导行电磁波的传输特性1
电磁波的特性和传播方式

电磁波的特性和传播方式电磁波是由电场和磁场相互作用而产生的一种能量传播方式。
它在自然界中广泛存在,并在现代科技中发挥着重要的作用。
本文将介绍电磁波的特性以及它的传播方式。
一、电磁波的特性1. 频率电磁波的特性之一是频率,它指电磁波每秒钟震动的次数。
频率用赫兹(Hz)表示。
常见的电磁波包括无线电波、微波、红外线、可见光、紫外线、X射线和γ射线,它们的频率从低到高不等。
其中,无线电波的频率较低,γ射线的频率较高。
2. 波长电磁波的波长是指电磁波一个完整震动周期的长度。
波长用米(m)表示。
波长和频率有一个简单的数学关系,即波长 = 光速 / 频率,其中光速为300,000,000米/秒。
根据这个关系,频率越高,波长越短;频率越低,波长越长。
3. 能量电磁波具有能量,能量的大小与电磁波的强度有关。
电磁波的能量密度可以通过功率来表示,单位为瓦特/平方米。
功率越大,能量密度越高。
同时,随着距离光源的增加,电磁波的强度将减弱。
二、电磁波的传播方式1. 真空传播在真空中,电磁波可以自由传播。
由于电磁波不需要介质进行传递,因此在太空中无需空气、水或其他物质的存在,就能够传播。
这也是无线电波、微波、X射线和γ射线等电磁波能够在太空中传播的原因。
2. 介质传播大部分情况下,电磁波的传播都需要介质的存在。
介质可以是任何物质,包括空气、水、岩石等。
电磁波在介质中传递的速度会发生变化,这取决于介质的性质。
在不同的介质中,电磁波的传播速度会有所差异。
3. 反射和折射当电磁波遇到边界时,会发生反射和折射现象。
反射是指电磁波在遇到边界时被反弹回原来的介质。
折射是指电磁波穿过边界时改变方向。
这些现象在日常生活中有着广泛的应用,比如镜子中的反射和棱镜中的折射。
4. 散射散射是指电磁波在碰到较小的物体或不规则的表面时改变传播方向。
散射现象使得光在大气中传播时,空气中的微粒会散射光线,形成天空的蓝色。
5. 多径传播多径传播是指电磁波在传播过程中,由于经过多条不同路径的干涉和衍射效应产生多个传播路径。
电磁波在通讯中的传播特性与调制方式

电磁波在通讯中的传播特性与调制方式随着科技的不断进步,通讯技术也在不断发展,通信手段越来越多样化,从最早的书信、信鸽传书到现今的手机、互联网通讯,通讯技术的变化不断拓宽人们的交流渠道。
其中,电磁波作为一种通讯手段,在传输速度和传输质量方面都具有巨大的优势,成为了现代通讯技术的主要手段之一。
一、电磁波在通讯中的传播特性电磁波是由电场和磁场相互作用而产生的一种波动。
电磁波可以分成不同的类型,如射频波、微波、红外线、可见光、紫外线、X射线等。
不同类型的电磁波在到达目标地点时都有不同的传输特性。
1.衰减电磁波在空气、水、地面和其他物质中都会发生衰减。
衰减的原因包括电磁波传输距离、波长和频率等因素。
相比于高频电磁波,低频电磁波的衰减更小,可以更远距离传输。
因此,无线电通讯和电视广播等通讯方式就广泛使用了低频电磁波。
2.反射当电磁波到达一个物体表面时,它可能会被反射回去,这种现象叫做反射。
反射会对电磁波的传输造成干扰,并导致信号损失。
在通讯中,为了减少反射对信号的影响,我们常常采用构建电磁波障碍物的方法,如设置反射板、遮蔽罩等。
3.绕射电磁波在穿过一些物体时,可能会发生绕射现象。
绕射会导致电磁波在到达目标处时呈现出不同的传输特性。
在通讯中,我们通过调节发射器和天线的角度等方式,来降低电磁波的绕射。
4.折射折射是指当一束电磁波穿过介质或物体时,由于介质或物体密度不同,电磁波会产生弯曲现象。
折射可以影响电磁波的传输方向和路径,因此在通讯中要考虑电磁波折射的影响。
二、调制方式电磁波在通讯中的传输,需要使用调制方式来将信息信号嵌入到载波信号中,这样就能实现信号的传输。
不同的调制方式,有不同的特点和用途。
