初中数学二元一次方程组的应用题型分类汇编——销售利润问题1(附答案)
二元一次方程组的运用3(商品销售利润问题)

解得:
答:存教育储蓄的钱为1500元,存一年定期的钱为500元.
5、 某工厂去年的利润(总产值—总支出) 为200万元,今年总产值比去年增加了20%, 总支出比去年减少了10%,今年的利润为780 万元,去年的总产值、总支出各是多少万元?
思路点拨:设去年的总产值为x万元,总支出为y万元,则有
去年 今年
3.小明的妈妈为了准备小明一年后上高中的费用,现在以两种方式 在银行共存了2000元钱,一种是年利率为2.25%的教育储蓄,另一种 是年利率为2.25%的一年定期存款,一年后可取出2042.75元,问这两 种储蓄各存了多少钱? (利息所得税=利息金额×20%,教育储蓄没有利息所得税) 解:设存一年教育储蓄的钱为x元,存一年定期存款的钱为y元, 则列方程:
答:两件商品的进价分别为600元和400元。
3.小明的妈妈为了准备小明一年后上高中的费用,现在以两种方式 在银行共存了2000元钱,一种是年利率为2.25%的教育储蓄,另一种 是年利率为2.25%的一年定期存款,一年后可取出2042.75元,问这两 种储蓄各存了多少钱? (利息所得税=利息金额×20%,教育储蓄没有利息所得税) 思路点拨: 设教育储蓄存了x元,一年定期存了y元,我们可以根据题 意可列出表格:
二元一次方程组的应用
商品销售利润问题、
银行储蓄问题、增长率问题
例1、一件商品如果按定价打九折出售可以盈利20%;如果 打八折出售可以盈利10元,问此商品的定价是多少?
分析:商品的利润涉及到进价、定价和卖出价,因此,设此商品的 定价为x元,进价为y元,则打九折时的卖出价为0.9x元,获利 (0.9x-y)元,因此得方程0.9x-y=20%y;打八折时的卖出价为0.8x元, 获利(0.8x-y)元,可得方程0.8x-y=10.
二元一次方程组应用题经典题及答案

二元一次方程组应用题经典题及答案一、商品销售问题例 1:某商店购进一批衬衫,成本价每件 40 元,按每件 50 元出售,一个月内可售出 500 件。
已知这种衬衫每件涨价 1 元,其销售量就减少 10 件。
为了在一个月内赚取 8000 元的利润,售价应定为每件多少元?解:设售价应定为每件 x 元,每件的利润为(x 40)元。
因为每件涨价 1 元,销售量就减少 10 件,所以销售量为500 10(x 50)件。
根据总利润=每件利润×销售量,可列方程:(x 40)500 10(x 50) = 8000(x 40)(500 10x + 500) = 8000(x 40)(1000 10x) = 80001000x 10x² 40000 + 400x = 8000-10x²+ 1400x 48000 = 0x² 140x + 4800 = 0(x 60)(x 80) = 0解得 x₁= 60,x₂= 80答:售价应定为每件 60 元或 80 元。
二、行程问题例 2:A、B 两地相距 18 千米,甲、乙两人分别从 A、B 两地同时相向而行,2 小时后在途中相遇;相遇后甲返回 A 地,乙继续向 A 地前进,甲回到 A 地时,乙离 A 地还有 2 千米。
求甲、乙两人的速度。
解:设甲的速度为 x 千米/小时,乙的速度为 y 千米/小时。
根据相遇问题的公式:路程=速度和×时间,可列方程:2(x + y) = 18甲返回 A 地所用的时间也为 2 小时,这 2 小时乙走的路程为 2y 千米。
因为甲回到 A 地时,乙离 A 地还有 2 千米,所以可列方程:18 2y = 2x将第一个方程变形为 x + y = 9,即 x = 9 y,代入第二个方程得:18 2y = 2(9 y)18 2y = 18 2y方程恒成立。
将 x = 9 y 代入第一个方程得:2(9 y + y) = 1818 = 18所以原方程组有无数组解。
二元一次方程组经典应用题及答案

二元一次方程组经典应用题及答案实际问题与二元一次方程组题型归纳一、行程问题甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果___比甲先走2小时,那么他们在甲出发3小时后相遇。
甲、乙两人每小时各走多少千米?解:设甲、乙速度分别为x、y千米/时,依题意得:2.5+2)x+2.5y=363x+(3+2)y=36解得:x=6,y=3.6答:甲的速度是6千米/每小时,乙的速度是3.6千米/每小时。
二、工程问题___家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元。
若只选一个公司单独完成,从节约开支的角度考虑,___家应选甲公司还是乙公司?请说明理由。
解:略三、商品销售利润问题大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,大叔去年甲、乙两种蔬菜各种植了多少亩?解:设甲、乙两种蔬菜各种植了x、y亩,依题意得:①x+y=10②2000x+1500y=解得:x=6,y=4答:大叔去年甲、乙两种蔬菜各种植了6亩、4亩。
四、其他问题略。
该市的城镇人口为14万人,农村人口为28万人。
游泳池中有男孩和女孩,男孩戴蓝色游泳帽,女孩戴红色游泳帽。
设男孩有X人,女孩有Y人,则根据题意可得到以下方程组:X = Y + 12(Y-1) = X解方程组可得X=4,Y=3,即男孩有4人,女孩有3人。
略。
一个两位数减去它的各位数字之和的3倍的结果是23,这个两位数除以它的各位数字之和,商是.5,余数是1.设这个两位数十位数是x,个位数是y,则这个数可以表示为10x+y。
根据题意可以列出以下方程组:10x + y - 3(x + y) = 2310x + y = 5(x + y) + 1解方程组可得x=5,y=6,即这个两位数是56.一个两位数,十位上的数字比个位上的数字大5.设个位是X,十位是Y,则这个两位数可以表示为10Y+X。
部编数学七年级下册专题12销售、利润问题(二元一次方程组的应用)(解析版)含答案

2022-2023学年人教版七年级数学下册精选压轴题培优卷专题12 销售、利润问题(二元一次方程组的应用)考试时间:120分钟 试卷满分:100分评卷人得分一、选择题(每题2分,共20分)1.(本题2分)(2023春·七年级课时练习)欣欣服装店某天用相同的价格()0a a ³卖出了两件服装,其中一件盈利20%,另一件亏损20%,那么该服装店卖出这两件服装的盈利情况是( )A .亏损B .盈利C .不盈不亏D .不确定【答案】A【思路点拨】设第一件衣服的进价为x 元,第二件衣服的进价为y 元,根据题意,可得()()120%120%x y +=-=,进而即可求解.【规范解答】设第一件衣服的进价为x 元,第二件衣服的进价为y 元,由题意得:()()120%120%x a y a +=-=,∴()()120%120%x y +=-=,整理得:3=2x y∴ 1.5y x=∴该服装店卖出这两件服装的盈利情况是:20%20%0.20.2 1.50.10x y x x x -=-´=-<,即赔了0.1x 元.故选:A .【考点评析】本题主要考查二元一次方程的应用,根据等量关系,列出方程是关键.2.(本题2分)(2022秋·广东佛山·八年级校考期中)某商店将某种碳酸饮料每瓶的价格下调了10%.将某种果汁饮料每瓶的价格上调了5%,已知调价前买这两种饮料各一瓶共花费8元,调价后买上述碳酸饮料3瓶和果汁饮料2瓶共花费19.8元,若设上述碳酸饮料、果汁饮料在调价前每瓶分别为x 元和y 元,则可列方程组为( )A .830.92 1.0519.8x y x y +=ìí´+´=îB .83 1.120.9519.8x y x y +=ìí´+´=îC.83 1.0520.919.8x yx y+=ìí´+´=îD.830.952 1.119.8x yx y+=ìí´+´=î【答案】A【思路点拨】设上述碳酸饮料、果汁饮料在调价前每瓶分别为x元和y元,根据题意,列出方程组即可.