常见物质的表面张力

合集下载

常见物质的表面张力

常见物质的表面张力
2-氨基乙醇
51.11
0.1117
1,3,5-三甲苯
29.79
0.08966
1-氨基-2-甲基丙烷
24.48
0.1092
2,2,3-三甲基丁烷
20.70
0.09726
烯丙胺
27.49
0.1287
2,2,3-三甲基戊烷
22.46
0.08950

42.84
0.1107
2,2,4-三甲基戊烷
20.55
0.08876
33.91
0.1042
乙酸丙酯
26.60
0.1120
1,3-丙二醇
47.43
0.0903
乙酸异丙酯
24.44
0.1072
2-丙炔-1-醇
38.59
0.1270
乙酸丁酯
27.55
0.1068
丙 胺
24.86
0.1243
乙酸戊酯
27.66
0.09943
异丙胺
19.91
0.09719
乙酸异戊酯
26.75
0.0989
1-丁醇
27.18
0.08983
间氟代甲苯
32.31
0.1257
1-丁醛
26.67
0.0925
对氟代甲苯
30.44
0.1109
三乙醇胺
22.70
0.0992
氟代苯
29.67
0.1204
1,2,3-三甲苯
30.91
0.1040
2,2’-氧代二乙醇
46.97
0.0880
1,2,4-三甲苯
31.76
0.1025
异丙基苯

常见物质的表面张力

常见物质的表面张力
18.29
0.0990
戊 腈
29.28
0.0937
2,3-二甲基丁烷
19.38
0.09998
2-戊酮
24.89
0.06547
2,3-二甲基丁醇
26.22
0.0992
3-戊酮
27.36
0.1047
N,N-二甲基苯胺
38.14
0.1049
1-戊酸
28.90
0.0887
二甲基胺
29.50
0.1265
1-戊醇
28.68
0.0993
二乙醚
18.92
0.0908
丙酸甲酯
27.58
0.1258
二丁胺
26.50
0.0952
丙酸乙酯
26.72
0.1168
二丁基醚
24.78
0.0934
1-丙醇
25.26
0.0777
邻二甲苯
32.51
0.1101
2-丙醇
22.90
0.0789
间二甲苯
31.23
0.1104
2,4-戊二酮
27.54
0.0874
2,3-二甲基戊烷
19.94
0.09565
2-戊醇
25.96
0.1004
2,4-二甲基戊烷
20.09
0.09715
四氢-2-呋喃甲醇
39.96
0.1008
二丙胺
24.86
0.1022
1,2,3,4-四氢萘
35.55
0.0954
二异丙胺
21.83
0.1077
1,1,2,2-四氯乙烷
35.43

常见物质的表面张力

常见物质的表面张力
异丙基苯
30.32
0.1054
乙酸酐
35.52
0.1436
丙烯腈
29.58
0.1178
乙酸烯丙酯
28.73
0.1186
2-丙烯-1-醇
27.53
0.0902
乙 醇
24.05
0.0832
丙 腈
29.63
0.1153
乙 醛
23.90
0.1360
丙 酮
26.26
0.112
二乙胺
22.71
0.1143
丙 酸
常见无机物的表面张力
Surface Tensions of Common Minerals
分子式
(Molecular formula)
表面张力
(Surface tension)
分子式
(Molecular formula)
表面张力
(Surface tension)
a/(dyn/cm)
b
/[dyn/(cm·℃)]
0.1158
己 烷
20.44
0.1022
硝基苯
46.34
0.1157
1-己烯
20.47
0.10271
邻硝基茴香醚
48.62
0.1185
己 腈
29.64
0.0907
2-硫杂丁烷
24.9
23.4
己二腈
47.88
0.0973
硫杂环戊烷
38.44
0.1342
1-己醇
27.81
0.0801
硫酸二甲酯
41.26
0.0983
对二氯苯
34.66
0.0879