下面介绍常见的几种调制方式。
1.调幅(AM)调幅是指通过调整信号的幅度来进行调制。
在通讯中,我们需要将模拟信号通过线路转化为一定范围内的电压信号,再将电压信号通过信号幅度变化来调制载波信号,并将调制信号通过天线发射到空气中进行传输。
1.4导行波及其一般传输特性

相互正交、独立、无耦合。
具有截止特性 (形状、系统)。
(4) 规则导行系统(ragular guided system): 无限长、笔直,其尺
寸、介电系数、边界沿轴向均不发生变化。
2. 导行波场的分析
麦克斯韦方程组:
D H J t B E t B 0 D
(1.4-42)
Z ( z ) Ae
由
j z
k k
2 c 2
2 2
2
fc kc k 1 f 1 k f
可知当 k 2 k c2 时 ,β 为虚数,则导模不能传播。 当 k 2 k c2 ,β 为实数,则导模能传播。 传输状态: c k kc 或 f f c
(iii) 混合波:
k 0
2 c
k2 2
k k
2 c 2
2
对应导行系统为横向衰减型,其波束缚于导行系统表面
附近 (surface wave) 。
vp c / r
故称为慢波、有色散。
当且仅当k > kc才能传播。
以上是微波常用的分类法。
Z ( z ) A1e
j z
质损耗。因而电磁波在传输过程中,其振幅会逐渐减小,也 就是说存在功率损耗,这种损耗应根据具体情况来计算。
本章小结
本章主要介绍了:微波的波段、分类、特点与应用。
导行系统、导行波、导波场满足的方程(Halmholtz Eq、横 纵关系); 导行波的分类(TE、TM、TEM)和基本求解方法: 本征值 --- 纵向场法; 非本征值 --- 标量位函数法(TEM)
基本传输特性 ,表1-2要理解,即书上p14。������
电磁导航的技术原理

电磁导航的技术原理电磁导航是利用电磁信号在空间中传播的特性实现的一种导航方式。
它是一种基于电磁物理学原理的技术,可用于航空、航海、汽车、铁路等多种领域的定位和导航。
本文将介绍电磁导航的技术原理。
1.电磁波的传播原理电磁波指的是一种由电场和磁场组成的横波,在空间中以光速传播。
电磁波的传播遵守波动方程,可以通过电磁场方程和麦克斯韦方程组进行描述。
在空间中,电磁波的传播可以用三维坐标系上的向量场表示。
2.电磁波在导航中的应用在导航中,电磁波常用于通过信号传输来确定位置。
定位系统通过收集从卫星或地面辐射源发射的电磁波等信号,测定其到达接收器位置的时间差,然后通过计算来确定位置。
3.电磁波导航的精度与误差电磁波在导航中的应用精度与许多因素有关,其中最显著的是测量误差。
收到的信号可能会受到各种干扰和误差的影响,如大气影响、天线位置误差、卫星轨道误差、系统时钟偏差等。
这种误差可能会导致导航定位不准确,因此需要进行校准和纠正。
4.电磁波导航的实现电磁波导航主要是通过卫星定位系统(Satellite Navigation Systems)实现的,如全球定位系统(GPS)和伽利略系统等。
它们使用多颗位于地球轨道上的卫星向地球发射电磁信号,接收器接受到这些信号后,可以用三角定位法测量接收器的位置。
5.电磁波导航的未来发展电磁波导航技术随着科技的发展也不断的完善,目前正研究和开发一些新的技术和方法,如利用人造荧光物质进行定位、利用微波辐射和雷达技术进行导航等等。
这些新的技术和方法都将有助于提高定位和导航的精度和效率。
结论电磁波导航是一种常见的定位和导航方式,主要通过卫星定位系统来实现。
该技术利用电磁波的传播性质,实现了较高的精度和效率。
未来随着科技的发展,电磁波导航技术将继续完善和发展,助力于定位和导航业的进一步发展。
电磁波的传播与传播特性

电磁波的传播与传播特性电磁波是由电场和磁场相互作用产生的一种波动现象。