【规范解答】解:设上述碳酸饮料、果汁饮料在调价前每瓶分别为x元和y元,由题意得,830.92 1.0519.8x yx y+=ìí´+´=î.故选A.【考点评析】本题考查二元一次方程组的应用.根据题意,正确的列出二元一次方程组,是解题的关键.3.(本题2分)(2023春·浙江·七年级专题练习)第24届冬季奥林匹克运动会将于2022年02月04日至2022年02月20日在中华人民共和国北京市和张家口市联合举行,这是中国历史上第一次举办冬季奥运会冬奥会吉祥物“冰墩墩”和“雪容融”陶制品分为小套装和大套装两种已知购买2个小套装和购买1个大套装,共需220元;购买3个小套装和2个大套装,共需390元,则大套装的单价为( )元A.50B.70C.90D.120【答案】D【思路点拨】设大套装的单价为x元,小套装的单价为y元,根据购买2个小套装和购买1个大套装,共需220元;购买3个小套装和2个大套装,共需390元,即可得出关于x,y的二元一次方程组,解之即可得到结论.【规范解答】解:设大套装的单价为x元,小套装的单价为y元,依题意可得:2220 23390x yx y+=ìí+=î,解得:12050xy=ìí=î,∴大套装的单价为120元.故选D.【考点评析】本题考查了一元二次方程组的应用,找准等量关系,正确列出二元一次方程组.4.(本题2分)(2023春·浙江·七年级专题练习)某商场购进商品后,加价40%作为销售价.某日商场搞优惠促销,由顾客抽奖决定折扣.某顾客购买甲、乙两种商品,分别抽到七折和八折,共付款499元,两种商品原售价之和为590元,设两种商品的进价分别为x 元和y 元,根据题意所列方程组为( )A .590,0.7 1.40.8 1.4499x y x y +=ìí´+´=îB .499,0.7 1.40.8 1.4590x y x y +=ìí´+´=îC . 1.4 1.4590,0.7 1.40.8 1.4499x y x y +=ìí´+´=îD . 1.4 1.4499,0.7 1.40.8 1.4590x y x y +=ìí´+´=î【答案】C 【思路点拨】设两种商品的进价分别为x 、y 元,根据等量关系:两种商品原销售价之和为590元,七折和八折,共付款499元,列方程组即可.【规范解答】解:设两种商品的进价分别为x 、y 元,两种商品的售价分别为(1+40%)x =1.4x ,(1+40%)y =1.4y ,∵两种商品原销售价之和为590元,∴1.4x +1.4y =590,两种商品优惠促销价分别为0.7×1.4x ,0.8×1.4y ,∴0.7×1.4x +0.8×1.4y =499,∴列方程组得 1.4 1.45900.7 1.40.8 1.4499+=ìí´+´=îx y x y ,故选C .【考点评析】本题考查列二元一次方程组解销售问题应用题,掌握列方程组的方法,抓住等量关系是解题关键.5.(本题2分)(2022·浙江舟山·九年级专题练习)某商店对一种商品进行促销,促销方式:若购买不超过10件,按每件a 元付款:若一次性购买10件以上,超出部分按每件b 元付款.小明购买了14件付款90元;小聪购买了19件付款115元,则a ,b 的值为( )A .7,5a b ==B .5,7a b ==C .8,5a b ==D .7,4a b ==【答案】A【思路点拨】根据题意可列出关于a 、b 的二元一次方程组,解方程组即可.【规范解答】解:由题意得:10490109115a b a b +=ìí+=î①②,由②−①得:525=b ,解得:5b =,将5b =代入①得:104590+´=a ,解得:7a =,∴方程组的解为75a b =ìí=î,故选:A .【考点评析】此题考查了二元一次方程组的应用,解题的关键是读懂题意,找出题目中的数量关系,列出方程组.6.(本题2分)(2021春·全国·七年级专题练习)根据图中提供的信息,可知一个杯子的价格是( )A .6元B .8元C .10元D .12元【答案】B 【思路点拨】设一盒杯子x 元,一个暖瓶y 元,根据图示可得:一个杯子+一个暖瓶=43元,3个杯子+2个暖瓶=94元,列方程组求解.【规范解答】设一盒杯子x 元,一个暖瓶y 元,由题意得,433294x y x y ++ìíî==,解得:835x y ìíî==,即一个杯子为8元.故选:B .【考点评析】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.7.(本题2分)(2020秋·山东枣庄·八年级统考期末)小岩打算购买气球装扮学校“毕业典礼”活动会场气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位.已知第一束,第二束气球的价格如图所示,则第三束气球的价格为( )A .15元B .16元C .17元D .18元【答案】D 【思路点拨】设一个笑脸气球的单价为x 元/个,一个爱心气球的单价为y 元/个,根据前两束气球的价格,即可得出关于x 、y 的方程组,用前两束气球的价格相加除以2,即可求出第三束气球的价格.【规范解答】解:设一个笑脸气球的单价为x 元/个,一个爱心气球的单价为y 元/个,根据题意得:316320x y x y +ìí+î=①=②,方程(①+②)÷2,得:2x+2y=18,即第三束气球的价格为18元.故选:D .【考点评析】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.8.(本题2分)(2022秋·全国·八年级专题练习)某商店用300元购进A ,B 两种商品,A 商品的利润率是10%,B 商品的利润率是11%,售出后共获利32.5元,则A ,B 两种商品各获利( )A .5元,27.5元B .6元,26.5元C .7元,25.5元D .9元,23.5元【答案】A【思路点拨】设A 、B 两种商品进价分别为x ,y 元,可得其利润分别为10%x ,11%y 元,根据购进共花300元,售出后共获利32.5元列出方程组,求得x ,y 后再求各获利多少元.【规范解答】设A 、B 两种商品进价分别为x ,y 元,根据题意得:30010%11%32.5x y x y +=ìí+=î解得50250x y =ìí=î所以10%x=5 ,11%y=27.5故选A【考点评析】此题主要考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.9.(本题2分)(2019·湖北·校联考一模)某店在开学初用880元购进若干个学生专用科学计算器,按每个50元出售,很快就销售一空,据了解学生还急需3倍数量这种计算器,由于量大,每个进价比上次优惠1元,该店又用2580元购进所需计算器,该店第一次购进计算器的单价为( )A .20元B .42元C .44元D .46元10.(本题2分)(2020秋·陕西西安·八年级统考期末)某商场新购进一种服装,每套售价1000元,若将裤子降价10%,上衣涨价5%,调价后这套服装的单价比原来提高了2%,则调价前上衣的单价是( )A .200元B .480元C .600元D .800元【答案】D【思路点拨】设调价前上衣的单价是x 元,裤子的单价是y 元,根据“调价前每套售价1000元,若将裤子降价10%,上衣涨价5%,调价后这套服装的单价比原来提高了2%”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论.【规范解答】解:设调价前上衣的单价是x 元,裤子的单价是y 元,依题意,得:()()()100015%110%100012%x y x y +=ìí++-=´+î,解得:800200x y =ìí=î.故选:D .