全国名校高中数学优质(附详解)专题 必修5数列单元质量检测题
2020-2021学年北师大版高中数学必修五《数列》单元检测题及答案解析

(新课标)最新北师大版高中数学必修五第一章 数 列(北京师大版必修5)实际用时满分实际得分150分一、选择题(每小题5分,共60分)1.等差数列{}的前n 项和为,=-18,=-52,等比数列{}中,=,=,则的值为A.64B.-64C.128D.-1282.已知{a n }是递增数列,且对任意n ∈N*都有a n =n 2+λn 恒成立,则实数λ的取值范围是( ) A.(-72,+∞) B.(0,+∞) C.(-2,+∞) D.(-3,+∞)3.设数列{}是以2为首项,1为公差的等差数列,数列{}是以1为首项,2为公比的等比数列,则=A.1033B.1034C.2057D.2058 4.等比数列{}的前n 项和为,=1,若4,2,成等差数列,则=A.7B.8C.16D.155.已知一等比数列的前三项依次为33,22,++x x x ,那么2113-是此数列的第()项. A .2 B .4 C .6 D .86.在ABC ∆中,tan A 是以-4为第三项,4为第七项的等差数列的公差,tan B 是以13为第三项,9为第六项的等比数列的公比,则这个三角形是( ) A .钝角三角形 B .锐角三角形 C .等腰直角三角形 D .以上都不对7.等比数列{}n a 的各项均为正数,且564718a a a a +=,则3132log log a a ++L +310log a =( ) A.12 B.10C.31log 5+D.32log 5+ 8.在公比为整数的等比数列{}n a 中,如果,12,183241=+=+a a a a 那么该数列的前8项之和为( )A.513B.512C.510D.82259.已知数列{}的通项公式为=1(1)n -- •(4n -3),则它的前100项之和为( )A.200B.-200C.400D.-40010.若数列{}的前n 项和S n =n 2-2n+3,则此数列的前3项依次为 ( ) A.-1,1,3 B.2,1,3 C.6,1,3 D.2,3,611.等差数列{}中,a 1>0,S 5=S 11,则第一个使a n <0的项是( )12.已知{}n a 是等比数列,41252==a a ,,则13221++++n n a a a a a a Λ=( ) A.)41(16n -- B.)21(16n -- C.)41(332n -- D.)21(332n --二、填空题(每小题4分,共16分)13.三个不同的实数c b a ,,成等差数列,且b c a ,,成等比数列,则::a b c =_________. 14.在数列{}中,a 1=3,且对任意大于1的正整数n ,点(n a ,1-n a )在直线x -y -3=0上,则=_________.15.等比数列{}n a 的前n 项和为21n-,则数列{}2n a 的前n 项和为______________.16.等差数列{}的前n 项和为,且-=8,+=26.记=,如果存在正整数M ,使得对一切正整数n ,≤M 都成立,则M 的最小值是. 三、解答题(本大题共6题,共74分)17.有四个数,其中前三个数成等比数列,其积为216,后三个数成等差数列,其和为36,求这四个数.18.在数列{}中,=,并且对任意n ∈,n ≥2都有=-成立,令=(n ∈).(1)求数列{}的通项公式;(2)求数列{}的前n 项和.19.已知{}为各项都为正数的等比数列,=1,=256,为等差数列{}的前n 项和,=2,5=2. (1)求{}和{}的通项公式; (2)设=++…+,求.20. 互不相等的三个数之积为-8,这三个数适当排列后可成为等比数列,也可排成等差数列,求这三个数排成的等差数列.21.已知数列{a n }满足a 1=1,1n a =2a n +1(n ∈N *). (1)求数列{a n }的通项公式;(2)若数列{b n}满足114b-•214n b-=(1)n b4b-•…•1a+(n∈N*),证明:{b n}是等差数列.n22.已知函数f(x)=-2x2+22x,数列{}的前n项和为,点(n,)(n∈)均在函数y=f(x)的图象上.(1)求数列{}的通项公式及前n项和;(2)存在k∈,使得++…+<k对任意n∈恒成立,求出k的最小值.第一章数 列(北京师大版必修5)参考答案1.B 解析:因为=(+)=9=-18,=(+)=13=-52,所以=-2,=-4.又=,=,所以=2,=·=-4×16=-64.2.D 解析:由{a n }为递增数列得1n a +-a n =2n+1+λ>0恒成立,即λ>-2n -1在n ≥1时恒成立,只需λ>(-2n -1)max =-3,故选D.3.A 解析:由题意知=n+1,=,则=+1,所以++…+=10+=1033.4.D 解析:设公比为q ,则4,2q ,成等差数列,∴4q=4+,∴q=2,∴==16-1=15.5.B 解析:由题意得,得x=-1或x=-4, 当x=-1时,2x+2=0,故舍去,所以,所以-13 ,所以n=4.6.B 解析:设等差数列为{a n },公差为d,则=-4,=4,所以d=2,所以设等比数列为{b n },公比为q ,则,=9,所以q=3,所以所以tan tan()1C A B =-+=,所以,,A B C 都是锐角,即此三角形为锐角三角形.7.B 解析:313231031210log log log log ()a a a a a a +++=L L 5103563log ()log (3)10a a ===.8.C 解析:332112131(1)18,()12,,2,22q a q a q q q q q q ++=+====+得或 而q ∈Z,∴q=2,-2=510.9.B 解析:S 100=a 1+a 2+…+a 100=1-5+9-13+17-…+(4×99-3)-(4×100-3)=(1-5)+(9-13)+…+[(4×99-3)-(4×100-3)]=-4×50=-200.10.B 解析:当n=1时,a 1=S 1=12-2×1+3=2;当n=2时,由S 2=a 1+a 2=22-2×2+3=3,得a 2=1;当n=3时,由S 3=a 1+a 2+a 3=32-2×3+3=6,得a 3=3.11.C 解析:由S 5=S 11 得2a 1+15d =0.又a 1>0,所以d <0.而2=2a 1+2(n -1)d =(2n -17)d <0,所以2n -17>0,即n >8.5.12.C 解析:Θ41252==a a ,,∴.21,41==q a ∴=++++13221n n a a a a a a Λ)41(332n --.13.)2(:1:4- 解析:22222,2,(2),540a c b c b a ab c b a a ab b +==-==--+=,又,4,2a b a b c b ≠∴==-.14.3n 2解析:将点代入直线方程得n a -1-n a =3,由定义知{n a }是以3为首项,以3为公差的等差数列,故n a =3n ,即a n =3n 2.41n -144-1n n -16.2 解析:∵{}为等差数列,由-=8,+=26,得a 1=1,d=4,可解得=2-n ,∴=2-.若≤M 对一切正整数n 恒成立,则只需的最大值≤M 即可.又=2-<2,∴只需2≤M ,故M 的最小值是2.17.解:设这四个数为,a ,aq ,2aq -a,则216,(2)36,a a aq q a aq aq a ⎧=⎪⎨⎪++-=⎩g g ①② 由①,得a 3=216,a=6, ③将③代入②,得q=2 , ∴ 这四个数为3,6,12,18.18.解:(1)当n=1时,==3.当n ≥2时,由=得=1,所以=1.所以数列{}是首项为3,公差为1的等差数列, 所以数列{}的通项公式为=n+2. (2)因为==(),=(1-+++…++)=[-(+)]=.19.解:(1)设{}的公比为q ,由=,得q=4,所以=.设{}的公差为d ,由5=2及=2得d=3, 所以=+(n-1)d=3n-1. (2)因为=1×2+4×5+×8+…+(3n-1),①4=4×2+×5+…+(3n-1),②由②-①,得3=-2-3(4++…+)+(3n-1)=2+(3n-2)·.所以=(n-)·+.20.解:设这三个数为,a ,aq ,∴=-8,即a=-2,∴这三个数为-,-2,-2q.(1)若-2为-和-2q 的等差中项,则+2q=4, ∴-2q+1=0,∴q=1,与已知矛盾;(2)若-2q 为-与-2的等差中项,则+2=4q , ∴2-q -1=0,∴q=-或q=1(舍去), ∴这三个数为4,1,-2;(3)若-为-2q 与-2的等差中项,则2q+2=, ∴+q -2=0,∴q=-2或q=1(舍去), ∴这三个数为4,1,-2.综合(1)(2)(3)可知,这三个数排成的等差数列为4,1,-2.21.(1)解: ∵=2+1(n ∈),∴1+1=2+1n n a a +(),即1+1=2+1n n a a +, {}1n a ∴+是以112a +=为首项,2为公比的等比数列.12.n n a ∴+=即-1().(2)证法1:12(...)42.n n b b b n nb +++-∴=122[(...)],n n b b b n nb ∴+++-=① 12112[(...)(1)](1).n n n b b b b n n b ++++++-+=+②②-①,得112(1)(1),n n n b n b nb ++-=+- 即1(1)20,n n n b nb +--+=③21(1)20.n n nb n b ++-++=④④-③,得2120,n n n nb nb nb ++-+= 即2120,n n n b b b ++-+=, 故{b n }是等差数列.22.解:(1)因为点(n ,)(n ∈)均在函数y=f (x )的图象上,所以=-2+22n.当n=1时,==20; 当n ≥2时,=-=-4n+24. 所以=-4n+24(n ∈).(2)存在k ∈,使得++…+<k 对任意n ∈恒成立,只需k>,由(1)知=-2+22n , 所以=-2n+22=2(11-n ).当n<11时,>0;当n=11时,=0;当n>11时,<0. 所以当n=10或n=11时,++…+有最大值是110. 所以k>110. 又因为k ∈,所以k 的最小值为111.。
2020-2021学年北师大版高中数学必修五《数列》单元检测题及答案解析