电磁波的传播具有许多独特的特性,探究这些特性不仅可以增进我们对电磁波的理解,还可以拓宽我们对物理学的认识。
首先,电磁波的传播具有波动性。
电磁波在空间中以波动的形式传播,其传播速度为光速。
这是由于电磁波的传播是通过电场和磁场的相互耦合来实现的。
电场和磁场的变化会产生彼此相互作用的力,从而在空间中形成波动。
其次,电磁波的传播具有波长和频率的特性。
波长是指电磁波传播一个周期所需要的距离,频率是指单位时间内电磁波振动的次数。
电磁波的波长和频率之间存在倒数关系,即波长越长,频率越低;波长越短,频率越高。
这是由于电磁波的传播速度是恒定的,一定时间内波动的次数与波长成反比。
第三,电磁波的传播具有衍射和干涉的特性。
衍射是指电磁波在遇到障碍物或通过狭缝时发生弯曲和扩散的现象。
干涉是指两个或多个电磁波相遇时发生的叠加现象。
衍射和干涉的出现是由电磁波传播的波动性所决定的,它们使电磁波传播的路径和能量分布发生变化,进而影响到波的传播特性。
此外,电磁波的传播还受到介质的影响。
介质是电磁波传播的媒介,不同的介质对电磁波的传播具有不同的影响。
对于同一种电磁波,在不同的介质中传播时,会出现折射、反射和吸收等现象。
折射是指电磁波从一种介质传播到另一种介质时改变传播方向的现象,反射是指电磁波遇到界面时反弹回原来的介质的现象,吸收是指电磁波能量被介质吸收而减弱的现象。
这些现象使得电磁波传播的路径和强度发生变化,从而对电磁波的传输和应用产生重要的影响。
最后,电磁波的传播具有极高的速度和广泛的应用。
电磁波的传播速度是光速,达到每秒约30万公里。
这种高速度使电磁波能够在宇宙中迅速传播,成为我们观察天体和探测宇宙的重要工具。
同时,电磁波在通信、无线电、雷达、遥感和医疗诊断等领域中也得到广泛的应用。
电磁波的传输和应用正在不断推动科学技术的发展和进步。
总而言之,电磁波的传播是一种波动现象,具有波动性、波长和频率的特性,以及衍射、干涉和介质的影响。
电磁波传播特性

电磁波传播特性电磁波是由电场和磁场相互耦合形成的一种能量传播方式。
它在自然界中的传播特性十分重要,对通信、雷达、无线电等领域都具有重要意义。
本文将探讨电磁波的传播特性以及与频率和介质的关系。
一、电磁波的传播特性电磁波的传播特性包括波长、频率、速度等方面的表现。
首先,电磁波的波长和频率之间存在固定的关系,即波长等于光速除以频率。
波长越长,频率越低,波长越短,频率越高。
其次,电磁波在真空中的传播速度是一个常数,即光速299792458米/秒。
然而,在介质中传播时,电磁波的速度会受到介质的电磁特性影响,而减小。
这种减小可通过折射率来描述,折射率越大,波速越慢。
最后,电磁波在传播过程中会发生折射、反射和衍射等现象。
折射是指电磁波由一种介质传播到另一种介质时,波的传播方向发生偏转的现象。
反射是指电磁波遇到界面时会发生反弹的现象。
衍射是指电磁波遇到障碍物时,在障碍物周围产生波的传播的现象。
二、电磁波频率与介质的关系电磁波的频率与介质的电磁特性密切相关。
介质的电磁特性主要包括介电常数和导电率。
介电常数描述了介质对电磁场的响应能力,而导电率则描述了介质的导电性。
对于低频电磁波而言,其传播受到介质的导电率影响较大。
高导电率的介质对低频电磁波的传播有较大的阻碍作用,使波速减小。
相对来说,低导电率的介质对低频电磁波的阻碍作用较小,波速相对较大。
而对于高频电磁波,介质的介电常数对其传播起主要影响。
介电常数越大,说明介质具有较强的响应能力,电磁波在介质中传播时会因为介质对电场的响应而减小波速。
三、应用领域举例电磁波的传播特性在各个领域有着广泛的应用。
无线通信是其中之一。
不同频段的电磁波被用于不同的通信方式,常见的如2G、3G、4G和5G网络等。
这些不同频段的电磁波在传播过程中受到不同干扰,因此在通信时需要选择合适的频段来保证信号质量。
雷达技术也是电磁波传播特性应用的重要方向之一。