【考点评析】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.评卷人得分二、填空题(每题2分,共20分)11.(本题2分)(2022秋·重庆沙坪坝·七年级统考期末)2022年冬,重庆新冠疫情期间,某火锅店举办“云端火锅,共抗疫情”活动,将火锅底料及菜品打包成“便利火锅包”送至附近小区大门处,由居民自行前往提取.根据菜品种类分为A 、B 、C 三类,三个品类成本价分别是125元,100元,75元.且A 类和B 类火锅的标价一样,该店对这三个品类全部打8折销售.若三个品类的销量相同,则火锅店能获得30%的利润,此时A 品类利润率为20%.若A 、B 、C 三类销量之比是2:1:2,则火锅店销售A 、B 、C 类便利火锅包的总利润率为_______.(利润率100-=´%售价成本成本)12.(本题2分)(2023秋·重庆沙坪坝·八年级重庆八中校考期末)三月初某书店销售A 、B 两种书籍,销售36本A 书籍和25本B 书籍收入3495元,销售24本A 书籍和30本B 书籍收入3330元,月底发现部分书籍有污迹,决定对有污迹的书籍进行打六折促销,张老师根据实际购买了原价或打折的两种书籍,共花费3150元,其中购买的A种打折书籍的本数是购买所有书籍本数的14,张老师购买A种打折书籍________本.13.(本题2分)(2022秋·八年级课时练习)在餐馆里,王伯伯买了5个菜,3个馒头,老板少收3元,只收60元,李太太买了10个菜,5个馒头,老板以售价的八折优惠,只收100元,则馒头每个_____元.【答案】1【思路点拨】设馒头每个x 元,菜每个y 元,由题意:王伯伯买了5个菜,3个馒头,老板少收3元,只收60元,李太太买了10个菜,5个馒头,老板以售价的八折优惠,只收100元,列出二元一次方程组,解方程组即可.【规范解答】解:设馒头每个x 元,菜每个y 元,由题意得:356035101000.8x y x y +=+ìí+=¸î,解得:112x y =ìí=î,即馒头每个1元,故答案为:1.【考点评析】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.14.(本题2分)(2022秋·重庆江北·八年级重庆十八中校考阶段练习)2022年北京冬奥会已经越来越近了,这是我国重要历史节点的重大标志性活动,更是全国人民的一次冰雪运动盛宴,与此同时北京冬奥会吉祥物冰墩墩也受到人们的喜爱,关于冰墩墩的各种周边纪念品:徽章、风铃、抱枕、公仔正在某商场火热销售中.已知徽章和抱枕的价格相同,公仔的单价是风铃的两倍,且徽章和风铃的单价之和不超过120元.元旦节期间,徽章的销售数量是公仔数量的2倍,风铃和抱枕的销售数量相同,其中徽章和风铃共卖出120件,抱枕和公仔的销售总额比风铃和徽章的销售总额多2200元,则徽章和风铃销售总额的最大值是______元.【答案】6100【思路点拨】设徽章和抱枕的价格为a 元,风铃的价格为b 元,公仔的价格为2b 元,公仔的销售数量为m 件,徽章的销售数量为2m 件,则风铃和抱枕的销售数量为(120-2m )件,根据题意列出方程求解即可.【规范解答】解:设徽章和抱枕的价格为a 元,风铃的价格为b 元,公仔的价格为2b 元,公仔的销售数量为m 件,徽章的销售数量为2m 件,则风铃和抱枕的销售数量为(120-2m )件,根据题意列方程得,(120)2(1202)22200a m bm b m ma -+---=,化简得,2260601100am bm a b -=--;徽章和风铃销售总额为2(1202)22120ma b m ma bm b +-=-+,把2260601100am bm a b -=--代入得,60601100a b +-;∵120a b +£,当120a b +=时,徽章和风铃销售总额的最大,最大值是6012011006100´-=(元);故答案为:6100.【考点评析】本题考查了方程和不等式的应用,解题关键是根据题意中的数量关系,设未知数,列出方程,根据等式的性质进行变形,整体代入求解.15.(本题2分)(2021·重庆·九年级专题练习)每年7月上中旬是早稻的成熟季节,粮食批发商都会大量采购A 、B 、C 三种水稻,为了获得最大利润,批发商需要统计数据,更好地囤货.7月份某粮食批发商统计销量后发现,A 、B 、C 三种水稻销量之比为3: 4: 5,随着市场的扩大,预计8月份粮食总销量将在7月份基础上有所增加,其中C 种水稻增加的销量占总增加的销量的27,则C 种水稻销量将达到8月份总销量的719,为使A 、B 两种水稻8月份的销量相等,则8月份B 种水稻还需要增加的销量与8月份总销量之比为________.16.(本题2分)(2022春·全国·八年级假期作业)打折前,买60件A商品和30件B商品用了1080元,买50件A商品和10件B商品用了840元.打折后,买500件A商品和500件B商品用了9600元,比不打折少花__元.【答案】400【思路点拨】设打折前A商品的单价为x元,B商品的单价为y元,根据“打折前,买60件A商品和30件B商品用了1080元,买50件A商品和10件B商品用了840元”,即可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再将其代入(500x+500y﹣9600)中即可求出结论.【规范解答】解:设打折前A商品的单价为x元,B商品的单价为y元,依题意,得:60301080 5010840x yx y+=ìí+=î,解得:164xy=ìí=î,∴500x+500y﹣9600=400.故答案为:400.【考点评析】本题考查了打折问题,二元一次方程组的应用,根据题意正确布列方程组是解题的关键.17.(本题2分)(2022春·重庆北碚·八年级西南大学附中校考期末)某文具店九月初进行开学大酬宾活动,将A、B、C三种学习文具以甲、乙两种方式进行搭配销售,两种方式均需要用到成本价为4元的精美包装袋,甲方式每袋含A文具2支,B文具2支,C文具3支;乙方式每袋含A文具3支,B文具2支,C 文具2支;已知每支C比每支A成本价低2元,甲种方式(含包装袋)每袋成本为30元,现甲,乙两种方式分别在成本价基础上提高20%,40%进行销售,两种方式销售完毕后利润率达到30%,则甲,乙两种方式的销售量之比为____.【答案】16:15【思路点拨】根据甲、乙两种方式各种文具的个数配比以及已知条件“每支C比每支A成本价低2元;甲种方式每袋成本为30元,可以得到乙种方式的成本为32元”,再设两种方式销售量分别是未知数,列方程求解即可.【规范解答】解:∵两种方式均需要用到成本价为4元的精美包装袋,甲方式每袋含A文具2支,B文具2支,C文具3支;乙方式每袋含A文具3支,B文具2支,C文具2支;已知每支C比每支A成本价低2元,∴乙种方式每袋成本价比甲种方式每袋成本高2元,∵甲种方式(含包装袋)每袋成本为30元,∴乙种方式(含包装袋)每袋成本为32元,设甲、乙两种方式的销量分别为x袋、y袋.根据题意得,30×0.2x+32×0.4y=(30x+32y)×0.3,化简整理得,16y=15x,∴x:y=16:15.故答案为:16:15.【考点评析】本题主要考查了二元一次方程的应用,把销售问题转化成方程问题是解答本题的关键.18.(本题2分)(2022秋·重庆·八年级重庆市育才中学校考阶段练习)某奶茶店有多肉芒芒甘露(甲)、芝芝莓莓(乙)、芋泥波波鲜奶(丙)三款招牌饮品.4月份甲和丙销量相同,乙的销量占四月招牌饮品总销量14,2杯甲加1杯乙的利润和好正是2杯丙的利润.五月由于天气转热该奶茶店各款饮品销量暴增,甲、乙、丙三款饮品五月销量之比为1:2:2,甲销售增量占招牌饮品总销售增量的16,但三种饮品的原价格上升,每杯甲、乙、丙的利润较四月分别下降30%,20%,40%..结果五月总利润恰好是四月总利润的4倍,则四月份每杯乙和丙的利润之比是______.19.