAM 解调function [ demodata ] = M16QAM_demodulate( receiver ,N) A=[0 1 0 1; -1 0 0 1;-1 0 -1 0;0 1 -1 0;1 inf 0 1;0 1 1 inf;-1 0 1 inf;-inf -1 0 1;-inf -1 -1 0;-1 0 -inf -1;0 1 -inf -1;1 inf -1 0;1 inf 1 inf;-inf -1 1 inf;-inf -1 -inf -1;1 inf -inf -1];for k=1:Nif(real(receiver(k))>=A(1,1))&&(real(receiver(k))<a(1,2))&&...<p="">(imag(receiver(k))>=A(1,3))&&(imag(receiver(k))demodata(k*4-2)=0;demodata(k*4-1)=0;demodata(k*4)=0;elseif(real(receiver(k))>=A(2,1))&&(real(receiver(k))<a(2,2))...< p=""> &&(imag(receiver(k))>=A(2,3))&&(imag(receiver(k))demodata(k*4-1)=0;demodata(k*4)=0;elseif(real(receiver(k))>=A(3,1))&&(real(receiver(k))<a(3,2))...< p=""> &&(imag(receiver(k))>=A(3,3))&&(imag(receiver(k))demodata(k*4-2)=0;demodata(k*4-1)=1;demodata(k*4)=0;elseif(real(receiver(k))>=A(4,1))&&(real(receiver(k))<a(4,2))...< p=""> &&(imag(receiver(k))>=A(4,3))&&(imag(receiver(k))demodata(k*4-2)=0;demodata(k*4-1)=1;demodata(k*4)=0;elseif(real(receiver(k))>=A(5,1))&&(real(receiver(k))<a(5,2))...< p=""> &&(imag(receiver(k))>=A(5,3))&&(imag(receiver(k))demodata(k*4-2)=1;demodata(k*4-1)=0;demodata(k*4)=0;elseif(real(receiver(k))>=A(6,1))&&(real(receiver(k))<a(6,2))...< p=""> &&(imag(receiver(k))>=A(6,3))&&(imag(receiver(k))demodata(k*4-2)=0;demodata(k*4-1)=0;demodata(k*4)=1;elseif(real(receiver(k))>=A(7,1))&&(real(receiver(k))<a(7,2))...< p=""> &&(imag(receiver(k))>=A(7,3))&&(imag(receiver(k))demodata(k*4-2)=0;demodata(k*4-1)=0;demodata(k*4)=1;elseif(real(receiver(k))>=A(8,1))&&(real(receiver(k))<a(8,2))...< p=""> &&(imag(receiver(k))>=A(8,3))&&(imag(receiver(k))demodata(k*4-2)=1;demodata(k*4-1)=0;demodata(k*4)=0;elseif(real(receiver(k))>=A(9,1))&&(real(receiver(k))<a(9,2))...< p=""> &&(imag(receiver(k))>=A(9,3))&&(imag(receiver(k))demodata(k*4-2)=1;demodata(k*4)=0;(real(receiver(k))>=A(10,1))&&(real(receiver(k))<a(10,2))...< p=""> &&(imag(receiver(k))>=A(10,3))&&(imag(receiver(k))demodata(k*4-2)=0;demodata(k*4-1)=1;demodata(k*4)=1;elseif(real(receiver(k))>=A(11,1))&&(real(receiver(k))<a(11,2))...< p=""> &&(imag(receiver(k))>=A(11,3))&&(imag(receiver(k))demodata(k*4-2)=0;demodata(k*4-1)=1;demodata(k*4)=1;elseif(real(receiver(k))>=A(12,1))&&(real(receiver(k))<a(12,2))...< p=""> &&(imag(receiver(k))>=A(12,3))&&(imag(receiver(k))demodata(k*4-2)=1;demodata(k*4-1)=1;demodata(k*4)=0;elseif(real(receiver(k))>=A(13,1))&&(real(receiver(k))<a(13,2))...< p=""> &&(imag(receiver(k))>=A(13,3))&&(imag(receiver(k))demodata(k*4-2)=1;demodata(k*4-1)=0;demodata(k*4)=1;elseif(real(receiver(k))>=A(14,1))&&(real(receiver(k))<a(14,2))...< p=""> &&(imag(receiver(k))>=A(14,3))&&(imag(receiver(k))demodata(k*4-2)=1;demodata(k*4-1)=0;demodata(k*4)=1;(real(receiver(k))>=A(15,1))&&(real(receiver(k))<a(15,2))...