(新课标)最新北师大版高中数学必修五第一单元 数列 同步练习一、选择题1.在等差数列{}n a 中,公差21=d ,=100S 145,则99531a a a a ++++Λ的值为( )A .57B .58C .59D .602.已知数列{}n a 的通项公式n a n 226-=,若此数列的前n 项和n S 最大,则n的值为( )A .12B .13C .12或13D .143、已知等差数列}{n a 中,81073=-+a a a ,4412=-a a ,记n n a a a S +++=Λ21,则13S 等于( )A 、156B 、168C 、78D 、152 4.在等差数列{}n a 中,已知前15项和9015=S ,那么8a 等于( ) A .3 B .4 C .6 D .125.一个等比数列前3项之和为48,前6项之和为10,则前110项和为( ) A .-1 B .1 C .0 D .26、已知数列}{n a 的前n 项和bn an S n +=2,且10025=S ,则1412a a +=( ) A 、16 B 、4 C 、8 D 、不确定 7.在等比数列}{n a 中,若2,48,93===q a S n n ,则n 等于( )A .3B .4C .5D .68.一个等差数列共有10项,其中偶数项的和为55,则这个数列的第6项是( )A .9.5B .10C .10.5D .119、已知等比数列的各项均为正数公比1≠q ,设293a a P +=,75a a Q =,则P 与Q 的大小关系是( )A 、Q P =B 、Q P πC 、Q P φD 、无法确定10.数列1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,6…第1000项等于( )A .42B .45C .48D .5111.已知关于x 的方程02==-a x x 和)(02b a b x x ≠=+-的四个根组成一个首项为41的等差数列,则b a +等于( )A .7231B .2413C .2411D .8312、已知数列}{n a 满足2121a a a a +=⋅;3232a a a a +=⋅;4343a a a a +=⋅;…;11+++=⋅n n n n a a a a ,则数列}{2n n a a -+是( )A 、等差数列B 、等比数列C 、等差数列又是等比数列D 、非等差数列非等比数列二、填空题13.在等差数列{n a }中,若x a a a =+++1521Λ,y a a a n n n =+++--Λ1314,则=n S _______.14.在100之内的正整数中,能被3整除,又能被5整除的数有_______个. 15.把正整数中被4除余1的数从小到大排成一个数列{}n a ,若它的前n 项和为190=n S ,则n a =________.16.数列{}n a 中,12321+=++++n n a a a a Λ,则数列的通项公式为n a =________.三、解答题17、(12分)各项均为实数的等比数列}{n a 的前n 项和记为n S ,若1010=S ,7030=S ,求40S 。
高中数学必修五数列测试题及答案

高中数学必修5数列测试题含答案一、选择题1、三个正数a 、b 、c 成等比数列,则lga 、 lgb 、 lgc 是 ( )A 、等比数列B 、既是等差又是等比数列C 、等差数列D 、既不是等差又不是等比数列2、前100个自然数中,除以7余数为2的所有数的和是( )A 、765B 、653C 、658D 、6603、如果a,x 1,x 2,b 成等差数列,a,y 1,y 2,b 成等比数列,那么(x 1+x 2)/y 1y 2等于 ( )A 、(a+b)/(a-b)B 、(b-a)/abC 、ab/(a+b)D 、(a+b)/ab4、在等比数列{a n }中,S n 表示前n 项和,若a 3=2S 2+1,a 4=2S 3+1,则公比q= ( )A 、1B 、-1C 、-3D 、35、在等比数列{a n }中,a 1+a n =66,a 2a n -1=128,S n =126,则n 的值为( )A 、5B 、6C 、7D 、86、若{ a n }为等比数列,S n 为前n 项的和,S 3=3a 3,则公比q 为( )A 、1或-1/2B 、-1 或1/2C 、-1/2D 、1/2或-1/27、一个项数为偶数的等差数列,其奇数项和为24,偶数项和为30,最后一项比第一项大21/2,则最后一项为 ( )A 、12B 、10C 、8D 、以上都不对8、在等比数列{a n }中,a n >0,a 2a 4+a 3a 5+a 4a 6=25,那么a 3+a 5的值是( )A 、20B 、15C 、10D 、59、等比数列前n 项和为S n 有人算得S 1=8,S 2=20,S 3=36,S 4=65,后来发现有一个数算错了,错误的是 ( )A 、S 1B 、S 2C 、S 3D 、S 410、数列{a n }是公差不为0的等差数列,且a 7,a 10,a 15是一等比数列{b n }的连续三项,若该等比数列的首项b 1=3则b n 等于( )A 、3·(5/3)n-1B 、3·(3/5)n-1C 、3·(5/8)n-1D 、3·(2/3)n-1二、填空题11、公差不为0的等差数列的第2,3,6项依次构成一等比数列,该等比数列的公比q =12、各项都是正数的等比数列{a n },公比q ≠1,a 5,a 7,a 8成等差数列,则公比q=13、已知a,b,a+b 成等差数列,a,b,ab 成等比数列,且0<log m ab<1,则实数m 的取值范是14、已知a n =a n -2+a n -1(n ≥3), a 1=1,a 2=2, b n =1+n n a a ,则数列{b n }的前四项依次是 ______________. 15、已知整数对的序列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),……,则第60个数对为三、解答题16、有四个数,前三个数成等比数列,其和为19,后三个数为等差数列,其和为12,求此四个数。
人教版数学必修五《数列》单元质量评估试题(含解析)

《数列》单元质量评估试题一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.{a n }是首项为1,公差为3的等差数列,如果a n =2 014,则序号n 等于( ) A .667 B .668 C .669 D .6722.设数列{a n }是等差数列,其前n 项和为S n ,若a 6=2且S 5=30,则S 8等于( ) A .31 B .32 C .33 D .343.公比为2的等比数列{a n }的各项都是正数,且a 3·a 11=16,则a 5等于( ) A .1 B .2 C .4 D .84.数列{a n }的通项公式是a n =(n +2)⎝ ⎛⎭⎪⎫910n,那么在此数列中( )A .a 7=a 8最大B .a 8=a 9最大C .有唯一项a 8最大D .有唯一项a 7最大5.已知数列{a n }中,a 1=1,前n 项和为S n ,且点P (a n ,a n +1)(n ∈N *)在直线x -y +1=0上,则1S 1+1S 2+1S 3+…+1S n等于( )A.n (n +1)2B.2n (n +1)C.n 2(n +1)D.2nn +16.数列{(-1)n ·n }的前2 013项的和S 2 013为( ) A .-2 013 B .-1 017 C .2 013 D .1 0077.若{a n }是等比数列,其公比是q ,且-a 5,a 4,a 6成等差数列,则q 等于( ) A .1或2 B .1或-2 C .-1或2 D .-1或-28.设{a n }是等差数列,S n 是其前n 项和,且S 5<S 6,S 6=S 7>S 8,则下列结论错误的是( ) A .d <0 B .a 7=0 C .S 9>S 5 D .S 6与S 7均为S n 的最大值 9.已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,则数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 的前5项和为( )A.158和5B.3116和5C.3116D.15810.已知数列{a n },a n =-2n 2+λn ,若该数列是递减数列,则实数λ的取值范围是( ) A .(-∞,6) B .(-∞,4] C .(-∞,5) D .(-∞,3] 11.设等差数列{a n }的公差为d ,若数列{2a 1a n }为递减数列.则( ) A .d <0 B .d >0 C .a 1d <0 D .a 1d >012.某工厂月生产总值的平均增长率为q ,则该工厂的年平均增长率为( ) A .q B .12q C .(1+q )12 D .(1+q )12-1二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上) 13.{a n }是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是________. 14.已知等比数列{a n }是递增数列,S n 是{a n }的前n 项和,若a 1,a 3是方程x 2-5x +4=0的两个根,则S 6=________.15.如果数列{a n }的前n 项和S n =2a n -1,则此数列的通项公式a n =______________. 16.一个直角三角形的三边成等比数列,则较小锐角的正弦值是________.三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知数列{log 2(a n -1)}(n ∈N *)为等差数列,且a 1=3,a 3=9. (1)求数列{a n }的通项公式; (2)证明:1a 2-a 1+1a 3-a 2+…+1a n +1-a n<1.18.(本小题满分12分)已知等差数列{a n }的公差d ≠0,它的前n 项和为S n ,若S 5=70,且a 2,a 7,a 2成等比数列.(1)求数列{a n }的通项公式;(2)设数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1S n 的前n 项和为T n ,求证:16≤T n <38.19.(本小题满分12分)已知等差数列{a n },a 6=5.a 3+a 8=5. (1)求{a n }的通项公式a n ;(2)若数列{b n }满足b n =a 2n -1,求{b n }的通项公式b n .20.(本小题满分12分)求数列1,3a ,5a 2,7a 3,…,(2n -1)a n -1的前n 项和.21.(本小题满分12分)等差数列{a n }前n 项和为S n ,已知S 3=a 22,且S 1,S 2,S 4成等比数列,求{a n }的通项公式.22.(本小题满分12分)已知数列{a n }满足a 1=1,a n +1=3a n +1.(1)证明⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n +12是等比数列,并求{a n }的通项公式;(2)证明:1a 1+1a 2+…+1a n <32.《数列》单元质量评估试题解析一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.{a n }是首项为1,公差为3的等差数列,如果a n =2 014,则序号n 等于( )A .667B .668C .669D .672 解析:由2 014=1+3(n -1)解得n =672. 答案:D2.设数列{a n }是等差数列,其前n 项和为S n ,若a 6=2且S 5=30,则S 8等于( )A .31B .32C .33D .34解析:由已知可得⎩⎪⎨⎪⎧a 1+5d =2,5a 1+10d =30,解得⎩⎪⎨⎪⎧a 1=263,d =-43.所以S 8=8a 1+8×72d =32. 答案:B3.公比为2的等比数列{a n }的各项都是正数,且a 3·a 11=16,则a 5等于( ) A .1 B .2 C .4 D .8解析:因为a 3·a 11=a 27=16,所以a 7=4, 所以a 5=a 7q 2=422=1.答案:A4.数列{a n }的通项公式是a n =(n +2)⎝ ⎛⎭⎪⎫910n,那么在此数列中( )A .a 7=a 8最大B .a 8=a 9最大C .有唯一项a 8最大D .有唯一项a 7最大解析:a n =(n +2)⎝ ⎛⎭⎪⎫910n,a n +1=(n +3)·⎝ ⎛⎭⎪⎫910n +1,所以a n +1a n =n +3n +2·910,令a n +1a n ≥1,即n +3n +2·910≥1,解得n ≤7, 即n ≤7时递增,n >7递减,所以a 1<a 2<a 3<…<a 7=a 8>a 9>…. 