(本题2分)(2021秋·重庆南川·九年级期中)某个“卡通玩具”自动售货机出售A、B、C三种玩具,A、B、C三种玩具的单价分别是3元/个、5元/个,6元/个,工作日期间,每天上货量是固定的,且能全部售出,其中,A玩具的数量(单位:个)是B玩具数量的2倍,B玩具的数量(单位:个)是C玩具数量的2倍.某个周六,A、B、C三种玩具的上货量分别比一个工作日的上货量增加了50%,70%、50%,且全部售出.但是由于软件出错,发生了一起错单(即消费者按某种玩具一个的价格投币,但是取得了另一种玩具1个),结果这个周六的销售收入比一个工作日的销售收入多了958元,则这个“卡通玩具”自动售货机一个工作日的销售收入是____元.【答案】1680【思路点拨】设C玩具数量工作日时有x个,表示出A、B两种玩具数量工作日数量为4x个、2x个,A、B、C三种玩具周六数量分别为:6x(个),3.4x(个),1.5x(个),继而得出工作日销售收入和周六销售收入及不发生任何故障时多出的钱数,而由于发生故障,周六销售额变化,据此设变化了y元,得16x+y=958,其中x为整数,进而求得工作日销售收入,即可求得y的值.【规范解答】解:设C玩具数量工作日时有x个,根据题意,得A、B两种玩具数量工作日时4x个、2x个,A、B、C三种玩具周六数量分别为:4x(1+50%)=6x(个),2x(1+70%)=3.4x(个),x(1+50%)=1.5x(个),∴工作日销售收入:3×4x+5×2x+6x=28x(元),周六销售收入:3×6x+5×3.4x+6×1.5x=44x(元),当不发生任何故障时,多出44x-28x=16x(元),其中x为整数,由于发生了故障,周六的销售额发生了变化,设变化了y元,则16x+y=958,其中x为整数,y=1、2、3、-1、-2、-3,当y=-2时,x=60,所以工作日销售收入为:28×60=1680(元).故答案为:1680.【考点评析】本题考查了一元一次方程的应用以及二元一次方程的应用,解决本题的关键是根据题意设未知数找到等量关系.20.(本题2分)(2021·重庆·统考二模)今年春节某超市组装了甲、乙两种礼品盆,他们都是由,,a b c 三种零食组成,其中甲礼品盒装有3千克a零食,1千克b零食,1千克c零食,乙礼品盒装有2千克a零食,2千克b零食,2千克c零食,甲、乙两种礼品盒的成本均为盆中,,a b c三种零食的成本之和.已知每千克a的成本为10元,乙种礼品盒的售价为60元,每盒利润率为25%,甲种每盒的利润率为50%,当甲、乙两种礼盒的销售利润率为13时,该商场销售甲、乙两种礼盒的数量之比是____.【答案】6:11【思路点拨】先根据乙种礼品盒的售价和利润率求出乙种礼品盒的成本,进而推出每种零食的成本,再得评卷人得分三、解答题(共60分)21.(本题6分)(2022·河南郑州·郑州外国语中学校考模拟预测)某超市促销,决定对A、B两种商品进行打折销售.打折前,买6件A商品和3件B商品需要54元,买3件A商品和4件B商品需要32元;打折后,买50件A商品和40件B商品仅需368元,已知A商品是8折销售,请问B商品是几折销售?【答案】六折【思路点拨】设A商品的销售单价为x元,B商品的销售单价为y元,根据题意列出二元一次方组,解方程即可求解.【规范解答】解:设A商品的销售单价为x元,B商品的销售单价为y元,依题意得:6354 3432x yx y+=ìí+=î,22.(本题6分)(2023秋·辽宁阜新·八年级校考期末)某中学用1000元资金为全校在大型药店购进普通医用口罩、N95口罩两种口罩共350个,该大型药店的普通医用口罩、N95口罩成本价和销售价如表所示:类别/单价成本价(元/个)销售价(元/个)普通医用口罩0.82N95口罩48(1)该校在大型药店购进普通医用口罩、N95口罩各多少个?(2)销售完这350个普通医用口罩、N95口罩,该大型药店共获得多少利润?【答案】(1)购进普通医用口罩300个,N 95口罩50个(2)560元【思路点拨】(1)设该校在大型药店购进普通医用口罩x 个,95N 口罩y 个,依据题意可得方程组,解方程组即可求;(2)根据总利润=销量´(售价-进价)进行计算即可得.【规范解答】(1)解:设该校在大型药店购进普通医用口罩x 个,N 95口罩y 个,依题意,得:350281000x y x y +=ìí+=î,解得:30050x y =ìí=î.答:该校在大型药店购进普通医用口罩300个,N 95口罩50个.(2)解:()()30020.85084560´-+´-=(元)答:销售完这300个普通医用口罩、95N 口罩,该大型药店共获得利润560元.【考点评析】此题考查二元一次方程组的应用,理解题意设未知数列出方程是解此题的关键.23.(本题8分)(2023春·浙江·七年级专题练习)某天,一蔬菜经营户用180元从蔬菜批发市场购进土豆和黄瓜共60千克到菜市场去卖,土豆和黄瓜这天的进价和售价如下表所示:品名进价(单位:元/千克)售价(单位:元/千克)土豆 3.55黄瓜23(1)该蔬菜经营户当天购进土豆和黄瓜各多少千克?(2)他当天卖完全部土豆时发现黄瓜才卖了一半,为了尽快售完,决定八折销售剩下的黄瓜,很快一售而空,请问他一共赚了多少钱?24.(本题8分)(2023秋·山西大同·八年级校考期末)盲盒顾名思义就是盒子中放置不同的物品,消费者凭运气抽中商品,正是这种随机化的体验,让消费者产生消费欲望,成为当下最热门的营销方法之一.某葡萄酒酒庄为回馈新老客户,也推出了盲盒式营销.商家计划在每件盲盒中放入A,B两种类型的酒.销售人员先包装了甲、乙两种盲盒.甲盲盒中装了A种酒4瓶,B种酒4瓶;乙盲盒中装了A种酒2瓶,B种酒5瓶;经过测算,甲盲盒的成本价为每件280元,乙盲盒的成本价为每件200元.请计算A种酒和B种酒的成本价为每瓶多少元?【答案】A种酒的成本价为每瓶50元,B种酒的成本价为每瓶20元.【思路点拨】设A种酒的成本价为每瓶x元,B种酒的成本价为每瓶y元,由题意:甲盲盒中装了A种酒4瓶,B种酒4瓶;乙盲盒中装了A种酒2瓶,B种酒5瓶;经过测算,甲盲盒的成本价为每件280元,乙盲盒的成本价为每件200元.列出二元一次方程组,解方程组即可.【规范解答】解:设A种酒的成本价为每瓶x元,B种酒的成本价为每瓶y元,由题意得:44280 25200x yx y+=ìí+=î,解得:5020xy=ìí=î,答:A种酒的成本价为每瓶50元,B种酒的成本价为每瓶20元.【考点评析】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.25.(本题8分)(2023秋·安徽合肥·七年级合肥市第四十五中学校考期末)某鞋店正举办开学特惠活动,如图为活动说明.小李打算在该店同时购买两双鞋,且他有一张所有购买的商品定价皆打8折的折价券.(1)若小李参加特惠活动需花费420元,比使用折价券多花20元,则两双鞋的原件为多少元?(2)若小李计算后发现使用折价券与参加特惠活动两者的花费相差60元,则两双鞋的原价相差多少元?【答案】(1)设两双鞋的原价分别为300元和200元(2)两双鞋的原价相差300元【思路点拨】(1)设两双鞋的原价分别为x元和y元,x y>,根据“参加特惠活动需花费420元,比使用折价券多花20元”列方程组求解即可;(2)设两双鞋的原价分别为a元和b元,且a b>,然后分两种情况列式求解.【规范解答】(1)设两双鞋的原价分别为x 元和y 元,x y >.由题意得0.64200.80.842020x y x y +=ìí+=-î,解得300200x y =ìí=î,答:设两双鞋的原价分别为300元和200元.(2)设两双鞋的原价分别为a 元和b 元,且a b >.①当使用折价券比参加特惠活动花费多60元时,由题意得()()0.80.80.660a b a b +-+=,整理得300b a -=,与a b >矛盾,此情况不成立.