雷达通过发射出的电磁波与目标物体反射的电磁波进行相位对比来获取目标物体的位置和距离信息。
电磁波的特性解释电磁波的传播和特性

电磁波的特性解释电磁波的传播和特性电磁波的特性:解析电磁波的传播和特性电磁波是一种由变化的电场和磁场相互作用而产生的能量传播形式。
电磁波在自然界和科技应用中起着重要的作用,对于我们理解光的性质、无线通信等具有重要意义。
本文将介绍电磁波的传播和特性。
一、电磁波的传播电磁波是通过空间的传播,可以在真空中、空气中、固体和液体中传播。
它们可以传播的速度等于光速,即约为3.0×10^8米/秒。
电磁波的传播遵循波动理论,具有波动特性和粒子特性。
根据波动理论,电磁波被认为是电场和磁场的交替变化。
波动特性表现为电磁波的频率和波长。
频率指的是电场和磁场一个循环中的震荡次数,用赫兹(Hz)表示,一个赫兹表示每秒一个震荡。
波长是相邻两个波峰之间的距离,用米(m)表示。
频率和波长具有反比关系,即频率越高,波长越短。
二、电磁波的特性1. 辐射性:电磁波具有辐射性,能够从光源中辐射出来,并以直线传播。
当电磁波遇到障碍物时,会发生折射、反射或透射。
2. 电磁波的光谱:电磁波的频率范围很广,被称为电磁波谱。
根据频率从低到高,电磁波谱分为无线电波、微波、红外线、可见光、紫外线、X射线和γ射线等不同区域。
可见光是我们能够感知的电磁波,包括红、橙、黄、绿、青、蓝、紫七种颜色。
3. 传播性:电磁波在真空中的传播速度为光速,不受介质的影响。
根据传播介质的不同,电磁波在空气、液体和固体中会发生不同的传播情况。
4. 折射:当电磁波从一种介质进入另一种介质时,会发生折射现象。
折射是由于电磁波在两种介质中传播速度不同引起的,根据斯涅尔定律,入射角和折射角之间的正弦比等于两种介质折射率的比值。
5. 反射:当电磁波与物体表面相遇时,一部分能量会被物体反射回来。
根据反射定律,入射角等于反射角。
反射现象使我们能够看到物体和镜子中的映像。
6. 散射:当电磁波遇到小尺寸的物体或不规则的表面时,会发生散射现象。
散射使电磁波的传播方向发生改变,例如蓝天为什么是蓝色的原因就是因为空气中的气体和微粒对太阳光的散射。
电磁波的传播特性

电磁波的传播特性电磁波是由电场和磁场相互作用而产生的一种能量传播现象。
在物质介质中,电磁波传播具有一些独特的特性,对于我们的日常生活和科学研究都有着重要的影响。
一、波长和频率电磁波的特点之一是具有不同的波长和频率。
波长指的是电磁波中相邻两个波峰或波谷之间的距离,通常用λ表示,单位为米。
频率则指电磁波每秒钟震荡的次数,通常用ν表示,单位为赫兹。
两者之间存在着反比关系,即λ=c/ν,其中c为光速,约等于3×10^8米/秒。
不同波长和频率的电磁波对应着不同的物理现象和应用领域。
二、传播速度电磁波在真空中的传播速度是恒定的,即光速。
这一常数标量表示为c,其数值为299792458米/秒。
电磁波在物质介质中的传播速度一般比光速要慢,这是由于介质对电磁波的吸收和散射导致的。
介质对电磁波的吸收程度取决于其电导率和磁导率等因素。
三、反射和折射当电磁波遇到边界或者介质的界面时,会发生反射和折射现象。
反射是指电磁波遇到边界后部分能量返回原来的介质中传播的过程。
而折射则是电磁波从一种介质传播到另一种介质时的现象,此时电磁波的传播方向会发生改变。
这两种现象使得电磁波的传播路径和传播方向发生变化。
四、衍射和干涉衍射是指电磁波遇到狭缝或者物体边缘时发生弯曲和扩散的现象。
这种现象使得电磁波能够绕过障碍物传播到阻挡区域。
干涉是指两束或多束电磁波相互干涉产生出新的波纹图案的现象。
衍射和干涉是电磁波的波动性质的重要体现。
五、吸收和衰减电磁波在传播过程中会受到物质介质的吸收和衰减的影响。
介质对电磁波的吸收会使得波的能量逐渐减弱,而吸收的程度则取决于介质的特性和波长。