所以a 7=a 8最大. 答案:A5.已知数列{a n }中,a 1=1,前n 项和为S n ,且点P (a n ,a n +1)(n ∈N *)在直线x -y +1=0上,则1S 1+1S 2+1S 3+…+1S n 等于( )A.n (n +1)2B.2n (n +1)C.n2(n +1)D.2n n +1解析:由已知得a n -a n +1+1=0, 即a n +1-a n =1.所以数列{a n }是首项为1,公差为1的等差数列. 所以S n =n +n (n -1)2·1=12n 2+12n ,所以1S n =2n (n +1)=2⎝⎛⎭⎪⎫1n -1n +1, 所以1S 1+1S 2+1S 3+…+1S n =2⎣⎢⎡⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎦⎥⎤⎝ ⎛⎭⎪⎫1n -1n +1=2⎝ ⎛⎭⎪⎫1-1n +1=2nn +1.答案:D6.数列{(-1)n·n}的前2 013项的和S2 013为()A.-2 013 B.-1 017C.2 013 D.1 007解析:S2 013=-1+2-3+4-5+…+2 012-2 013=(-1)+(2-3)+(4-5)+…+(2 012-2 013)=(-1)+(-1)×1 006=-1 007.答案:D7.若{a n}是等比数列,其公比是q,且-a5,a4,a6成等差数列,则q等于()A.1或2 B.1或-2C.-1或2 D.-1或-2解析:依题意有2a4=a6-a5,即2a4=a4q2-a4q,而a4≠0,所以q2-q-2=0,(q-2)(q+1)=0.所以q=-1或q=2.答案:C8.设{a n}是等差数列,S n是其前n项和,且S5<S6,S6=S7>S8,则下列结论错误的是()A.d<0B.a7=0C.S9>S5D.S6与S7均为S n的最大值解析:由S5<S6,得a6=S6-S5>0.又S6=S7⇒a7=0,所以d<0.由S7>S8⇒a8<0,因此,S9-S5=a6+a7+a8+a9=2(a7+a8)<0,即S9<S5.答案:C9.已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,则数列⎩⎨⎧⎭⎬⎫1a n 的前5项和为( )A.158和5B.3116和5C.3116D.158 解析:由9S 3=S 6=S 3+q 3S 3, 又S 3≠0,所以q 3=8,q =2. 故a n =q ·qn -1=2n -1,所以1a n =12n -1,所以⎩⎨⎧⎭⎬⎫1a n 的前5项和S 5=1-⎝ ⎛⎭⎪⎫1251-12=3116. 答案:C10.已知数列{a n },a n =-2n 2+λn ,若该数列是递减数列,则实数λ的取值范围是( )A .(-∞,6)B .(-∞,4]C .(-∞,5)D .(-∞,3]解析:数列{a n }的通项公式是关于n (n ∈N *)的二次函数,若数列是递减数列,则-λ2·(-2)≤1,即λ≤4.答案:B11.设等差数列{a n }的公差为d ,若数列{2a 1a n }为递减数列.则( ) A .d <0 B .d >0 C .a 1d <0 D .a 1d >0解析:因为{a n }是等差数列,则a n =a 1+(n -1)d ,所以2a 1a n =2a 21+a 1(n -1)d ,又由于{2a 1a n }为递减数列,所以2a 1a n2a 1a n +1=2-a 1d >1=20,所以a 1d <0.答案:C12.某工厂月生产总值的平均增长率为q ,则该工厂的年平均增长率为( )A .qB .12qC .(1+q )12D .(1+q )12-1解析:设第一年第1个月的生产总值为1,公比为(1+q ),该厂一年的生产总值为S 1=1+(1+q )+(1+q )2+…+(1+q )11.则第2年第1个月的生产总值为(1+q )12,第2年全年生产总值S 2=(1+q )12+(1+q )13+…+(1+q )23=(1+q )12S 1,所以该厂生产总值的年平均增长率为S 2-S 1S 1=S 2S 1-1=(1+q )12-1.答案:D二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.设{a n }是递增的等差数列,前三项的和为12,前三项的积为48,则它的首项是________.解析:设前三项分别为a -d ,a ,a +d ,则a -d +a +a +d =12且a (a -d )(a +d )=48,解得a =4且d =±2,又{a n }递增,所以d >0,即d =2,所以a 1=2. 答案:214.已知等比数列{a n }是递增数列,S n 是{a n }的前n 项和,若a 1,a 3是方程x 2-5x +4=0的两个根,则S 6=________.解析:由题意知a 1+a 3=5,a 1a 3=4,又{a n }是递增数列,所以a 1=1,a 3=4,所以q 2=a 3a 1=4,q =2代入等比求和公式得S 6=63.答案:6315.如果数列{a n }的前n 项和S n =2a n -1,则此数列的通项公式a n =______________.解析:当n =1时,S 1=2a 1-1, 所以a 1=2a 1-1,所以a 1=1.当n≥2时,a n=S n-S n-1=(2a n-1)-(2a n-1-1);所以a n=2a n-1,经检验n=1也符合.所以{a n}是等比数列.所以a n=2n-1,n∈N*.答案:2n-1(n∈N*)16.一个直角三角形的三边成等比数列,则较小锐角的正弦值是________.解析:设三边为a,aq,aq2(q>1),则(aq2)2=(aq)2+a2,所以q2=5+1 2.较小锐角记为θ,则sin θ=1q2=5-12.答案:5-1 2三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知数列{log2(a n-1)}(n∈N*)为等差数列,且a1=3,a3=9.(1)求数列{a n}的通项公式;(2)证明:1a2-a1+1a3-a2+…+1a n+1-a n<1.(1)解:设等差数列{log2(a n-1)}的公差为d.由a1=3,a3=9,得log2(9-1)=log2(3-1)+2d,则d=1.所以log2(a n-1)=1+(n-1)·1=n,即a n=2n+1.(2)证明:因为1a n+1-a n=12n+1-2n=12n,所以1a2-a1+1a3-a2+…+1a n+1-a n=121+122+123+…+12n =12-12n ·121-12=1-12n <1. 18.(本小题满分12分)已知等差数列{a n }的公差d ≠0,它的前n 项和为S n ,若S 5=70,且a 2,a 7,a 2成等比数列.(1)求数列{a n }的通项公式;(2)设数列⎩⎨⎧⎭⎬⎫1S n 的前n 项和为T n ,求证:16≤T n <38. (1)解:因为数列{a n }是等差数列,所以a n =a 1+(n -1)d ,S n =na 1+n (n -1)2d . 依题意,有⎩⎪⎨⎪⎧S 5=70,a 27=a 2a 22.即⎩⎪⎨⎪⎧5a 1+10d =70,(a 1+6d )2=(a 1+d )(a 1+21d ). 解得a 1=6,d =4.所以数列{a n }的通项公式为a n =4n +2(n ∈N *).(2)证明:由(1)可得S n =2n 2+4n .所以1S n =12n 2+4n =12n (n +2)=14(1n -1n +2). 所以T n =1S 1+1S 2+1S 3+…+1S n -1+1S n =14⎝⎛⎭⎪⎫1-13+14⎝ ⎛⎭⎪⎫12-14+14⎝ ⎛⎭⎪⎫13-15+…+14· ⎝ ⎛⎭⎪⎫1n -1-1n +1+14⎝ ⎛⎭⎪⎫1n -1n +2= 14⎝⎛⎭⎪⎫1+12-1n +1-1n +2=38-14⎝ ⎛⎭⎪⎫1n +1+1n +2. 因为T n -38=-14⎝ ⎛⎭⎪⎫1n +1+1n +2<0,所以T n <38. 因为T n +1-T n =14⎝ ⎛⎭⎪⎫1n +1-1n +3>0,所以数列{T n }是递增数列,所以T n ≥T 1=16.所以16≤T n <38. 19.(本小题满分12分)已知等差数列{a n },a 6=5.a 3+a 8=5.(1)求{a n }的通项公式a n ;(2)若数列{b n }满足b n =a 2n -1,求{b n }的通项公式b n . 解:(1)设{a n }的首项是a 1,公差为d ,依题意得: ⎩⎪⎨⎪⎧a 1+5d =5,2a 1+9d =5,所以⎩⎪⎨⎪⎧a 1=-20,d =5.所以a n =5n -25(n ∈N *).(2)由(1)a n =5n -25,所以b n =a 2n -1=5(2n -1)-25=10n -30, 所以b n =10n -30(n ∈N *).20.(本小题满分12分)求数列1,3a ,5a 2,7a 3,…,(2n -1)a n -1的前n 项和.解:当a =1时,S n =1+3+5+7+…+(2n -1)=(1+2n -1)n 2=n 2. 当a ≠1时,S n =1+3a +5a 2+…+(2n -3)a n -2+(2n -1)a n -1, aS n =a +3a 2+5a 3+…+(2n -3)a n -1+(2n -1)a n , 两式相减,有:(1-a )S n =1+2a +2a 2+…+2a n -1-(2n -1)a n =1+2a (1-a n -1)1-a-(2n -1)a n , 此时S n =2a (1-a n -1)(1-a )2+a n +1-2na n1-a. 综上,S n =⎩⎪⎨⎪⎧n 2,a =1,2a (1-a n -1)(1-a )2+a n +1-2na n 1-a ,a ≠1.21.(本小题满分12分)等差数列{a n }前n 项和为S n ,已知S 3=a 22,且S 1,S 2,S 4成等比数列,求{a n }的通项公式.解:设{a n }的公差为d .由S 3=a 22,得3a 2=a 22,故a 2=0或a 2=3.由S 1,S 2,S 4成等比数列得S 22=S 1S 4. 又S 1=a 1-d ,S 2=2a 2-d ,S 4=4a 2+2d , 故(2a 2-d )2=(a 2-d )(4a 2+2d ). 若a 2=0,则d 2=-2d 2,所以d =0, 此时S n =0,不合题意;若a 2=3,则(6-d )2=(3-d )(12+2d ), 解得d =0或d =2.因此{a n }的通项公式为a n =3或a n =2n -1(n ∈N *).22.(本小题满分12分)已知数列{a n }满足a 1=1,a n +1=3a n +1.(1)证明⎩⎨⎧⎭⎬⎫a n +12是等比数列,并求{a n }的通项公式; (2)证明:1a 1+1a 2+…+1a n <32. 证明:(1)由a n +1=3a n +1得a n +1+12= 3⎝ ⎛⎭⎪⎫a n +12,所以a n +1+12a n +12=3, 所以⎩⎨⎧⎭⎬⎫a n +12是等比数列,首项为a 1+12=32,公比为3, 所以a n +12=32·3n -1, 因此{a n }的通项公式为a n =3n -12(n ∈N *).(2)由(1)知:a n =3n -12,所以1a n =23n -1, 因为当n ≥1时,3n -1≥2·3n -1,所以13n -1≤12·3n -1, 于是1a 1+1a 2+…+1a n ≤1+13+…+13n -1=32⎝ ⎛⎭⎪⎫1-13n <32, 所以1a 1+1a 2+…+1a n <32.。