②当参加特惠活动比使用折价券花费多60元时,由题意得()()0.60.80.860a b a b +-+=,整理得300a b -=,答:两双鞋的原价相差300元.【考点评析】本题考查了二元一次方程组的应用,仔细审题,找出题目的已知量和未知量,设两个未知数,并找出两个能代表题目数量关系的等量关系,然后列出方程组求解即可.26.(本题8分)(2023秋·福建三明·八年级统考期末)某商场用相同的价格分两次购进A 型和B 型两种型号的电脑,前两次购进情况如下表.A 型(台)B 型(台)总进价(元)第一次2030210000第二次1020130000(1)求该商场购进A 型和B 型电脑的单价各为多少元?(2)已知商场A 型电脑的标价为每台4000元,B 型电脑的标价为每台6000元,两种电脑销售一半后,为了促销,剩余的A 型电脑打九折,B 型电脑打八折全部销售完,问两种电脑商场获利多少元?【答案】(1)A 型电脑单价为3000元,B 型电脑的单价为5000元(2)两种电脑商场获利44000元27.(本题8分)(2023秋·重庆沙坪坝·八年级重庆一中校考期末)据气象局预报,12月初重庆市将有一次强降温雨雪天气.某服装店决定购进A 、B 两种品牌鹅绒服.购进A 种品牌鹅绒服8件,B 种品牌鹅绒服3件,需9200元;若购进A 种品牌鹅绒服5件,B 种品牌鹅绒服6件,需9050元.(1)求购进A 、B 两种品牌鹅绒服每件各需多少元?(2)元旦临近,服装店决定再次购买A 、B 两种品牌鹅绒服共20件,且A 种品牌鹅绒服的数量不超过B 种品牌鹅绒服数量的4倍,A 种品牌鹅绒服以每件350元的利润销售,B 种品牌鹅绒服按照进价提高25%进行销售,怎样进货才能使该服装店在销售完这批品牌鹅绒服时获利最多,最多为多少元?(用函数知识解决)【答案】(1)购进A 种品牌鹅绒服每件需850元,购进B 种鹅绒服每件需800元;(2)即购进A 种品牌鹅绒服4件,购进B 种鹅绒服16件时,获利最多为4600元.【思路点拨】(1) 设购进A 种品牌鹅绒服每件需x 元,购进B 种鹅绒服每件需y 元,根据题意列方程组求解即可;(2) 设购进A 种品牌鹅绒服a 件,购进B 种鹅绒服()20a -件,根据题意列方程,利用函数性质和不等式求出最大值.。
题型专题训练:7_2 二元一次方程组的应用——销售、利润问题

7.2 二元一次方程组的应用——销售、利润问题【题型销售、利润问题】【例】2018年某歌手地表最强巡回演唱会于11月17日在贵阳奥林匹克体育中心举行,小颖购买了一张票价为四位数的场地票(动感地带专属),而小明一张购买了票价为三位数的看台票(动感地带专属).小颖说,“在你的票价前面多写个1,都还比我的便宜200元”;小明说,“只需在我的票价后多写个0,就比你的贵3120元”.请问小颖和小明购买的演唱会门票各是多少元?【变式1】(2022·江西吉安·八年级期末)2018年10月,吉州区井冈蜜柚节迎来了四方游客,游客李先生选购了井冈蜜柚和井冈板栗各一箱需要200元.他还准备给4位朋友每人送同样的井冈蜜柚一箱,6位同事每人送同样的井冈板栗一箱,就还需要1040元.(1)求每箱井冈蜜柚和每箱井冈板栗各需要多少元?(2)李先生到收银台才得知井冈蜜柚节期间,井冈蜜柚可以享受6折优惠,井冈板栗可以享受8折优惠,此时李先生比预计的付款少付了多少元?【变式2】(2022·江苏南通·七年级期末)小瑞去花店购买鲜花,若买5支玫瑰和3支百合,则她所带的钱还剩下10元;若买3支玫瑰和5支百合,则她所带的钱还缺4元.(1)若小瑞所带的钱是51元,请分别求出玫瑰和百合单价是多少元?(2)若小瑞所带的钱是m元,且一共只买8支玫瑰,请直接写出小瑞所带的钱还剩下多少元?【变式3】(2022·广西南宁·七年级期中)为响应国家“足球进收园”的号召,满足学校对足求的需求.某商家第一次购进了38个A类足球和20个B类足球进行销售,共花费了5580元,已知商家购进一个B类足球的价格是购进一个A类足球价格的1.2倍.(1)求商家购进一个A类足球和一个B类足球各需多少元?(2)若一个A类足球的售价为110元.两类足球销售完毕,商家要获得1880元的利铜,则B 类足球的总售价为多少元?(3)为了回馈客户,商家决定进行打折销售,若商家第二次又以原进价购进A、B两类足球,购进A类足球的件数不变,而购进B类足球的件数是第一次的2倍,A类足球按原售价销售,而B类足球打折销售,若第二次两类足球全部销售完毕,要使得第二次销售获得利润1688元,则B类足球是打几折销售的?(解析版)【题型 销售、利润问题】【例】2018年某歌手地表最强巡回演唱会于11月17日在贵阳奥林匹克体育中心举行,小颖购买了一张票价为四位数的场地票(动感地带专属),而小明一张购买了票价为三位数的看台票(动感地带专属).小颖说,“在你的票价前面多写个1,都还比我的便宜200元”;小明说,“只需在我的票价后多写个0,就比你的贵3120元”.请问小颖和小明购买的演唱会门票各是多少元? 【答案】1680元,480元.【分析】设小颖的票价为x 元,小明的票价为y 元,根据“小颖说,“在你的票价前面多写个1,都还比我的便宜200元”;小明说,“只需在我的票价后多写个0,就比你的贵3120元”.”找到等量关系,列出方程组,解方程组即可.【详解】设小颖的票价为x 元,小明的票价为y 元,根据题意得:{x −(1000+y )=20010y −x =3120解得:{x =1680y =480答:小颖和小明购买的演唱会门票分别为:1680元,480元.【点睛】本题考查二元一次方程组的应用,正确的找到等量关系是解答关键.【变式1】(2022·江西吉安·八年级期末)2018年10月,吉州区井冈蜜柚节迎来了四方游客,游客李先生选购了井冈蜜柚和井冈板栗各一箱需要200元.他还准备给4位朋友每人送同样的井冈蜜柚一箱,6位同事每人送同样的井冈板栗一箱,就还需要1040元.(1)求每箱井冈蜜柚和每箱井冈板栗各需要多少元?(2)李先生到收银台才得知井冈蜜柚节期间,井冈蜜柚可以享受6折优惠,井冈板栗可以享受8折优惠,此时李先生比预计的付款少付了多少元?【答案】(1)每箱井冈蜜柚需要80元,每箱井冈板栗需要120元;(2)李先生比预计的付款少付了328元【分析】(1)、根据“井冈蜜柚和井冈板栗各一箱需要200元,4箱井冈蜜柚和6箱井冈板栗需要1040元”列二元一次方程组,解之即可得.(2)根据节省的钱数=原价×数量﹣打折后的价格×数量,即可求出结论.【详解】解:(1)设每箱井冈蜜柚需要x 元,每箱井冈板栗需要y 元,依题意,得:{x +y =2004x +6y =1040, 解得:{x =80y =120. 答:每箱井冈蜜柚需要80元,每箱井冈板栗需要120元.(2)200+1040﹣80×0.6×(4+1)﹣120×0.8×(6+1)=328(元).答:李先生比预计的付款少付了328元.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.【变式2】(2022·江苏南通·七年级期末)小瑞去花店购买鲜花,若买5支玫瑰和3支百合,则她所带的钱还剩下10元;若买3支玫瑰和5支百合,则她所带的钱还缺4元.(1)若小瑞所带的钱是51元,请分别求出玫瑰和百合单价是多少元?(2)若小瑞所带的钱是m 元,且一共只买8支玫瑰,请直接写出小瑞所带的钱还剩下多少元? 【答案】(1)玫瑰和百合单价分别是每支2.5元和每支9.5元(2)小瑞所带的钱还剩下31元【分析】(1)设每支玫瑰x 元,每支百合y 元,利用总价=单价×数量,结合小瑞带的钱数不变,即可得出关于x ,y 的二元一次方程,化简后可得出;(2)设玫瑰的单价是每支x 元,百合单价是每支y 元,因为小瑞带的钱为m 元,所以列方程{5x +3y =m −10①5x +5y =m +4②,用含m 的代数式解出x 和y ,又因为且一共只买8支玫瑰,所以剩下的钱为:m -8x 即可求解;(1)解:设玫瑰的单价是每支x 元,百合单价是每支y 元.