由于吸收导致的能量损失,电磁波在传播过程中会逐渐衰减。
总结起来,电磁波的传播特性包括波长和频率的关系、传播速度、反射和折射、衍射和干涉等。
这些特性对于电磁波的应用具有重要的指导意义,如无线通信、雷达、光学设备等都基于电磁波的传播特性来实现。
我们通过深入理解电磁波的传播特性,可以更好地应用和开发相关技术,推动科学的发展和社会的进步。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
引 言:电磁波可以分为自由空间的传播波和有界区域中的被导波或简称导波。
自由空间波是指在无界空间传播的电磁波。
导波是在含有不同媒质边界的空间中传播的电磁波。
而构成这种边界的装置称为导波系统。
它的作用是束缚并引导电磁波传播。
波导是工程上常用的传输电磁波的设备,通过研究导行电磁波的传输特性,有利于提高对波导传输特性的认识,促进理论联系实际,提高处理电磁波传输实际问题的能力;本文通过查阅文献,进行图象模拟与数值计算,综述电磁波在不同波导(矩形波导、圆柱形波导、同轴波导)中的传播特性,进而了解常用的传输电磁波的方式,掌握导行电磁波的传输特性;因此研究导行电磁波传输特性具有十分重要的意义。
一、矩形波导矩形波导是截面形状为矩形的金属波导管,如图,a ,b 分别表示波导管内壁宽边和窄边尺寸,管壁材料通常用铜制成,矩形波导是微波系统中最常用的传输线之一。
矩 形 波 导1.1矩形波导中波的传输特性1、截至波长截至波长是表征波导中传输模式的一个重要参数,在矩形波导中,TM 波和TE 波的截至波长具有相同的形式。
根据截至波数的定义式22⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=b n a m k c ππ, 1.1.1又由于Tc c k k ππλ22==,所以TM 波和TE 波的截至波长可以表示为:222222⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=b n a m b n a mc πππλ 1.1.2由此可见,矩形波导中TM 波和TE 波的截至波长不仅与模有关,而且与波导尺寸有关。
2、截至频率波导的截至特性除了可以利用截至波长来描述,也可以用截至频率来描述。
定义矩形波导中TM 波和TE 波的截至频率为22212⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛==b n a m k fc c μεμεπ,1.1.3很明显,截至频率不仅与模式及波导尺寸有关,还与波导中所填充介质的电磁参数有关。
3、简并现象根据导行波在波导中的传输条件可以知道,当电磁波的波长或频率满足一定的条件时,波导才可以在其中传播。
因此,不同的模式具有不同的传输条件。
根据222222⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=b n a m b n a mc πππλ 可以知道,当m 和n 不为零时,TMmn模和TEmn 模具有相同的截至波长和截至频率,这种具有相同截至波长但模式不同的现象称为简并现象。
在矩形波导中因为分别与TEm0模和TE0n 模相对应的TMm0模和TM0n 模并不存在,所以,TEm0模和TE0n 模是非简并模式,而其余的TMmn 模和TEmn 模都存在简并模式。
由于简并模式具有相同的传播常数,所以当波导中出现不均用性或金属壁的电阻率较大时,相互之间易发生能量交换,从而造成能量损耗和相互干扰。
因此,一般情况下需要避免简并模式出现,但是某些情况下简并模式也可以得到利用。
4、主模和高次模由式222222⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=b n a m b n a mc πππλ可以知道,当矩形波形的a 和b 一定时,m 和n 的值越大,截至波长越短。