高中数学必修五数列单元综合测试(含答案)

厂D. 数列单元测试题命题人:张晓光一、选择题(本大题共10个小题,每小题 5分,共50分,在每小题给出的四个选项中,只有一项是符号题目要求的。
)1.已知等差数列{a n}的前n项和为S n,且满足詈—詈=1,则数列的公差是()1A・2 B. 1 C. 2 D. 32 .设等比数列{a n}的前n项和为S n,若8a?+ a5= 0,则下列式子中数值不能确定的是()a5 S5 a n+1 S n+1A・ B_C. D. W-a3 S3 a n S n3.设数列{a n}满足 a1 = 0, a n+ a*+1 = 2,则 a20KK 的值为()A. 2B. 1C. 0D. — 24 .已知数列{ a n}满足 log 3a n+1 = log3a n +1( n€ N K)且 a2+ a4+ a6= 9,贝V log-(a5 + a?+ 的值是3()1 1A . — 5B. —:C. 5 D.'5 55 .已知两个等差数列{a n}和{b n}的前n项和分别为A n和B n,且,则使得严为正偶数B n n + 3 b n时,n的值可以是()A . 1B . 2C . 5D . 3 或 111 a3 + a46. 各项都是正数的等比数列{a n}的公比q工1,且a2,卫3,內成等差数列,则二+忑的值为()1 — .5A. B7. 已知数列{a n}为等差数列,若空<—1,且它们的前n项和S n有最大值,则使得 S n>0的最大a10值n为()A . 11B . 19C . 20D. 211 一8 .等比数列{ a n}中,a1 = 512,公比q=— 3,用再表示它的前n项之积:比=a1比…a n, 则n n中最大的是()A . nuB . nmC . n9D . 口89. 已知等差数列{a n}的前n项和为S n,若a1= 1,足=a5, a m = 20KK,贝V m=()A . 1004B . 1005C . 1006D . 100710 .已知数列{a n}的通项公式为a n= 6n — 4,数列{"}的通项公式为b n = 2n,则在数列{a.}的前 100项中与数列{b n}中相同的项有()A . 50 项B . 34 项C . 6 项D . 5 项二、填空题(本大题共5个小题,每小题5分,共25分,把正确答案填在题中横线上)111.已知数列{a n}满足:a n+1= 1 ——, a1= 2,记数列{ a n}的前n项之积为P n,则P20KK = _________ .12 .秋末冬初,流感盛行,荆门市某医院近30天每天入院治疗流感的人数依次构成数列{a n},已知a1 = 1, a2= 2,且a n+ 2—a n= 1 + (— $ (n€『),则该医院30天入院治疗流感的人数共有人. 13 .已知等比数列{a n}中,各项都是正数,且a1, ;a3,2a2成等差数列,则"[竺_____________ •2 a1 + a814 •在如图的表格中,每格填上一个数字后,使每一横行成等差数列,每一纵列成等比数列, 且从上到下所有公比相等,则a+ b+ c的值为___________ •15•数列{a n}中,a i= 1, a n、a n +1是方程P2- (2n + 1)P+ - = 0的两个根,则数列{"}的前n项和S n = __________ •三、解答题(本大题共6个小题,共75分,解答应写出文字说明,证明过程或演算步骤)16. (本小题满分12 分)已知等差数列{a n}的前n项和为S n= pn2-2n + q(p, q€ R), n€ N K.(1) 求q的值;(2) 若a3= 8,数列{ b n}满足a n= 4log2b n,求数列{ b n}的前n项和.17. (本小题满分12分)等差数列{ a n}的各项均为正数,a1= 3,前n项和为S n, {*}为等比数列, 3= 1,且 b2S2= 64, b3S3= 960.(1) 求 a n 与b n ;⑵求右+亍…+ S n的值.厂 118. (本小题满分12分)已知数列{b n}前n项和为S n,且b1= 1, b n +1 = §S n.(1) 求 b2, b3, b4 的值;(2) 求{b n}的通项公式;(3) 求 b2+ b4+ b6+…+ b2n 的值.P19. (本小题满分12分)已知f(P)= m (m为常数,m>0且m^ 1).设f(a”,f(a2),…,f(a n)…(n € N)是首项为m2,公比为m的等比数列.(1) 求证:数列{a n}是等差数列;⑵若b n= a n f(a n),且数列{b n}的前n项和为S n, 当m= 2时,求5;(3) 若c n= f(a n)lgf(a n),问是否存在 m,使得数列{ C n}中每一项恒小于它后面的项?若存在,求出m的取值范围;若不存在,请说明理由.1 1 120. (本小题满分13分)将函数f(P)= sin4P sin[(P+ 2n )・/冃+ 3 n在区间(0, +^ )内的全部最值点按从小到大的顺序排成数列{a n}( n € N K).(1)求数列{a n}的通项公式;⑵设b n= 2n a n,数列{b n}的前n项和为T n,求T n的表达式.21. (本小题满分14分)数列{ a n}的前n项和为S n,且S = n(n+ 1)(n€ N ).(1)求数列{a n}的通项公式;⑵若数列{ b n}满足:a n = 3+^+32+ 1 +33+ 1 +…+1,求数列{b n}的通项公式;⑶令C n=晋^(n € N K),求数列{C n}的前n项和T n.数列单元测试题命题人:张晓光n (n — 1 \设{a n }的公差为d ,贝U S n =na 1 + 2 d ,d S 3 S 2 d a 1,公差为2的等差数列,T "3■ — 'S_= 1,二2= 1,「・d = 2.a n S n[答案]D [解析] a n +1 S 5=q一2,S 5a n5a 1 1 — q1一 q1 — q 11 亍= 3= v ,都是确定的数值,但a 1 1 — q1 — q 31 — qn +11 — q-的值随n 的变化 ' 1 — qS n + 1 一、选择题(本大题共10个小题,每小题 5分,共50分,在每小题给出的四个选项中,只有 一项是符号题目要求的。
(典型题)高中数学必修五第一章《数列》检测题(包含答案解析)

一、选择题1.已知数列{}n a 的前n 项和为n S ,11a =,23a =,且()11222n n nn S S S n +-+=+≥,若()()72n n S a n λλλ-++≥-对任意*n ∈N 都成立,则实数λ的最小值为( ) A .52-B .116C .332D .12.若等差数列{}n a 的前n 项和为n S ,首项10a >,202020210a a +>,202020210a a ⋅<,则满足0n S >成立的最大正整数n 是( ) A .4039B .4040C .4041D .40423.在数列{}n a 中,11a =-,33a =,212n n n a a a ++=-(*n N ∈),则10a =( ) A .10B .17C .21D .354.两个公比均不为1的等比数列{}{},n n a b ,其前.n 项的乘积....分别为,n n A B ,若552a b =,则99A B =( ) A .512B .32C .8D .25.已知数列{}n a 的前n 项和n S 满足21n n S a =-.若对任意正整数n 都有10n n S S λ+-<恒成立,则实数λ的取值范围为( ) A .(),1-∞B .12⎛⎫-∞ ⎪⎝⎭,C .13⎛⎫-∞ ⎪⎝⎭,D .14⎛⎫-∞ ⎪⎝⎭,6.《张丘建算经》是我国北魏时期大数学家丘建所著,约成书于公元466485~年间,其记臷着这么一道题:某女子善于织布,一天比一天织得快,而且每天增加的数量相同. 已知第一天织布5尺,30天其织布390尺,则该女子织布每天增加的尺数(不作近似计算)为( ) A .1629B .1627C .1113D .13297.已知等差数列{}n a 的首项为1a ,公差为d ,其前n 项和为n S ,若直线112y a x m =+与圆()2221x y -+=的两个交点关于直线0x y d +-=对称,则数列1n S ⎧⎫⎨⎬⎩⎭的前10项和为( ) A .1011B .910C .89D .28.记n S 为等比数列{}n a 的前n 项和,若数列{}12n S a -也为等比数列,则43a a =( ).A .2B .1C .32D .129.对于数列{}n a ,定义11233n nn a a a T n-+++=为{}n a 的“最优值”,现已知数列{}n a 的“最优值”3n n T =,记数列{}n a 的前n 项和为n S ,则20202020S=( ) A .2019B .2020C .2021D .202210.已知数列{}n a 的通项公式为211n aa n n n=-+,5a 是数列{}n a 的最小项,则实数a 的取值范围是( ) A .[40,25]--B .[40,0]-C .[25,0]-D .[25,0]-11.已知数列{}n a 满足123n n a a +-=,11a =,3n n b a =+,则10b =( ) A .92B .103C .2048D .102412.已知{}n a 为等比数列,13527a a a =,246278a a a =,以n T 表示{}n a 的前n 项积,则使得n T 达到最大值的n 是( ) A .4B .5C .6D .7二、填空题13.已知数列{}n a 的首项1a m =,其前n 项和为n S ,且满足2123n n S S n n ++=+,若数列{}n a 是递增数列,则实数m 的取值范围是_______. 14.设数列{}n a 是等比数列,公比2q,n S 为{}n a 的前n 项和,记219n nn n S S T a +-=(*n N ∈),则数列{}n T 最大项的值为__________. 15.已知数列{}n a 满足对*,m n N ∀∈,都有m n m n a a a ++=成立,72a π=,函数()f x =2sin 24cos 2xx +,记()n n y f a =,则数列{}n y 的前13项和为______. 16.无穷数列{}n a 满足:只要()*,p q a a p q N=∈,必有11p q aa ++=,则称{}n a 为“和谐递进数列”.已知{}n a 为“和谐递进数列”,且前四项成等比数列,151a a ==,22a =,则2021S =_________.17.在等比数列{}n a 中,2514,2==a a ,则公比q =__________. 18.下图中的一系列正方形图案称为谢尔宾斯基地毯.在图中4个大正方形中,着色的正方形的个数依次构成一个数列{}n a 的前4项,则数列{}n a 的一个通项公式为______.19.已知数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,21nn n b a -=+,且1222n n n S T n ++=+-,则2n T =____.20.已知数列{}n a 的通项公式为()12n n a n =+⋅,若不等式()2235n n n a λ--<-对任意*n N ∈恒成立,则整数λ的最大值为_____.三、解答题21.已知等差数列{}n a 满足()()()()*122312(1)n n a a a a a a n n n N +++++⋅⋅⋅++=+∈. (1)求数列{}n a 的通项公式;(2)求数列2n n a ⎧⎫⎨⎬⎩⎭的前n 项和n S .22.