< p=""> &&(imag(receiver(k))>=A(15,3))&&(imag(receiver(k))demodata(k*4-2)=1;demodata(k*4-1)=1;demodata(k*4)=1;elseif(real(receiver(k))>=A(16,1))&&(real(receiver(k))<a(16,2))...< p=""> &&(imag(receiver(k))>=A(16,3))&&(imag(receiver(k))demodata(k*4-2)=1;demodata(k*4-1)=1;demodata(k*4)=1;end endend</a(16,2))...<></a(15,2))...<></a(14,2))...<></a(13,2))...<></a(12,2))...<></a(11,2))...<></a(10,2))...<></a(9,2))...<></a(8,2))...<></a(7,2))...<></a(6,2))...<></a(5,2))...<></a(4,2))...<></a(3,2))...<></a(2,2))...<></a(1,2))&&...<>。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

%% ------------------------------------------------------------% 软件无线电课程设计%% 方形、星形16QAM调制解调仿真%%%------------------------------------------------------------%%主程序clcclear%% 定义参数fd=250*10^6; %码元速率250Mfs=2500*10^6; %滤波器采样率fc=2500*10^6; %载波频率2.5Gf=10000*10^6; %对载波采样data_len=200000; %数据长度sym_len=data_len/4; %码元序列长度M_QAM=16;%QAM数k=log2(M_QAM);SNR=1:12;%白噪声信噪比,%% ------------------------------------------------------------bit_tx=randint(1,data_len);%产生随机序列echo off;rec_qam16=QamMod(bit_tx,16); %方形16QAM调制star_qam16=SrarQamMod(bit_tx); %星形16QAM调制base_rec=base_shape(fd,fs,f,rec_qam16); %基带成型滤波base_star=base_shape(fd,fs,f,star_qam16); %基带成型滤波for i=1:length(SNR) %信噪比从1dB到12dB计算误码率SNR_=i%方形映射16QAMrf_rec_qam16=CarrierMod(fc,f,base_rec); %载波调制rf_rec_qam16_n=awgn(rf_rec_qam16,SNR(i),'measured'); %加噪声[rec_qam16_rx base_rec_rx]=CarrierDemod(fd,fs,fc,f,rf_rec_qam16_n); %载波解调bit_rec_rx=QamDemod(rec_qam16_rx,16); %MQAM解调[num_qam16,perr_qam16_rec(i)]=biterr(bit_tx,bit_rec_rx);%误码率qam16_data_rec(i,:)=rec_qam16_rx;%scatterplot(rec_qam16_rx);%星形映射16QAMrf_star_qam16=CarrierMod(fc,f,base_star); %载波调制rf_star_qam16_n=awgn(rf_star_qam16,SNR(i),'measured'); %加噪声[star_qam16_rx base_star_rx]=CarrierDemod(fd,fs,fc,f,rf_star_qam16_n); %载波解调bit_star_rx=StarQamDemod(star_qam16_rx); %MQAM解调[num_qam16,perr_qam16_star(i)]=biterr(bit_tx,bit_star_rx);%误码率qam16_data_star(i,:)=star_qam16_rx;%scatterplot(star_qam16_rx);end%% 理论误码率计算SNRtheo=0:0.1:length(SNR);for i=1:length(SNRtheo)SNRdec=10.^(SNRtheo(i)/10);theo_perr_qam16(i)=(3/8)*erfc(sqrt(SNRdec*2/5));end%% 基带波形N=200;n=1:N;t=1:N*10;%发送端波形figure;stem(n,bit_tx(n)); title('发送序列'); %发送序列figure('Name','发送端基带信号');subplot(411);plot(t,real(base_rec(t))); title('方形映射-Q路');subplot(412);plot(t,imag(base_rec(t))); title('方形映射-I路');subplot(413);plot(t,real(base_star(t))); title('星形映射-Q路');subplot(414);plot(t,imag(base_star(t))); title('星形映射-I路');%接收端波形figure;subplot(211);stem(n,bit_rec_rx(n)); title('方形接收序列');subplot(212);stem(n,bit_star_rx(n)); title('星形接收序列');figure('Name','接收端基带信号');subplot(411);plot(t,real(base_rec_rx(t))); title('方形映射-Q路');subplot(412);plot(t,imag(base_rec_rx(t))); title('方形映射-I路');subplot(413);plot(t,real(base_star_rx(t))); title('星形映射-Q路');subplot(414);plot(t,imag(base_star_rx(t))); title('星形映射-I路');%基带眼图N1=20000;Tn=f/fd;eye_rex=base_rec(1:N1);eyediagram(eye_rex,Tn*4,Tn); title('方形基带眼图');eye_star=base_star(1:N1);eyediagram(eye_star,Tn*4,Tn); title('星形基带眼图');%% 