当a>b 时,在矩形波导中可能存在的全部模式中,TE10模的截至波长最长,那么TE10模称为主模,其他模式称为高次模.当把矩形波导作为传输系统时,通常采用主模作为工作模式,即单模传输,而抑制高次模。
下图给出了矩形波导中各种模式的临界波长分布图,在给定工作频率的条件下,可以利用此图判断有哪些模式可以在此波导中传输。
矩形波导中各模式的临界波长分布1.2 参数分析这些参数的意义:截止波长、截止频率和截止传播常数都与电磁波的工作频率f 无关,它们反映了波导本身的特性。
一个具体电磁波在波导中的传播特性,取决于改电磁波的工作频率、波导的截止频率等波导结构参数。
可分为以下几种情况:⑴:工作频率大于截止频率:c f f >,这时波导中可以传播相应mn TM 模和mn TE 模式的电磁波。
⑵:工作频率小于截止频率:c f f <,这时波导中不能传播相应mn TM 模和mn TE 模式的电磁波。
⑶:工作频率等于截止频率:c f f =。
这时波导中不能传播相应mn TM 模和模式mn TE 的电磁波。
二、圆柱形波导横截面为圆形的空心金属波导,称为圆波导。
如图,圆 波 导2.1圆柱形波导中波的传输特性与矩形波导相同,圆柱形波导中mn TM 模和mn TE 模的传播特性有相应的传播常数z k 确定,而传播常数z k ,波数k 与截止波数c k 三者满足关系 222c k k γ=+ 。
对于给定尺寸的圆柱形波导,mn TM 模和mn TE 模的截止波数c k 分别由式()mn c mn p k a =(mn p 为m 阶贝塞尔函数的第n 个零点)与/()mnc mn p k a=式确定。
截至频率:μεπλ2c cc k vf ==2.1.1截止波长: Tc c k k ππλ22==2.1.2 当电磁波的工作频率f 大于相应模式的截止频率c f 时,波导中就可以传播该模式的电磁波。
相应的传播特性参数如下:相位常数nm β=相速度p υυ=2.1.4波导波长g λ=2.1.5与矩形波导一样,我们也可以根据模式截止波长的大小,绘出圆柱形波导中截止波长的分布图,如图所示:圆柱形波导中的模式分布图2.2 参数分析从以上的分析可知:①圆柱形波导中存在无穷多个可能的传输模式----mn TM 模和mn TE 模; ②圆柱形波导中最低截止频率模式是TE11模,其截止波长为3.41a ,它是圆柱形波导中的主模。
③圆柱形波导中存在模式的双重简并: 其一:不同模式具有相同的截止波长。
其二:从TE 波和TM 波的场分量表示式可知,圆柱形波导中存在特有的简并----极化简并。
三、同轴波导同轴波导是一种由内、外导体构成的双导体导播系统,也称为同轴线,其形状如图所示,同轴线中主要传播TEM 波,一定尺寸的同轴线,在频率增高时除传播TEM 波外还可以传播TE 波和TM 波,但它们均属于要避免的波形。
同轴波导3.1同轴波导中TEM 波的传播特性常数传播常数 j jk γβ== TEM 波的相速pTEM ωυβ==011Z C υ=特性阻抗;由于同轴线上存在单值的电压波和电流波,定义同轴线的电压和电流之比为0UZ I=并将Z0称为同轴线的特性阻抗。
同轴线单位长度的分布电容定义为容易证明分布电容与特性阻抗的关系为 011Z C υ= 式中v 为电磁波的相速。
3.2参数分析从以上分析可知:EM 波是无色散,其截止波数c k =0,因此,同轴波导中的主模是TEM 模。
四、以矩形波导为例进行数值计算,模拟其传播图像4.1. 矩形波导中的主模与单模传播一般情况下矩形波导中的 a>b ,所以10TE 波的截止频率要比01TE 波的截止频率低。
具有最低截止频率的模式称为主模,所以10TE 波是矩形波导的主模。