水的表面张力

水的表面张力

水的表面张力水是地球上最常见的物质之一,它的独特之处在于其表面张力。

表面张力是指液体表面上作用在单位长度上的内聚力,它使得水的表面呈现出一种类似薄膜的性质。

本文将讨论水的表面张力的原理、影响因素以及在自然界和日常生活中的应用。

一、表面张力的原理水的表面张力是由于液体分子间的相互作用引起的。

水分子由一个氧原子和两个氢原子组成,氧原子带有部分负电荷,而氢原子则带有部分正电荷。

由于这种不对称分布,水分子之间形成了较强的氢键。

在液面下方,分子间的引力平衡,导致内聚力相互抵消。

然而,液面上方的分子面临着向液体内部的引力不足以与其他分子相互抵消的情况,因此形成了向下的拉力,使液面尽可能小化,从而产生表面张力。

二、影响表面张力的因素1. 温度:温度是影响表面张力的重要因素。

一般来说,随着温度的升高,分子的平均动能增加,分子之间的相互作用减弱,导致表面张力降低。

2. 杂质:杂质的存在会破坏液面上水分子间的相互作用,从而降低表面张力。

3. 溶质的浓度:当水溶液中溶质含量增加时,溶质分子会与水分子竞争占据表面位置,增加了表面张力。

但是当溶质浓度极高时,由于表面活性剂的存在,表面张力会降低。

4. 外界应力: 外界的压力或拉伸力会影响水的表面张力,例如在吸管中吸水时,人的肺部产生的负压将引起液体的上升,并降低表面张力。

三、水的表面张力在自然界中的应用1. 水面昆虫:部分昆虫能在水面行走,其中一个关键因素就是水的表面张力。

昆虫体表覆盖着一层蜡质,可以减小它们与水接触的表面积,从而减小了与水发生相互作用的力,使其能够在水面行走。

2. 水滴和雨滴:水的表面张力使得水滴呈球形。

在无外界力的作用下,水滴的表面积趋向最小值,而球形形状正好能够实现这一点。

此外,雨滴的形成也与表面张力有关,当足够多的水蒸汽凝聚成液态水,形成一个小水滴时,它的自身表面张力将使其保持为一个球形,直到重力使其下落。

3. 植物的输送:水的表面张力能够使水在植物体内部上升,帮助植物输送水分和营养物质。

常见物质的表面张力

常见物质的表面张力
1-丁硫醇
28。07
0.1142
草酸二乙酯
34。32
0。1119
2—丁酮
26.77
0。1122
哌 啶
31.79
0。1153
丁 酸
28。35
0.0920
癸 烷
25.67
0。09197
丁酸甲酯
27。48
0。1145
1-癸烯
25.84
0。09190
丁酸乙酯
26.55
0.1045
1-癸醇
30.34
0。07324
氰乙酸甲酯
41。32
0。1074
水杨酸乙酯
41。00
0。1091
氰乙酸乙酯
38。80
0。1092
水杨醛
45.38
0。1242
氯乙酸
43.27
0。1117
壬 烷
24.72
0。09347
1-氯丁烷
25.97
0.1117
1-壬烯
24。90
0.09379
2—氯丁烷
24.40
0.1118
1—壬醇
29.79
0。07589
27。54
0.0874
2,3-二甲基戊烷
19.94
0.09565
2-戊醇
25。96
0。1004
2,4—二甲基戊烷
20。09
0。09715
四氢—2-呋喃甲醇
39.96
0。1008
二丙胺
24。86
0.1022
1,2,3,4-四氢萘
35。55
0。0954
二异丙胺
21.83
0。1077
1,1,2,2—四氯乙烷