已知{}n a 是等差数列,{}n b 是递增的等比数列且前n 和为n S ,112822,10a b a a ==+=,___________.在①2345,,4b b b 成 等差数列,②12n n S λ+=+(λ为常数)这两个条件中任选其中一个,补充在上面的横线上,并完成下面问题的解答(如果选择多个条件分别解答,按第一个解答计分). (1)求数列{}n a 和{}n b 的通项公式; (2)求数列{}n n a b +的前n 项和n T . 23.已知数列{}n a 满足112a =,1223241n n n a a n ++-=-,n *∈N . (1)设121n n b a n =+-,求证:数列{}n b 是等比数列; (2)设数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,求证:3n S <,n *∈N .24.已知正项数列{}n a 、{}n b ,记数列{}n a 的前n 项和为n S ,若1143a b +=,21n n S a +=,2211(1)0n n n n nb b b n b ----+=(1)求数列{}n a 、{}n b 的通项公式; (2)求数列{}2n n a b 的前n 项和n T . 25.已知数列{}n a ,11a =,121n n a a +=+.(1)求证数列{}1n a +是等比数列; (2)令()2log 1n n b a =+,求数列21n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n T . 26.已知数列{}n a 满足:12a =,()*112n n n a a n N n ++⎛⎫=∈ ⎪⎝⎭. (1)求数列{}n a 的通项公式; (2)求数列{}n a 的前n 项和n T ;(3)设2nn n b a =,数列{}n b 的前n 项和为n S ,求2n n S S -的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由n S 与n a 的关系得21nn a =-,则272n maxn λ-⎛⎫≥⎪⎝⎭,设272nn n c -=,利用数列的单调性即可求解. 【详解】解:数列{}n a 的前n 项和为n S ,11a =,23a =,且()11222n n nn S S S n +-+=+≥, 所以112nn n n n S S S S +--=+-,故()122nn n a a n +-=≥,因为1212a a -=,所以()121nn n a a n +-=≥,所以112n n n a a ---=,2122n n n a a ----=,⋯,1212a a -=, 则1211222n n a a --=++⋯+,故11211222121n n n n a --=++⋯+==--, 所以()123122122222221n n n nS n n n +-=+++⋯+-=-=---,所以21nn n S a n -=--,因为()()72n n S a n λλλ-++≥-对任意*n N ∈都成立,所以272nmaxn λ-⎛⎫≥ ⎪⎝⎭. 设272n n n c -=,则111252792222n n n nn n n nc c +++----=-=, 当4n ≤时,1n n c c +>,当5n ≥时,1n n c c +<, 因此1234567c c c c c c c <<⋯<><> 即5332c λ≥=,故λ的最小值为332. 故选:C 【点睛】本题解答的关键利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩求出数列n a 的递推公式,再利用累加法求出na 的通项;2.B解析:B 【分析】由等差数列的10a >,及202020210a a ⋅<得数列是递减的数列,因此可确定202020210,0a a ><,然后利用等差数列的性质求前n 项和,确定和n S 的正负.【详解】∵202020210a a ⋅<,∴2020a 和2021a 异号,又数列{}n a 是等差数列,首项10a >,∴{}n a 是递减的数列,202020210,0a a ><, 由202020210a a +>,所以140404040202020214040()2020()02a a S a a +==+>,14041404120214041()404102a a S a +==<,∴满足0n S >的最大自然数n 为4040. 故选:B . 【点睛】关键点睛:本题求满足0n S >的最大正整数n 的值,关键就是求出100n n S S +><,,时成立的n 的值,解题时应充分利用等差数列下标和的性质求解,属于中档题.3.B解析:B 【分析】根据等式关系得到数列{}n a 为等差数列,求出公差得到其通项公式,最后代值求解即可. 【详解】212n n n a a a ++=-(*n N ∈),212n n n a a a ++∴+=,即数列{}n a 是等差数列, 11a =-,33a =,312a a d ∴=+即312d =-+,则公差2d =,则()11223n a n n =-+-⨯=-(*n N ∈), 所以10210317a =⨯-=. 故选:B . 【点睛】关键点点睛:本题的解题关键是由题中所给关系得出其为等差数列,进而求出通项公式进行计算.4.A解析:A 【分析】直接利用等比数列的性质化简99A B ,再代入552a b =即得解. 【详解】由题得99912919285599129192855()()()2512()()()A a a a a a a a a aB b b b b b b b b b ⋅⋅⋅=====⋅⋅⋅. 故答案为A. 【点睛】(1)本题主要考查等比数列的性质,意在考查学生对该知识的掌握水平和分析推理能力.(2) 等比数列{}n a 中,如果m n p q +=+,则m n p q a a a a =,特殊地,2m p q =+时,则2·m p q a a a =,m a 是p q a a 、的等比中项. 5.C解析:C 【分析】先利用1,1,2n nn S n a S S n =⎧=⎨-≥⎩求出数列{}n a 的通项公式,于是可求出n S ,再利用参变量分离法得到1n n S S λ+<,利用数列的单调性求出数列1n n S S +⎧⎫⎨⎬⎩⎭的最小项的值,可得出实数λ的取值范围. 【详解】当1n =时,1121S a =-,即1121a a =-,得11a =;当2n ≥时,由21n n S a =-,得1121n n S a --=-,两式相减得122n n n a a a -=-,得12n n a a -=,12nn a a -∴=,所以,数列{}n a 为等比数列,且首项为1,公比为2,11122n n n a --∴=⨯=. 12122121n n n n S a -∴=-=⨯-=-,由10n n S S λ+-<,得()()11111112121112221212221n nn n n n n S S λ+++++---<===----,所以,数列1n n S S +⎧⎫⎨⎬⎩⎭单调递增,其最小项为122211213S S -==-,所以,13λ<, 因此,实数λ的取值范围是1,3⎛⎫-∞ ⎪⎝⎭,故选C .【点睛】本题考查利用数列前n 项和求数列的通项,其关系式为1,1,2n nn S n a S S n =⎧=⎨-≥⎩,其次考查了数列不等式与参数的取值范围问题,一般利用参变量分离法转化为数列的最值问题来求解,考查化归与转化问题,属于中等题.6.A解析:A 【解析】由题设可知这是一个等差数列问题,且已知13030,390a S ==,求公差d .由等差数列的知识可得30293053902d ⨯⨯+=,解之得1629d =,应选答案A . 7.A解析:A 【分析】由题意可知,直线112y a x m =+与直线0x y d +-=垂直,且直线0x y d +-=过圆心,可求得1a 和d 的值,然后利用等差数列的求和公式求得n S ,利用裂项法可求得数列1n S ⎧⎫⎨⎬⎩⎭的前10项和. 【详解】 由于直线112y a x m =+与圆()2221x y -+=的两个交点关于直线0x y d +-=对称, 则直线112y a x m =+与直线0x y d +-=垂直,直线0x y d +-=的斜率为1-,则1112a =,可得12a =,且直线0x y d +-=过圆()2221x y -+=的圆心()2,0,则20d -=,可得2d =,()()112212n a a n d n n ∴=+-=+-=,则()()()122122n n n a a n n S n n ++===+,()111111n S n n n n ∴==-++, 因此,数列1n S ⎧⎫⎨⎬⎩⎭的前10项和为1111111110112233410111111⎛⎫⎛⎫⎛⎫⎛⎫-+-+-++-=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.故选:A. 【点睛】本题考查裂项求和,同时也考查了直线与圆的综合问题,以及等差数列求和公式的应用,考查计算能力,属于中等题.8.D解析:D 【分析】分公比是否为1进行讨论,再利用等比数列的前n 项和公式及定义求解即可. 【详解】解:设等比数列{}n a 的公比为q ,当1q =时,()1111222n S a na a n a -=-=-, 则{}12n S a -不为等比数列,舍去, 当1q ≠时,()1111111222111n n n a q a aS a a q a qq q--=-=+----, 为了符合题意,需11201a a q -=-,得12q =,故4312a q a ==. 故选D . 【点睛】本题考查等比数列的前n 项和公式,定义,考查逻辑推理能力以及运算求解能力,属于中档题.9.D解析:D 【分析】 根据11233n nn a a a T n-+++=,且3nn T =,得到112333n n n a a a n -+++=⋅,然后利用数列通项与前n 项和的关系求得21n a n =+,再利用等差数列求和公式求解. 【详解】∵11233n nn a a a T n-+++=,且3nn T =,∴112333n n n a a a n -+++=⋅,当2n ≥时,有()211213313n n n a a a n ---+++⋅=-⋅,两式相减可得:()()1113313213n n n n n a n n n ---⋅=⋅--⋅=+⋅.∴21n a n =+(2n ≥). 当1n =时,13a =适合上式. ∴21n a n =+.则数列{}n a 是以3为首项,以2为公差的等差数列. ∴()202032202012020S 202220202+⨯+⨯==⨯.∴202020222020S =. 故选:D . 【点睛】本题主要考查数列通项与前n 项和的关系以及等差数列的定义和求和公式的应用,属于中档题.10.D解析:D 【分析】由题设得到5n a a ≥恒成立,参变分离后可得实数a 的取值范围. 【详解】由题设有5n a a ≥恒成立, 故21125555a an n n -+≥-+恒成立即()()()5565a n n n n---≥, 当6n ≥时,有()56a n n ≤-恒成立,故0a ≤, 当14n ≤≤时,有()56a n n ≥-恒成立,故25a ≥-, 当5n =时,a R ∈, 故250a -≤≤. 故选:D. 【点睛】本题考查数列的函数性质:最值问题,此类问题可利用函数的单调性来研究,也可以利用恒成立来研究,本题属于较难题.11.C解析:C 【分析】根据题意得到12n n b b +=,计算得到答案. 