由前面介绍知道,工作波长小于截止波长的模式都可以在矩形波导中传播。
因此,对于给定的工作波长,波导中可以存在多种传播模式。
下图为矩形波导中各种模式的截止波长分布图,分为三个区域:I 区:工作波长2a λ≥,波导中不能传播任何模式的波,称为截止区; II 区:2a a λ<<,波导中只能传播10TE 波,称为单模工作区; III 区:0a λ<< ,波导中可以传播多个模式的波,称为多模工作区。
矩形波导截止波长分布大多数情况下,要求矩形波导工作在单模工作区,即要求以10TE 波传播。
因此,为了保证矩形波导中仅仅传播10TE 波,2a a λ<<, 2b λ<。
给定工作波长,波导宽壁尺寸应满足 2a λλ<< 4.1.1而窄壁尺寸应满足 2b λ< 4.1.2工程上常取 0.7a λ=,(0.4~0.5)b a = 4.1.302a λc矩形波导中 10TE 波的电磁场分布如下图所示。
10TE 波的电磁场分布矩形波导中TE10、TE11、TE21模的场分布图4.2主模的管壁电流当电磁波在波导中传播时,在波导内壁表面上将产生感应电流,称之为管壁电流。
在微波频率下,由于趋肤效应使管壁电流集中在波导内壁很薄的表面上流动,所以这种管壁电流可视为表面电流,其面电流密度由下式的理想导体边界条件确定:s n =⨯J e H 4.1.5 式中n e 为波导内壁上的单位法向矢量,由波导壁指向波导内,H 为波导内壁处的磁场。
在波导下底面 y=0 ,n y =e e ,则有TE10TE11TE21j 002c ())πππcos j sin ez sy x x z z z x x z y y y k z z x z H H (H H k H H x x a k a a ===-=⨯+=-⎡⎤⎛⎫⎛⎫⎛⎫=-⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎣⎦J e e e e e e e 4.1.6 在波导上底面 y=b ,n y =-e e ,则有j 002c ())πππcos j sin ez sy x x z z z x x z y by by bk z z x z H H (-H H k H H x x a k a a ===-=-⨯+=+⎡⎤⎛⎫⎛⎫⎛⎫=-+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎣⎦J e e e e e e e 4.1.7 在波导左侧壁x=0,n x =e e ,则有j 00e z k z sx z zz yy x x x H H H -====⨯=-=-J e e e e 4.1.8在波导右侧壁 x=a ,n x =-e e ,则有j 0e z k z sx z zz yy x ax ax aH H H -====-⨯==-J e e e e 4.1.9根据式(4.1.6—4.1.9)可以绘出波导的管壁电流分布,如图所示:10TE 模的管壁电流分布由上图可知: 当矩形波导中传播10TE 模时,在左右两侧壁内的管壁电流只有 y 方向分量,且大小相等方向相反;在上下两宽壁内的管壁电流由 x 方向分量和z 方向分量合成。
在波导宽壁中央的面电流只有z 方向分量,如果在波导宽壁中央沿 z 方向开一个纵向窄缝,不会切断高频电流的通路,因此10TE 波的电磁能量不会从该纵向窄缝辐射出来,波导内的电磁场分布也不会改变,在微波技术中正是利用这一特点制成驻波测量线的。
研究波导的管壁电流分布的实际意义在于:在实际应用中,波导与波导之间往往需要进行连接,在连接处应尽可能保证管壁电流畅通,才不至于引起波导内电磁波的反射。
而在测量波导的传播特性时,又往往需要在波导壁上开槽,这些槽口应尽可能不破坏壁管电流,否则会引起波导内电磁场的改变,测量失去意义,因而这些槽口的位置应开在不切断壁管电流的地方。