由题意可得{5x +3y =51−10,3x +5y =51+4.解之得{x =2.5,y =9.5.答:玫瑰和百合单价分别是每支2.5元和每支9.5元.(2)解:设玫瑰的单价是每支x 元,百合单价是每支y 元,因为小瑞带的钱为m 元【变式3】(2022·广西南宁·七年级期中)为响应国家“足球进收园”的号召,满足学校对足求的需求.某商家第一次购进了38个A类足球和20个B类足球进行销售,共花费了5580元,已知商家购进一个B类足球的价格是购进一个A类足球价格的1.2倍.(1)求商家购进一个A类足球和一个B类足球各需多少元?(2)若一个A类足球的售价为110元.两类足球销售完毕,商家要获得1880元的利铜,则B 类足球的总售价为多少元?(3)为了回馈客户,商家决定进行打折销售,若商家第二次又以原进价购进A、B两类足球,购进A类足球的件数不变,而购进B类足球的件数是第一次的2倍,A类足球按原售价销售,而B类足球打折销售,若第二次两类足球全部销售完毕,要使得第二次销售获得利润1688元,则B类足球是打几折销售的?【答案】(1)一个A类足球需90元,一个B类足球需108元(2)3280(3)八折【分析】(1)设商家购进一个A类足球需x元,购进一个B类足球需y元,由题意:某商家第一次进了38个A类足球和20个B类足球进行出售,共花费了5580元,已知商家购进一个B类足球的价格是购进一个A类足球价格的1.2倍.列出二元一次方程组,解方程组即可;(2)设B类足球的售价为m元,由题意:一个A类足球的售价为110元,两类足球销售完毕,商家要获得1880元的利润,列出一元一次方程,解方程即可;(3)B类足球是打n折销售的,由题意:购进A类足球的件数不变,而购进B类足球的件数是第一次的2倍,A 类足球按原售价销售,使得第二次销售获得利润1688元,列出一元一次方程,解方程即可.(1)解:设商家购进一个A 类足球需x 元,购进一个B 类足球需y 元,由题意得:{38x +20y =5580y =1.2x, 解得:{x =90y =108, 答:商家购进一个A 类足球需90元,购进一个B 类足球需108元;(2)解∶ 设B 类足球的售价为m 元,由题意得:(110-90)×38+(m -108)×20=1880,解得:m =164,则20×164=3280,答:B 类足球的总售价为3280元;(3)解∶设B 类足球是打n 折销售的,由题意得:(110-90)×38+(164×0.1n -108)×20×2=1688,解得:n =8,答:B 类足球是打八折销售的.【点睛】本题考查了二元一次方程组的应用以及一元一次方程的应用,找准等量关系,正确列出二元一次方程组和一元一次方程是解题的关键.。
八年级二元一次方程组实际问题3 经济利润问题

【板块三】经济利润问题方法技巧1.利润问题:利润=售价一进价=进价x利润率,利润率=(售价一进价)÷进价x100%,实际售价=标价x打折率。
2. 储蓄问题:利息=本全×利率×期数,利息税=利息×利息税率。
题型一利润率问题【例1】有甲、乙两件商品,甲商品的利润率为5%, 乙商品的利润率为4%, 共可获利46元,价格调整后,甲商品的利润率为4%, 乙商品的利润率为5%, 共可获利44元,则两件商品的进价分别是多少元?题型二存款利息问题【例2】小明的妈妈为了准备小明一年后上高中的费用,现在以两种方式在银行共存了2000元钱,一种是年利率为2. 25%的教育储蓄,另一种是年利率为2. 25%的一年定期存款(存款利息要交利息所得税),一年后可取出2042. 75元,问这两种储蓄各存了多少钱? (利息所得税=利息金额x20%, 教育储蓄没有利息所得税)题型三分段计费问题【例3】某超市在“五一”期间对顾客实行优惠,规定如下:一次性购物优惠方法少于200元不予优惠低于500元但不低于200元九折优惠500元或大于500元其中500元部分给予九折优惠,超过500部分给予八折优惠(1) 王老辆一次购物600元,他实际付款_元:(2) 若顾客在该超市一次性购物 元,当小于500元但不小于200元时,他实际付款元;当文大于或等于500元时,他实际付款元(用的代数式表示)。
(3) 如果王老师两次购物合计820元,他实际付款共计728元,且第一次购物的货款少于第二次购物的,求两次购物各多少元?针对练习31.某商店购进商品后,都加价40%作为销售价,元旦期间搞优惠促销,决定由顾客抽奖确定折扣,某顾客购买甲、乙两种商品,分别抽到七折和九折,共付款399元,商场共赢利49元,甲、乙两种商品的进价分别为多少元!2.李明以两种形式分别储蓄了2000元和1000元,一年后全部取出,扣除利息所得税后可得利息43.92元,已知这两种储蓄的年利率的和为3. 24%, 问这两种储蓄的年利率各是多少?3. 某市的出租车是这样收费的:起步价所包含的路程为0~1. 5千米,超过1. 5千米的部分按每千米另收费。
二元一次方程销售利润问题知识点及典型题练习

销售问题基本关系:盈利:售价>进价 利润=售价-进价>0亏损:售价<进价 利润=售价-进价<0利润=售价-成本 亏损额=成本-售价、利润=成本×利润率 亏损额=成本×亏损率售价=标价×10折数 售价=进价×(1+利润率) 1、 如果全组共有20名同学,若每人各买1支A 型毛笔和2支B 型毛笔,共支付140元;若每人各买2支A 型毛笔和1支B 型毛笔,共支付160元.这家文具店的A 、B•两种类型毛笔的零售价各是多少?2、小芳和小亮买学习用品,小芳用18元买1支笔和3本笔记本;小亮用31元买了一样的2支钢笔和笔记本5本,问题如下:(1)求每之钢笔和每本笔记本的价格。
(2)校运动会后,班主任拿出200元学校奖励基金交给班长,购买上述价格的钢笔和笔记本共48件,要求笔记本数不少于钢笔笔数 。
3、打折前,买60件A 商品和30件B 商品用了1080元,买50件A 商品和10件B 商品用了840元;打折后,买500件A 商品和500件B 商品用了9600元,比不打折少花多少钱?%100⨯=成本利润利润率%100⨯=成本亏损额亏损率4、商场按标价销售某商品,每件可获利45元,按标价的8.5折销售8件与将标价降价35元销售12件的利润相同。
求该商品的进价和标价各多少元?4、某商场购进商品后,均加价10%作为销售价。
现商场搞优惠促销活动,决定由顾客抽奖确定折扣。
某顾客购买甲、乙两种商品分别抽到7折和9折,共付款399无。
已知这两种商品原销价之各为490元。
问这两种商品的进价分别为多少元?5、甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50﹪的利润定价,乙服装按40﹪的利润定价。
在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲、乙两件服装的成本各是多少元?5、某市场购进甲、乙两种商品共50件,甲种商品进价每件35元,利润率是20%,乙种商品进价每件20元,利润率是15%,共获利278元,问甲、乙两种商品各购进了多少件?6、已知甲、乙两种商品的原单价和为100元,因市场变化,甲商品降价10%,乙商品提价5%,调价后,甲、乙两种商品的单价和比原单价和提高了2%,求甲、乙两种商品的原单价各是多少元?。
人教版七年级下册第八章二元一次方程实际应用-利润问题(有简答)