【详解】123n n a a +-=,()1323n n a a +∴+=+,即12n n b b +=, 14b =,910422048b ∴=⨯=.故选:C . 【点睛】本题考查了根据数列的递推式求通项公式,确定12n n b b +=是解题的关键.12.A解析:A 【分析】先求出首项和公比,得出{}n a 是一个减数列,前4项都大于1,从第五项开始小于1,从而得出结论. 【详解】{}n a 为等比数列,3135327a a a a ==,32464278a a a a ==, 33a ∴=,432a =,4312a q a ∴==,112a =,543·14a a q ==<. 故{}n a 是一个减数列,前4项都大于1,从第五项开始小于1, 以n T 表示{}n a 的前n 项积,则使得n T 达到最大值的n 是4, 故选:A . 【点评】本题主要考查等比数列的性质,属于基础题.二、填空题13.【分析】利用退一作差法求得再求得根据列不等式解不等式求得的取值范围【详解】由可得:两式相减得:两式相减可得:数列是以为公差的等差数列数列是以为公差的等差数列将代入及可得:将代入可得要使得恒成立只需要解析:15,44⎛⎫⎪⎝⎭【分析】利用退一作差法求得114(3)n n a a n +--=≥,再求得234,,a a a ,根据1234a a a a <<<列不等式,解不等式求得m 的取值范围. 【详解】由2123n n S S n n ++=+可得:212(1)3(1)(2)n n S S n n n -+=-+-≥两式相减得:141(2)n n a a n n ++=+≥143(3)n n a a n n -∴+=-≥两式相减可得:114(3)n n a a n +--=≥∴数列2a ,4a ,6a ,...是以4为公差的等差数列,数列3a ,5a ,7a ,...是以4为公差的等差数列,将1n =代入2123n n S S n n ++=+及1a m =可得:252a m =-将2n =代入141(2)n n a a n n ++=+≥可得342a m =+42492a a m =+=-要使得*n N ∀∈,1n n a a +<恒成立 只需要1234a a a a <<<即可524292m m m m ∴<-<+<-解得1544m <<则m 的取值范围是15,44⎛⎫⎪⎝⎭. 故答案为:15,44⎛⎫ ⎪⎝⎭【点睛】本小题主要考查已知n S 求n a ,考查数列的单调性,属于中档题.14.【解析】数列是等比数列公比为的前项和当且仅当时取等号又或时取最大值数列最大项的值为故答案为 解析:3【解析】数列{}n a 是等比数列,公比q 2=,n S 为{}n a 的前n 项和,219()n n n n S S T n N a *+-=∈ ,2111(12)(12)9812129222n nn nn na a T a --⋅---∴==--⋅822n n +≥=, 当且仅当822nn =时取等号, 又,1n N n *∈=或2 时,n T 取最大值19243T =--= .∴ 数列{}n T 最大项的值为3 .故答案为3 .15.【分析】由题意可得为常数可得数列为等差数列求得的图象关于点对称运用等差数列中下标公式和等差中项的性质计算可得所求和【详解】解:对都有成立可令即有为常数可得数列为等差数列函数由可得的图象关于点对称可得 解析:26【分析】由题意可得11n n a a a +-=,为常数,可得数列{}n a 为等差数列,求得()f x 的图象关于点,22π⎛⎫⎪⎝⎭对称,运用等差数列中下标公式和等差中项的性质,计算可得所求和. 【详解】 解:对*,m n ∀∈N ,都有m n m n a a a ++=成立,可令1m =即有11n n a a a +-=,为常数, 可得数列{}n a 为等差数列, 函数2()sin 24cos 2xf x x =+sin 22(1cos )x x =++, 由()()()sin 221cos f x fx x x π+-=++()()()sin 221cos 4x x ππ+-++-=,可得()f x 的图象关于点,22π⎛⎫⎪⎝⎭对称,113212a a a a +=+=6872a a a π=+==,∴()()()()113212f a f a f a f a +=+=()()()6874,2f a f a f a =+==,∴可得数列{}n y 的前13项和为46226⨯+=.故答案为26. 【点睛】本题考查等差数列的性质,以及函数的对称性及运用,化简运算能力,属于中档题.16.7576【分析】根据新定义得数列是周期数列从而易求得【详解】∵成等比数列∴又为和谐递进数列∴…∴数列是周期数列周期为4∴故答案为:7576【点睛】本题考查数列新定义解题关键是由数列新定义性质得出数列解析:7576 【分析】根据新定义得数列是周期数列,从而易求得2021S . 【详解】∵1234,,,a a a a 成等比数列,121,2a a ==,∴344,8a a ==,又15a a =,{}n a 为“和谐递进数列”,∴26a a =,37a a =,48a a =,59a a =,…, ∴数列{}n a 是周期数列,周期为4. ∴2021505(1248)17576S =⨯++++=. 故答案为:7576.【点睛】本题考查数列新定义,解题关键是由数列新定义性质得出数列为周期数列,从而易得结论.17.【分析】本题先用表示再建立方程组解题即可【详解】解:∵是等比数列∴∵∴解得:故答案为:【点睛】本题考查等比数列的基本量法是基础题 解析:12【分析】本题先用1a ,q 表示2a ,5a ,再建立方程组21451412a a q a a q ==⎧⎪⎨==⎪⎩解题即可. 【详解】解:∵ {}n a 是等比数列,∴ 21a a q =,451a a q∵24a =,512a =,∴ 21451412a a q a a q ==⎧⎪⎨==⎪⎩,解得:1812a q =⎧⎪⎨=⎪⎩, 故答案为:12. 【点睛】本题考查等比数列的基本量法,是基础题.18.【分析】根据图象的规律得到前后两项的递推关系然后利用迭代法求通项并利用等比数列求和【详解】由图分析可知依次类推数列是首项为1公比为8的等比数列所以故答案为:【点睛】关键点点睛:本题的关键是迭代法求通解析:817n n a -= 【分析】根据图象的规律,得到前后两项的递推关系,然后利用迭代法求通项,并利用等比数列求和. 【详解】由图分析可知11a =,218181a a =⨯+=+,23281881a a =⨯+=++, 依次类推,1288...1n n n a --=+++,数列{}18n -是首项为1,公比为8的等比数列,所以1881187n n n a --==-, 故答案为:817n n a -=【点睛】关键点点睛:本题的关键是迭代法求通项,重点是得到前后两项的递推关系.19.【解析】所以 解析:22(1)4n n n +++-【解析】1112222n n n n n T S b a b a b a n +-=-+-++-=+-所以222(1)4n n n n n n T T S S T n n +=-++=++-20.4【分析】根据题意等价变形得对任意恒成立再求数列的最大值即可得答案【详解】解:∵∴不等式等价于记∴时即时数列单调递减又∵∴∴即∴整数的最大值为4故答案为:4【点睛】本题考查根据数列不等式恒成立求参数解析:4 【分析】根据题意等价变形得2352nn λ-->对任意*n N ∈恒成立,再求数列232nn n b -=的最大值即可得答案. 【详解】解:∵()102nn a n =+⋅>,∴不等式()2235n n n a λ--<-等价于2352nn λ-->, 记232n nn b -=,112121223462n n n n n b n n b n ++--==--, ∴3n ≥时,11n nb b +<,即3n ≥时数列单调递减, 又∵ 1211,24b b =-=, ∴ ()3max 38n b b ==, ∴358λ->,即337588λ<-=,∴整数λ的最大值为4. 故答案为:4. 【点睛】本题考查根据数列不等式恒成立求参数,考查化归转化思想,是中档题.三、解答题21.(1)21n a n =-;(2)2332n nn S +=-.【分析】(1)利用已知条件列出关于首项与公差的方程组,解方程组即得数列{}n a 的通项公式;(2)先由(1)得到n n n a 2n 122-=,再利用错位相减法求和即可. 【详解】(1)设等差数列{}n a 的公差为d ,由已知得()()121223412a a a a a a +=⎧⎨+++=⎩,即122348a a a a +=⎧⎨+=⎩,所以()()()1111428a a d a d a d ⎧++=⎪⎨+++=⎪⎩,解得112a d =⎧⎨=⎩, 所以21n a n =-. (2)由(1)得n n n a 2n 122-=, 所以1212321223212n n n n n S ---=++⋯++,① 231123212222213n n n n n S +--=++⋯⋯++,② -①②得:21111112132322222222n n n n n n S ++-+⎛⎫=+⨯+⋯+-=- ⎪⎝⎭,所以2332n nn S +=-. 【点睛】易错点睛:用错位相减法求和应注意的问题(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“n S ”与“n qS ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“n n S qS -”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.22.条件选择见解析;(1)n a n =,2n n b =;(2)212222n n n n T +=-++.【分析】选①,(1)列出关于首项与公差、首项与公比的方程组,求出首项与公差、首项与公比,从而求出数列{}n a 和{}n b 的通项公式;(2)由(1)知2nn n a b n +=+,利用分组求和法,结合等差数列与等比数列的求和公式求解即可.选②,(1)列出关于首项与公差的方程组可求出数列{}n a 的通项公式,利用1n n n b S S -=-可求{}n b 的通项公式;(2)由(1)知2n n n a b n +=+,利用分组求和法,结合等差数列与等比数列的求和公式求解即可. 【详解】 选①解:(1)设等差数列{}n a 的公差为d ,1281122,10,2810,1,1a a a a d a d =+=∴+=∴==, 1(1)1n a n n ∴=+-⨯=.由题意知132452,24b b b b ⎛⎫=⋅=+⎪⎝⎭,得324522b b b =+, 设等比数列{}n b 的公比为2222,522q b q b b q ⋅=+,即22520q q -+=,解得2q,或12q =,由数列{}n b 为递增等比数列可知12q =不合题意, 所以{}n b 是一个以2为首项,2为公比的等比数列.1222n n n b -∴=⨯=(2)由(1)知2nn n a b n +=+,()()()()1231222322n n T n ∴=++++++⋯++,()123(123)2222n n T n ∴=+++⋯+++++⋯+, ()212(1)212nn n n T -+∴=+-212222n n n n T +∴=-++.选②解:(1)设等差数列{}n a 的公差为d ,1281122,10,2810,1,1a a a a d a d =+=∴+=∴==, 1(1)1n a n n ∴=+-⨯=.