接收端星座图%scatterplot(qam16_data_rec(12,:));figure('Name','方形16QAM接收端星座图');for i=3:3:12subplot(2,2,i/3);plot(real(qam16_data_rec(i,:)),imag(qam16_data_rec(i,:)),'.');xmax=5;axis([-xmax xmax -xmax xmax])title(['Snr=',num2str(SNR(i)),' dB']);endfigure('Name','星形16QAM接收端星座图');for i=3:3:12subplot(2,2,i/3);plot(real(qam16_data_star(i,:)),imag(qam16_data_star(i,:)),'.');xmax=3;axis([-xmax xmax -xmax xmax])grid on; title(['Snr=',num2str(SNR(i)),' dB']);end%% 功率谱密度f_plot;%% 误码率分析%16QAM误码率曲线figure('Name','16QAM误码性能对比');% semilogy(SNRtheo,theo_perr_qam16);% hold on;semilogy(SNR,perr_qam16_rec,'*');hold on;semilogy(SNR,perr_qam16_star,'o');xlabel('SNR in dB');ylabel('Prb of Err');legend('方形16QAM','星形16QAM');title('16QAM误码性能对比');%------------------------------------------------------------------------------- %% 基带成型function base_info=base_shape(fd,fs,f,seq_16QAM)%平方根升余弦滤波器,滚降系数0.5,延迟3个采样点flt=rcosine(fd,fs,'sqrt',0.5);%I路和Q路seq_Q=real(seq_16QAM);seq_I=imag(seq_16QAM);%增采样R=fs/fd;up_seq_Q=upsample(seq_Q,R);up_seq_I=upsample(seq_I,R);%升余弦调制rcos_Q=conv(up_seq_Q,flt);rcos_I=conv(up_seq_I,flt);%提升rcos_Q_up=interp(rcos_Q,f/fs);rcos_I_up=interp(rcos_I,f/fs);base_info=rcos_Q_up+j*rcos_I_up;%--------------------------------------------------------------------%% 载波解调function [data_rx base_rx]=CarrierDemod(fd,fs,fc,f,receive)%% 分两路乘正交高频载波rc_length=length(receive);flt=rcosine(fd,fs,'sqrt',0.5);t=0:rc_length-1;rc_Q=receive .* sin(2*pi*fc*t/f);rc_I=receive .* cos(2*pi*fc*t/f);%减采样后根升余弦匹配滤波,注意对齐采样点down_Q=downsample([0 rc_Q],f/fs);down_I=downsample(rc_I,f/fs);low_Q_rcos=conv(down_Q,flt);low_I_rcos=conv(down_I,flt);base_rx=low_Q_rcos(1:length(low_I_rcos))+j*low_I_rcos;%两次根升余弦滤波延迟,定位初始信号位置%delay+1:end-delay-1R=fs/fd;delay=3*R*2;rc_Q_seq=(downsample(low_Q_rcos(delay+1:end-delay-1),R));rc_I_seq=(downsample(low_I_rcos(delay+1:end-delay-1),R)); %类型转换data_rx=rc_Q_seq+j*rc_I_seq;%--------------------------------------------------------------------------%% 载波调制function transmit=CarrierMod(fc,f,base)%载波调制t=0:length(base)-1;high_freq_Q=real(base) .* sin(2*pi*fc*t/f);high_freq_I=imag(base) .