人教版七年级下册第八章二元一次方程实际应用-利润问题1.某电器超市销售每台进价分别为2000元、1700元的A、B两种型号的空调,如表是近两周的销售情况:(进价、售价均保持不变,利润=销售总收入进货成本)(1)求A、B两种型号的空调的销售单价;(2)若超市准备用不多于54000元的金额再采购这两种型号的空调共30台,求A种型号的空调最多能采购多少台?答案:(1)A、B两种型号的空调的销售单价分别为2500元,2100元;(2)A种型号的空调最多能采购10台.2.某商场第1次用39万元购进A、B两种商品,销售完后获得利润6万元,它们的进价和售价如下表:(总利润=单件利润×销售量)、1)该商场第1次购进A、B两种商品各多少件?的件数是第1次的2倍,A商品按原价销售,而B商品打折销售,若两种商品销售完毕,要使得第2次经营活动获得利润等于54000元,则B种商品是打几折销售的?答案:(1)商场第1次购进A种商品200件,购进A种商品150件;(2)9.3.某手机经销商计划同时购进一批甲、乙两种型号的手机,若购进2部甲型号手机和1部乙型号手机,共需要资金2800元;若购进3部甲型号手机和2部乙型号手机,共需要资金4600元(1) 求甲、乙型号手机每部进价为多少元?(2) 该店计划购进甲、乙两种型号的手机销售,预计用不多于1.8万元且不少于1.74万元的资金购进这两部手机共20台,请问有几种进货方案?请写出进货方案(3) 售出一部甲种型号手机,利润率为40%,乙型号手机的售价为1280元、为了促销,公司决定每售出一台乙型号手机,返还顾客现金m元,而甲型号手机售价不变,要使(2)中所有方案获利相同,求m的值答案:(1) 甲种型号手机每部进价为1000元,乙种型号手机每部进价为800元、(2) 共有四种方案、(3) 当m、80时,w始终等于8000,取值与a无关4.喜迎新年,某社区超市第一次用5000元购进甲、乙两种商品,其中甲商品件数是品的件数的2倍,甲、乙两种商品的进价和售价如下表:(1)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(2)能市第二次以第一次的进价又购进甲、乙两种商品,其中购进乙种商品的件数不变,购进甲种商品的件数是第一次购进甲种商品件数的2倍;乙商品按原价销售,甲商品打折销售,第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多600元,求第二次甲种商品按原价打几折销售答案:(1)4000元;(2)8折.5.某电器商场销售A,B两种型号计算器,两种计算器的进货价格分别为每台30元,40元. 商场销售5台A型号和1台B型号计算器,可获利润76元;销售6台A 型号和3台B型号计算器,可获利120元.(1)求商场销售A,B两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)(2)商场准备用不多于2500元的资金购进A,B两种型号计算器共70台,问最少需要购进A型号的计算器多少台?答案:A型42元,B型56元;30台.6.在元旦期间,某商场计划购进甲、乙两种商品.(1)已知甲、乙两种商品的进价分别为30元,70元,该商场购进甲、乙两种商品共50件需要2300元,则该商场购进甲、乙两种商品各多少件?(2)该商场共投入9500元资金购进这两种商品若干件,这两种商品的进价和售价如表所示:若全部销售完后可获利5000元(利润=(售价﹣进价)×销量),则该商场购进甲、乙两种商品各多少件?答案:(1)商场购进甲商品30件,乙商品20件;(2)商场购进甲商品130件,乙商品80件7.某通讯器材商场,计划从一厂家购进若干部新型手机以满足市场需求,已知该厂家生产三种不同型号的手机,出厂价分别是甲种型号手机1800元/部,乙种型号手机600元/部,丙种型号手机1200元/部.商场在经销中,甲种型号手机可赚200元/部,乙种型号手机可赚100元/部,丙种型号手机可赚120元/部.(1)若商场用6万元同时购进两种不同型号的手机共40部,并恰好将钱用完,请你通过计算分析进货方案;(2)在(1)的条件下,求盈利最多的进货方案;(3)若该商场同时购进三种手机,且购进甲,丙两种手机用了3.9万元,预计可获得5000元利润,问这次经销商共有几种可能的方案?最低成本(进货额)多少元?答案:(1)有两种购买方案:甲种型号手机30部,乙种手机10部;或甲种型号手机20部,丙种手机20部;(2)购买甲种型号手机30部,乙种手机10部所获盈利较大;(3)这次经销商共有2种可能的方案,最低成本(进货额)43800元.8.丽江布农铃,是一种极富特色的、形状同马帮的马铃的挂件.这种马帮文化商品,是纯手工制作.精致小巧的青铜铃铛下系有一块圆形木块,手绘着各种各样的画.某商店需要购进甲、乙两种布农铃共300件,一件甲种布农铃进价为340元,售价为400元,一件乙种布农铃进价为380元,售价为460元.(注:利润=售价-进价)(1)若商店计划销售完这批布农铃后能获利21600元,问甲、乙两种布农铃应分别购进多少件?(2)若商店计划投入资金110000元,则能购进甲种布农铃多少件?答案:(1)购进甲种布农铃120件,乙种布农铃180件;(2)购进甲种布农铃100件.9.某商场准备购进两种型号的摩托车共25辆,预计投资10万元.现有甲、乙、丙三种摩托车,甲种每辆4200元,可获利400元;乙种每辆3700元,可获利350元;丙种每辆3200元,可获利320元,且10万元资本全部用完.、1)请你帮助该商场设计进货方案;、2)从销售利润上考虑,应选择哪种方案?答案:(1)进货方案有两种:①甲种进15辆,乙种进10辆;②甲种进20辆,乙种进5辆;(2)从销售利润上看要选择方案2.10.某体育文化用品商店购进篮球和排球共30个,进价和售价如下表,若全部销售完后共可获利润1680元.、1)请利用二元一次方程组求购进篮球和排球各多少个?、2)“双11”快到了,这个体育文化用品商店也准备搞促销活动,计划篮球9折销售,排球8折销售,则销售8个篮球的利润与销售几个排球的利润相等?答案:(1)购进篮球12个,购进排球18个、、2、销售8个篮球的利润与销售10个排球的利润相等.11.某电器商场销售A、B两种型号计算器,两种计算器的进货价格分别为每台30元,40元,商场销售5台A型号和1台B型号计算器,可获利润76元;销售6台A 型号和3台B型号计算器,可获利润120元.求商场销售A、B两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)答案:A种型号计算器的销售价格是42元,B种型号计算器的销售价格是56元.12.某商场准备购进两种摩托车共25辆,预计投资10万元,现有甲、乙、丙三种摩托车供选购,甲种每辆4200元,可获利400元;乙种每辆3700元,可获利350元;丙种每辆3200元,可获利200元.要求10万元资金全部用完.(1)请你帮助该商场设计进货方案;(2)从销售利润上考虑,应选择哪种方案?答案:(1)进货方案有两种方案: 第一种甲种摩托车为15辆,乙种摩托车为10辆,第二种甲种摩托车为20辆,丙种摩托车为5辆;(2)从销售利润上考虑,应选择第一种方案.13.(1)机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?(2)某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行粗加工,每天可加工16吨,如果进行精加工,每天可加工6吨,但两种加工方式不能同时进行,受季节等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:方案一:将蔬菜全部进行粗加工.方案二:尽可能多地对蔬菜进行精加工,没来得及进行加工的蔬菜,在市场上直接销售.方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.你认为哪种方案获利最多?为什么?答案:(1)需安排25名工人加工大齿轮、安排60名工人加工小齿轮;(2)该公司可以。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
18.某水果店销售 千克香蕉,第一、二、三天的售价分别为 元/千克、 元/千克、 元/千克,三天全部售完,销售额共计 元.则第三天比第一天多销售香蕉__________千克.