令1n =,则111112,42,2S b S λλλ+=+∴==+=∴=-,122n n S +∴=-当2n ≥时,()()1122222n n n n n n b S S +-=-=---=当1n =时,12b =也满足上式.2n n b =(2)由(1)知2nn n a b n +=+,()()()()1231222322n n T n ∴=++++++⋯++, ()123(123)2222n n T n ∴=+++⋯+++++⋯+, ()212(1)212nn n n T -+∴=+-212222n n n n T +∴=-++.【点睛】方法点睛:利用“分组求和法”求数列前n 项和常见类型有两种:一是通项为两个公比不相等的等比数列的和或差,可以分别用等比数列求和后再相加减;二是通项为一个等差数列和一个等比数列的和或差,可以分别用等差数列求和、等比数列求和后再相加减. 23.(1)证明见解析;(2)证明见解析. 【分析】(1)直接利用定义证明12n n b b +=即得证;(2)分析得到211321n n a -≤⋅-,再利用等比数列求和得证. 【详解】 解:(1)121n n b a n =+-,1223241n n n a a n ++-=-, 则1122123142222222141214121n n n n n n n n b a a a a b n n n n n ++++=+=++=+=+=+-+--, 又11312b a =+=, 所以数列{}n b 是等比数列; (2)由(1)得,1232322n n n b --=⋅=⋅,N n *∈, 213221n n a n -∴=⋅--,N n *∈, 211n -≥,23210n n a -∴≥⋅->,211321n n a -∴≤⋅-, 当2n ≥时,21231111111111222+23312222211112251132112n n n n n S ----⎛⎫- ⎪⎝⎭<++++=+<+=-<-++++⋅-,又11123S a ==<, 综上,3n S <,n *∈N . 【点睛】方法点睛:证明数列不等式常用的方法有:(1)比较法;(2)综合法;(3)分析法;(4)数学归纳法;(5)放缩法;(6)反证法.要根据已知条件灵活选择方法求解. 24.(1)13n n a =,12n n b +=;(2)151144323n n n n T -+=--⋅⋅ 【分析】(1)由1n =求得1a ,再風1b ,然后由11n n n a S S ++=-得到数列{}n a 的递推关系,知其为等比数列,从而得通项公式,由n b 的递推关系得1(1)n n nb n b -=+,用累乘的方法求得n b ;(2)用错位相减法求和n T . 【详解】(1)由题意知:1111221S a a a +=+=,113a =,∴11413b a =-=, ∵1121,21n n n n S a S a +++=+= ∴111333n n n n a a q a +=⇒=⇒= 又∵()[]11(1)0,0n n n n n b b nb n b b --+⋅-+=> ∴121121131(1)122n n n n n n n b b b n n n nb n b b b b b n n ----++=+⇒⋅=⋅⋅⇒=-(1b 也适合), (2)∵123n n n n a b += ∴2323413333n n n T +=++++ 231123133333n n n n T ++=++++ ∴12311111221111219313333333313n n n n n n n T -++⎛⎫- ⎪++⎝⎭=++++-=+-- 11211113633n n n -++⎛⎫=+-- ⎪⎝⎭ ∴151144323n n nn T -+=--⋅⋅. 【点睛】本题考查求等比数列的通项公式,累乘法求通项公式,错位相减法求和.数列求和的常用方法:设数列{}n a 是等差数列,{}n b 是等比数列,(1)公式法:等差数列或等比数列的求和直接应用公式求和; (2)错位相减法:数列{}n n a b 的前n 项和应用错位相减法; (3)裂项相消法;数列1{}n n ka a +(k 为常数,0n a ≠)的前n 项和用裂项相消法; (4)分组(并项)求和法:数列{}n n pa qb +用分组求和法,如果数列中的项出现正负相间等特征时可能用并项求和法;(5)倒序相加法:满足m n m a a A -+=(A 为常数)的数列,需用倒序相加法求和.25.(1)证明见解析;(2)()()235412n n nT n n +=++【分析】(1)利用等比数列的定义变形为()1121n n a a ++=+,证明数列{}1n a +是等比数列;(2)首先求数列{}n b 的通项公式,再利用裂项相消法求和. 【详解】 (1)121n n a a +=+,()1121n n a a +∴+=+,即1121n n a a ++=+,且112a +=, 所以数列{}1n a +是公比为2的等比数列;(2)由(1)可知11222n nn a -+=⋅=, 所以2log 2nn b n ==,()211111222n n b b n n n n +⎛⎫==- ⎪++⎝⎭, 则11111111111...232435112n T n n n n ⎛⎫=-+-+-++-+- ⎪-++⎝⎭111112212n n ⎛⎫=+-- ⎪++⎝⎭()()235412n n n n +=++ 【点睛】关键点点睛:本题第二问考查裂项相消法求和,这样的形式不是连续相消,如果前面剩下两个正数项,那么最后一定剩下两个负数项.26.(1)2nn a n =⋅;(2)()1122n n T n +=-⋅+;(3)12.【分析】(1)利用累乘法可求得数列{}n a 的通项公式; (2)利用错位相减法可求得数列{}n a 的前n 项和n T ;(3)令2n n n c S S =-,分析数列{}n c 的单调性,由此可求得2n n S S -的最小值. 【详解】(1)数列{}n a 满足:12a =,()*112n n n a a n N n ++⎛⎫=∈ ⎪⎝⎭, 则2140a a =>,323202a a =⨯>,,以此类推,对任意的n *∈N ,0n a >,由已知条件可得()121n n n a a n++=, 3211212223222121n n n n a a a na a n a a a n -⨯⨯=⋅⋅⋅⋅=⨯⨯⨯⨯=⋅-; (2)1231222322n n T n =⨯+⨯+⨯++⨯,()23121222122n n n T n n +=⨯+⨯++-⨯+⨯,上式-下式得()()2311121222222212212n n n n n n T n n n +++--=++++-⋅=-⋅=-⋅--,因此,()1122n n T n +=-⋅+;(3)21n n n b a n ==,则111123n S n=++++, 令2n n n c S S =-,则()()()()122122221n n n n n n n n n n c c S S S S S S S S +++++-=---=---()()11111102221121222122n n n n n n n =+-=-=>+++++++,则1n n c c +>, 则数列{}n c 为单调递增数列,所以,数列{}n c 的最小值为12112c S S =-=. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法;(4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.。
2020-2021学年北师大版高中数学必修五《数列》单元测试题及答案解析

(新课标)最新北师大版高中数学必修五高一数学数列单元检测卷一、选择题:1.若互不相等的实数a 、b 、c 成等差数列,c 、a 、b 成等比数列,且103=++c b a , 则a =A .4B .2C .-2D .-42.已知数列{}n a 的首项11a =,且()1212n n a a n -=+≥,则5a 为A .7B .15 C.30 D .31 3. 已知k s 表示数列}{k a 前k 项和,且k s +11++=k k a s (+∈N k ),那么此数列是 A .递增数列 B .递减数列C .常数列D .摆动数列 4. 若实数a 、b 、c 成等比数列,则函数2y ax bx c =++与x 轴的交点的个数为A .1B .0C .2D .无法确定5.若{}n a 是等比数列,前n 项和21n n S =-,则2222123n a a a a ++++=LA.2(21)n - B.21(21)3n - C.41n - D.1(41)3n -6. 已知等差数列{a n }的前n 项和为S n ,若OC a OA a OB 2001+=,且A 、B 、C 三点共线(该直线不过原点O ),则S 200=A .100B .101C .200D .2017.已知数列{a n }的通项公式为11++=n n a n (n ∈N *),若前n 项和为9,则项数n 为A.99B.100C.101D.1028.在等差数列{}n a 和{}n b 中,125a =,175b =,100100100a b +=,则数列{}n n a b +的前100项和为 A. 0 B. 100 C. 1000 D. 100009.已知-9,a 1,a 2,-1四个实数成等差数列,-9,b 1,b 2,b 3,-1五个实数成等比数列,则b 2(a 2-a 1)=A .8B .-8C .±8D .9810.等比数列{}n a 中,991a a 、为方程016102=+-x x 的两根,则805020a a a ⋅⋅ 的值为A .32B .64C .256D .±64二、填空题:11.数列{a n }中,若a 1=1,a n+1=2a n +3 (n ≥1),则该数列的通项a n =.12.设{n a }为公比q>1的等比数列,若2009a 和2010a 是方程24830x x -+=的两根,则=+20122011a a __________. 13.若数列}{n a 是等差数列,前n 项和为n s ,9535=a a 则____________59=s s14.已知{}n a 是等比数列,n a >0,又知2a 4a +23a 5a +4a 6a =25,那么35a a +=__________. 15.关于数列有下面四个判断:①若a 、b 、c 、d 成等比数列,则d c c b b a +++,,也成等比数列; ②若数列}{n a 既是等差数列,也是等比数列,则}{n a 为常数列;③若数列}{n a 的前n 项和为n s ,且1-=nn a s ,(a),则}{n a 为等差或等比数列;④数列}{n a 为等差数列,且公差不为零,则数列}{n a 中不含有n m a a =)(n m ≠。
高中数学必修5数列单元测试题含解析