* cos(2*pi*fc*t/f);transmit=high_freq_Q+high_freq_I;%------------------------------------------------------------------------------%% QAM解调程序,将MQAM码元还原为二进制数据% 入口参数:data_QAM:QAM码元数据% M_QAM:MQAM中M的大小% 出口参数:二进制数据比特流%------------------------------------------------------------------------function data_out=QamDemod(data_QAM,M_QAM)k=log2(M_QAM);%每个M进制码元的bit数data_len=length(data_QAM);%码元长度%-------------------------------------------------------------------%QAM信号放缩至与发送端相同比例data_temp=data_QAM(find(real(data_QAM>0)));aver=mean(real(data_temp));data_Qam_temp=data_QAM/aver*(2^(k/2-1));%------------------------------------------------------------------------%平移到第一象限data_Qam_temp2=(data_Qam_temp+(2^(k/2)-1)*(1+j))/2;%----------------------------------------------------------------------%将实部虚部分别映射为二进制数据%实部data_real=round(real(data_Qam_temp2));%实部判决data_real(find(data_real>(2^(k/2)-1)))=2^(k/2)-1;%大于2^(k/2)-1的数据判定为2^(k/2)-1 data_real(find(data_real<0))=0;%小于0的数据判为0bit_real=abs(dec2bin(data_real))-'0';%虚部data_imag=round(imag(data_Qam_temp2));%虚部判决data_imag(find(data_imag>(2^(k/2)-1)))=2^(k/2)-1;%大于2^(k/2)-1的数据判定为2^(k/2)-1 data_imag(find(data_imag<0))=0;%小于0的数据判为0bit_imag=abs(dec2bin(data_imag))-'0';%------------------------------------------------------------------------%还原为二进制比特流bit_rec=[bit_real,bit_imag]';data_out=reshape(bit_rec,1,data_len*k);%-------------------------------------------------------------------------------------------------------------%% QAM调制程序,实现二进制到MQam调制% 入口参数:binary:二进制数据% M_QAM:MQAM中M的大小% 返回参数:MQAM码元%------------------------------------------------------------------------function data_M = QamMod(binary,M_QAM)k=log2(M_QAM);%每个M进制码元的bit数data_len=length(binary);%比特长度binary_rec=reshape(binary,k,data_len/k)';%转化为data_len/k行,k列,的矩阵,以便转化为16进制M进制%计算实部data_str1=num2str(binary_rec(:,1:k/2));data_m_real=bin2dec(data_str1);%计算虚部data_str2=num2str(binary_rec(:,k/2+1:k));data_m_imag=bin2dec(data_str2);%实部虚部映射到MQamdata_M=((data_m_real*2-2^(k/2)+1)+j*(data_m_imag*2-2^(k/2)+1)).';%---------------------------------------------------------------------------------%% 星形16QAM映射function data_m16 = SrarQamMod(binary)%binary=randint(1,100);%产生随机序列data_len=length(binary);%比特长度binary_rec=reshape(binary,4,data_len/4)';%转化为data_len/4行,4列,的矩阵,以便转化为16进制data_str=num2str(binary_rec);data_dec=bin2dec(data_str);data_mm16=(floor(data_dec/8)+1).*exp(j*45/180*pi*mod(data_dec,8));data_m16=reshape(data_mm16,1,data_len/4);%------------------------------------------------------------------------------%% 星形16QAM解调function data_bit = StarQamDemod(qam_rev)%qam_rev=xing_qam16_noise(1:10);am=abs(qam_rev);%幅度判定am(find(am>2))=2;%幅度大于2的判定为2am(find(am<1.5))=1;%幅度大于2的判定为2%相位判定ang=angle(qam_rev)/pi*180;%将-180度到0度变为180度到360度ang(find(ang<0))=ang(find(ang<0))+360;ang_n=round(ang/45);ang_n(find(ang_n>7))=0;data_dec=8*(round(am)-1)+ang_n;%data_dec(find(data_dec>15))=15;%大于15的判定为15%data_dec(find(data_dec<0))=0;%小于0的判定为0data_bit_rec=dec2bin(data_dec);data_bit=reshape(data_bit_rec',1,length(qam_rev)*4)-'0';。

相关文档
最新文档