16.某班的一个综合实践活动小组去甲、乙两个超市调查去年和今年“元旦”期间的销售情况,下面是调查后小明与其它两位同学进行交流的情景.
小明说:“去年两超市销售额共为150万元,今年两超市销售额共为170万元”,
小亮说:“甲超市销售额今年比去年增加10%
小颖说:“乙超市销售额今年比去年增加20%
根据他们的对话,得出今年甲超市销售额为_____万元
初中数学二元一次方程组的应用题型分类汇编——销售利润问题1(附答案)
1.《九章算术》中有一道“盈不足术”问题,原文为:今有人共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?设该物品的价格是x钱,共同购买该物品的有y人,则根据题意,列出的方程组是()
A. B.
C. D.
2.根据图中提供的信息,可知一个杯子的价格是()
A.6元B.8元C.10元D.12元
3.元旦期间,灯塔市辽东商业城“女装部”推出“全部服装八折”,男装部推出“全部服装八五折”的优惠活动.某顾客在女装部购买了原价 元,在男装部购买了原价 元的服装各一套,优惠前需付 元,而她实际付款 元,根据题意列出的方程组是()
A. B.
C. D.
4.如图是“东方”超市中“飘柔”洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚,请帮忙算一算,该洗发水的原价是()
6.小岩打算购买气球装扮学校“毕业典礼”活动会场气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位.已知第一束,第二束气球的价格如图所示,则第三束气球的价格为()
A.15元B.16元C.17元D.18元
7.某公司2018年的利润为200万元,2019年的总产值比2018年增加了12%,总支出比2018年减少了8%,2019年的利润为500万元,若设2018年的总产值是 万元,2018年的总支出是 万元,则所列方程组正确的是()
19.进价为 元/件的商品,当售价为 元/件时,每天可销售 件,售价每涨 元,每天少销售 件,当售价为________元时每天销售该商品获得利润最大,最大利润是________元.
A.22元B.23元C.24元D.26元
5.陈老师打算购买气球装扮学校“六一”儿童节活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同,由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()
A.19B.18C.16D.15
11.2019年秋,重庆二外初2021级将开启“大阅读”活动,为了充实书吧藏书,学生会号召全年级学生捐书,得到各班的大力支持.同时,年级部分备课组的老师也购买藏书充实到年级书吧,其中数学组购买了甲、乙两种自然科学书籍若干本,用去699元;语文组购买了 、 两种文学书籍若干本,用去6138元,已知 、 的数量分别与甲、乙的数量相等,且甲种书与 种书的单价相同,乙种书与 种书的单价相同.若甲种书的单价比乙种书的单价多7元,则乙种书籍比甲种书籍多买了__________本.
A. B.
C. D.
8.某工厂现向银行申请了两种货款,共计35万元,每年需付利息2.25万元,甲种贷款每年的利率是7%,乙种贷款每年的利率是6%,求这两种贷款的数额各是多少元若设甲、乙两种贷款的数额分别为x万元和y万元,则()
A. B. C. D.
9.甲、乙两店分别购进一批无线耳机,每副耳机的进价甲店比乙店便宜 ,乙店的标价比甲店的标价ቤተ መጻሕፍቲ ባይዱ 元,这样甲乙两店的利润率分别为 和 ,则乙店每副耳机的进价为()
A. 元B. 元C. 元D. 元
10.有甲、乙两种糖果,原价分别为每千克a元和b元.根据调查,将两种糖果按甲种糖果x千克与乙种糖果y千克的比例混合,取得了较好的销售效果.现在糖果价格有了调整:甲种糖果单价下降15%,乙种糖果单价上涨20%,但按原比例混合的糖果单价恰好不变,则 等于( )
A. B. C. D.
15.初2019级即将迎来中考,很多家长都在为孩子准备营养午餐.一家快餐店看准了商机,在5月5号推出了A,B,C三种营养套餐.套餐C单价比套餐A贵5元,三种套餐的单价均为整数,其中A套餐比C套餐少卖12份,B套餐比C套餐少卖6份,且C套餐当天卖出的数量大于26且不超过32,当天总销售量为偶数且当天销售额达到了1830元,商家发现C套餐很受欢迎,因此在6号加推出了C套餐升级版D套餐,四种套餐同时售卖,A套餐比5号销售量减少,C套餐比5号销售量增加 ,且A减少的份数比C套餐增加的份数多5份,B套餐销售量不变,由于商家人手限制,两天的总销售量相同,则其他套餐单价不变的情况下,D套餐至少比C套餐费贵______时,才能使6号销售额达到1950元.
12.某商店将某种碳酸饮料每瓶的价格上调了10%,将某种果汁饮料每瓶的价格下调了5%,已知调价前买这两种饮料各一瓶共花费7元,调价后买上述碳酸饮料3瓶和果汁饮料2瓶共花费17.5元.如果设调价前这种碳酸饮料每瓶x元,果汁饮料每瓶y元,根据题意列方程组______.
13.在“元旦”期间,平价商场对该商场商品进行如下的优惠促销活动:
打折前一次性购物总金额
优惠措施
小于等于400元
不优惠
超过400元,但不超过600元
按售价打九折
超过600元
其中600元部分八折优惠,超过600元的部分打六折优惠
按上述优惠条件,若小华一次性购买售价为80元/件的商品n件时,实际付款504元,则n=_____.
14.若买2支圆珠笔、1本日记本需4元;买1支圆珠笔、2本日记本需5元,则买4支圆珠笔、4本日记本需_____元.