新课标数学必修5第2章数列单元试题一、选择题(本大题共10小题,每小题3分,共30分)1.在正整数100至500之间能被11整除的个数为()A.34 B.35 C.36 D.37考查等差数列的应用.【解析】观察出100至500之间能被11整除的数为110、121、132、…它们构成一个等*,Nn∈≤36.4,·11=11n+99,由a≤500,解得n差数列,公差为11,数a=110+(n-1)nn∴n≤36.【答案】C2-1(n≥1),则a+a+a+a+a=12.在数列{a}中,a,a=a等于()54n+112nn31A.-1 B.1 C.0 D.2考查数列通项的理解及递推关系.2-1=(a+1)(=aaa-1),【解析】由已知:nn+1nn∴a=0,a=-1,a=0,a=-1.5342【答案】A 3.{a}是等差数列,且a+a+a=45,a+a+a=39,则a+a+a的值是()9432n78156A.24 B.27 C.30 D.33考查等差数列的性质及运用.【解析】a+a+a,a+a+a,a+a+a成等差数列,故a+a+a=2×39-45=33.932394576168【答案】D2f(n)?n*)且f(1)=2,则f(20(n∈N+14.设函数f(x)满足f(n)=)为()2192 D..105 B.97 C95 A.考查递推公式的应用.1?1?f(1)?f(2)??2?1?2)(2??f(3)?fn??)f(n=f【解析】(n+1)-2?2? ?1?1919)??f(20)?f(?2?1?.1)=97(20)=95+f20)-f(1)=…(1+2++19)(f相加得f(2B【答案】*)(n≥3=0-6,a,公差d∈N)的最大值为(,则n中,已知5.等差数列{a}a=n1n8 D.B.6 C.7 A.5考查等差数列的通项.6?+1 n(n-1)d=0=-a【解析】=a+(n1)d,即-6+1n d*.=7d=1时,n取最大值n∵d∈N,当C【答案】2 }从首项到第几项的和最大()=6.设a-n,则数列+10n+11{a nn项.第10项或11项D12C项10A.第项B.第11 .第考查数列求和的最值及问题转化的能力.2 S<0a>0a=0a)-(+1-(n-=【解析】由an+10+11=n)n11,得,而,,S=.1110121011n【答案】C7.已知等差数列{a}的公差为正数,且a·a=-12,a+a=-4,则S为()20n4763A.180 B.-180 C.90 D.-90考查等差数列的运用.2+4xxa联立,即,a是方程4与a·a=-12【解析】由等差数列性质,a+a=a+a=-77674333-12=0的两根,又公差d>0,∴a>aa=2,a=-6,从而得a=-10,d=2,S=180.?2033771【答案】A 8.现有200根相同的钢管,把它们堆放成正三角形垛,要使剩余的钢管尽可能的少,那么剩余钢管的根数为()A.9 B.10 C.19 D.29考查数学建模和探索问题的能力.n(n?1)<200.【解析】1+2+3+…+n<200,即220?19 根.n=20时,剩余钢管最少,此时用去=190显然2【答案】B9.由公差为d的等差数列a、a、a…重新组成的数列a+a,a+a,a+a…是()611524233A.公差为d的等差数列B.公差为2d的等差数列C.公差为3d的等差数列D.非等差数列考查等差数列的性质.【解析】(a+a)-(a+a)=(a-a)+(a-a)=2d.(a+a)-(a+a)=(a-3456422235151a)+(a-a)=2d.依次类推.562【答案】B10.在等差数列{a}中,若S=18,S=240,a=30,则n的值为()-49nnn A.14 B.15 C.16 D.17考查等差数列的求和及运用.9(a?a)91??2(a+4d)=4.【解析】S=18=a+a=491912)n(a?a n1.=16n=240S+4d=2,又a=a+4d.∴=a∴-nn4n12∴n=15.【答案】B二、填空题(本大题共4小题,每小题4分,共16分)2a2*n),则是这个数列的第_________项.(n∈N=1.在数列11{a}中,a,a=+1nn1a?27n考查数列概念的理解及观察变形能力.111111+,∴{}是以=1【解析】由已知得=为首项,公差d=的等差数列.aaaa221n1?nn1221=1+(n-1),∴a=∴=,∴n=6.n a?172n n【答案】612.在等差数列{a}中,已知S=10,S=100,则S .=_________11010100n考查等差数列性质及和的理解.?a+a=-2.(a+a)=-90=45S-S=a+a+…+a(a+a)=45【解析】11010010011010011111110121(a+a)×110=-=S110.11011102【答案】-11013.在-9和3之间插入n个数,使这n+2个数组成和为-21的等差数列,则n=_______.考查等差数列的前n项和公式及等差数列的概念.(n?2)(?9?3),∴n=5.【解析】-21=25【答案】Sa2n n11=_________.,若=,则、14.等差数列{a},{b}的前n项和分别为ST nnnn bT3n?111n 考查等差数列求和公式及等差中项的灵活运用.(a?a)21(a?a)211211aS2?2121221121???.==【解】(b?b)21(b?b)bT3?21?13212112121112221 【答案】32三、解答题(本大题共5小题,共54分.解答应写出文字说明、证明过程或演算步骤)15.(本小题满分8分)若等差数列5,8,11,…与3,7,11,…均有100项,问它们有多少相同的项?考查等差数列通项及灵活应用.【解】设这两个数列分别为{a}、{b},则a=3n+2,b=4n-1,令a=b,则3k+2=4m-1.mnnnnk∴3k=3(m-1)+m,∴m被3整除.*),则k=4p-1=3p(p∈N.设m∵k、m∈[1,100].则1≤3p≤100且1≤p≤25.∴它们共有25个相同的项.16.(本小题满分10分)在等差数列{a}中,若a=25且S=S,求数列前多少项和最大.179n1考查等差数列的前n项和公式的应用.9?(9?1)17(17?1)d=1725+×25+d ×S【解】∵S=,a=25,∴9191722n(n?1)2+169.-13)n(-n,∴d解得=-2S=25+2)=-(n2由二次函数性质,故前13项和最大.注:本题还有多种解法.这里仅再列一种.由d=-2,数列a为递减数列.n a=25+(n-1)(-2)≥0,即n≤13.5.n∴数列前13项和最大.2-5nn+4,问.17(本小题满分12分)数列通项公式为a=n(1)数列中有多少项是负数?(2)n为何值时,a有最小值?并求出最小值.n考查数列通项及二次函数性质.2-5n+4<0,解得1<na【解】(1)由为负数,得n<4.n*项.3项和第2项为负数,分别是第2,即数列有3或=2n,故N∈n∵.59522)-,∴对称轴为n=n+4=(n-=2.(2)∵a=n5 -5n242*2-5×2+4=-2.或n=3时,a 有最小值,最小值为2又∵n∈N,故当n=2n18.(本小题满分12分)甲、乙两物体分别从相距70 m的两处同时相向运动,甲第一分钟走2 m,以后每分钟比前1分钟多走1 m,乙每分钟走5 m.(1)甲、乙开始运动后,几分钟相遇.(2)如果甲、乙到达对方起点后立即折返,甲继续每分钟比前1分钟多走1 m,乙继续每分钟走5 m,那么开始运动几分钟后第二次相遇?考查等差数列求和及分析解决问题的能力.n(n?1)+51次相遇,依题意得2n+n=70 【解】(1)设n分钟后第22+13n-140=0,解得:n=7,n=-20(舍去)整理得:n∴第1次相遇在开始运动后7分钟.n(n?1)+5n+n=3×70 (2)设n分钟后第2次相遇,依题意有:222+13n-6×70=0,解得:n=15或n整理得:n=-28(舍去)第2次相遇在开始运动后15分钟.1.a=n≥2),(n项和为S,且满足a+2S·S=019.(本小题满分12分)已知数列{a}的前1nnnnn1-21}是等差数列;)求证:{ (1S n(2)求a表达式;n222<1.b +…n≥2),求证:b++b(3)若b=2(1-n)a(nn23n考查数列求和及分析解决问题的能力.【解】(1)∵-a=2SS,∴-S+S=2SS(n≥2)1nn1nn1nnn---11111-=2,又==2,∴{}是以S≠0,∴2为首项,公差为2的等差数列.n aSSSS11nnn1?11=2+(n-1)2=2n,∴S= (2)由(1)n Sn2n1当n≥2 时,a=S-S=-1nnn-)n?1(2n1?(n?1)?12?=a S=,∴n=1时,a=?n1112?-(n?2)?2n(n-1)?1 a=-(1n))由((32)知b=2nn n111111222++…++b=…+<++…+ bb ∴+n32222n)(n?1n332?21?2.111111)+(-)+…+(-)=1-(=1-<1.nn1?n322.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必修5数列单元质量检测题
(时间120分钟,满分150分)
一、选择题(每小题5分,共计60分) 1.数列252211,,,,
的一个通项公式是( ) A. 33n a n =- B. 31n a n =- C. 31n a n =+ D. 33n a n =+ 2. 已知数列{}n a ,13a =,26a =,且21n n n a a a ++=-,则数列的第五项为( )
A. 6
B. 3-
C. 12-
D. 6- 3. 2005是数列7,13,19,25,31,,中的第( )项.
A. 332
B. 333
C. 334
D. 335
4. 在等差数列{}n a 中,若45076543=++++a a a a a ,则=+82a a ( )
A.45
B.75
C. 180
D.300
5. 一个首项为23,公差为整数的等差数列,如果前六项均为正数,第七项起为负数,则它的公差是( )
A.-2
B.-3
C.-4
D.-5
6. 在等差数列{a n }中,设公差为d ,若S 10=4S 5,则d
a
1等于(
)
A. 21
B.2
C. 4
1
D.4
7. 设数列{a n }和{b n }都是等差数列,其中a 1=25,b 1=75,且a 100+b 100=100,则数列
{a n +b n }的前100项之和是(
)
A.1000
B.10000
C.1100
D.11000
8.已知等差数列{a n }的公差d =1,且a 1+a 2+a 3+…+a 98=137,那么a 2+a 4+a 6+…+a 98的值等于( )
A.97
B.95
C.93
D.91
9.在等比数列{a n }中,a 1=1,q ∈R 且|q |≠1,若a m =a 1a 2a 3a 4a 5,则m 等于( )
A.9
B.10
C.11
D.12
10. 公差不为0的等差数列{a n }中,a 2、a 3、a 6依次成等比数列,则公比等于( )
A. 2
1
B. 31
C.2
D.3
11. 若数列{a n }的前n 项和为S n =a n -1(a ≠0),则这个数列的特征是(
)
A.等比数列
B.等差数列
C.等比或等差数列
D.非等差数列
12. 等差数列{a n }和{b n }的前n 项和分别为S n 与Tn ,对一切自然数n ,都有n
n T S =132+n n
,
则5
5b a
等于(
) A.32 B. 149 C. 3120 D. 17
11
二、填空题(每小题4分,共计16分)
13. 数列{a n }的前n 项和为S n =n 2+3n +1,则它的通项公式为 .
14. 已知{n
a 1
}是等差数列,且a 2=2-1,a 4=2+1,则a 10= .
15. 在等比数列中,若S 10=10,S 20=30,则S 30= .
16. 数列121,241,341
,416
1,…的前n 项和为 .
三、解答题:
17.(本小题满分12分)
已知等差数列{a n }中,S n =m ,S m =n (m ≠n ),求S m +n .
18.(本题满分12分)
设等差数列{a n }的前n 项和为S n ,已知a 3=12,S 12>0,S 13<0.求公差d 的取值范围.
19. (本题满分12分)
已知等差数列{a n}中,a1=29,S10=S20,问这个数列的前多少项和最大?并求此最大值. 20.(本题满分12分)
设a1=5,a n
+1
=2a n+3(n≥1),求{a n}的通项公式.
21.(本题满分12分)
求和:1+
5
4
+
2
5
7
+…+
1
5
2
3
-
-
n
n。