水的表面张力和浮力

水的表面张力和浮力

水的表面张力和浮力水是地球上最常见的物质之一,它的独特性质不仅影响着自然界的环境平衡,也给我们的日常生活带来了诸多便利。

在这些性质中,水的表面张力和浮力是两个重要的特点,值得我们深入探讨和了解。

一、水的表面张力水的表面张力是指水分子吸引力在水表面形成的张力。

这种张力使得水的表面层比水的深层更难被破坏。

当我们在水的表面放置一张悬挂的针或者蚊子,不会立即下沉,这就是表面张力的作用。

表面张力有许多有趣的现象,其中一种是水滴在表面上形成球形。

这是因为水分子在表面附近的受力较大,相互间的吸引力形成一个凸面,使得水滴的形状变为球状,以减少表面积。

这也是为什么水滴在玻璃上能够如此轻松地滑动的原因。

除此之外,水的表面张力还对一些昆虫的行为有影响。

例如,水黾、浮游生物等昆虫和小生物可以在水表面行走,甚至是在水面上筑巢。

这些生物之所以能够实现这一行为,正是因为水的表面张力能够支持它们的体重。

二、水的浮力水的浮力是指水对物体产生的向上推的力。

这是由于水的密度相对较大,当物体浸入水中时,水的分子会对物体施加一个向上的压力,从而产生浮力。

根据阿基米德定律,物体所受到的浮力等于物体排出的液体的重量。

这就是为什么密度较大的物体会在水中下沉,而密度较小的物体则会浮在水面上的原因。

当一个物体的密度等于水的密度时,物体将会悬浮在水的表面,这被称为浮力平衡。

浮力不仅对于物理实验和科学研究有重要作用,也在我们的日常生活中起着推动力和支撑力的作用。

例如,游泳时我们能够浮在水面上就是因为水对我们产生了浮力。

另外,使用救生衣、气球等器具也是利用了浮力的原理。

结语水的表面张力和浮力是水独特性质的体现,它们的存在和作用对于生物和人类的生活都具有重要意义。

通过了解和研究这些性质,不仅可以拓宽我们的知识面,也可以更好地利用和保护水资源。

水是地球上的宝贵财富,我们应该懂得如何正确地利用和保护它。

化工原理不同材料表面张力

化工原理不同材料表面张力

化工原理不同材料表面张力人们在粘结两种材料时先要选择粘合剂,而选择粘合剂的种类的主要依据之一就是选择彼此间表面张力尽量的接近,粘合剂与被粘合材料的表面张力越接近越好;另外与表面张力近似的概念就是表面能,表面张力往往形容液体或者软物质,而表面能则多用来描述固体材料,今天我们整理一些常见材料的表面张力。

锌700℃时为538铝700℃时为750铜1150℃为1255铁1550℃为1850氧化铝2100℃为700氧化铁1370℃为595玻璃1000℃为220至245张力单位为mN/m下面是20℃时的表张(单位mN/m)水72.7苯28.9乙醇22.8丙酮23.7甲苯28.4已烷18.4苯酚40.9氯仿27.2纤维素45醋酸乙酯24尼龙66为46硅橡胶20PVC39聚氟乙烯28聚四氟乙烯18聚全氟丙烯16PE聚乙烯31PS苯乙烯33丙烯酸树脂39PET43环氧树脂47EVA乳液38酚醛树脂78脲醛树脂70聚氨酯树脂39以上数据不一定准确,更不是亲自测试,仅供参考。

从这些数据依稀可以看出来,从分子角度看极性大分子的往往张力也较大,也因此水性的很多涂料如聚氨酯水胶要多想办法降低表面张力来提高润湿性或铺展性,因为水的表面张力都大于常见的溶剂;而对于固体材料来说往往越硬熔点越高则表面能也越大,越硬其实也可以理解为分子极性越大,越刚,分子间越不易滑动,从这个角度它们都是统一的。

为什么会有液体表面张力?从微观上观察,液体表面内一薄层中的分子与液体内部分子受力情况是不一样的,这一薄层液体称为表面层。

我们知道,液体分子之间的距离比气体分子间的距离小得多,可以认为,液体分子基本上是彼此接触在一起的。

分子力与距离的关系如下图所示,存在一个平衡点。

在平衡点以内,分子间有强大的排斥力,而在平衡点稍外,则有随距离缓慢增加的吸引力。

通常在液体内部,分子间的平均距离略小于平衡距离,分子相互挤压,形成压力。

然而在表面层内情况就不一样了,在这里分子间的平均距离略大于平衡距离,分子相互吸引形成张力。

常见物质的表面张力

常见物质的表面张力
0。1011
乙氧基苯
35.17
0.1104
间甲酚
38。00
0。09237
乙基环己烷
27.78
0。1054
对甲酚
38.58
0.0962
2,2-(亚乙基二氧基)二乙醇
47.33
0.0880
甲酰胺
59.13
0.0842
乙 腈
29。58
0。1178
甲 酸
39.87
0.1098
乙酸乙酰甲酯
34.98
0.0944
27。54
0。0874
2,3-二甲基戊烷
19。94
0.09565
2-戊醇
25.96
0。1004
2,4—二甲基戊烷
20。09
0。09715
四氢—2-呋喃甲醇
39。96
0。1008
二丙胺
24.86
0.1022
1,2,3,4—四氢萘
35.55
0。0954
二异丙胺
21.83
0.1077
1,1,2,2—四氯乙烷
0.1158
己 烷
20.44
0。1022
硝基苯
46。34
0。1157
1—己烯
20.47
0.10271
邻硝基茴香醚
48。62
0.1185
己 腈
29。64
0。0907
2-硫杂丁烷
24.9
23.4
己二腈
47.88
0.0973
硫杂环戊烷
38.44
0。1342
1—己醇
27.81
0。0801
硫酸二甲酯
41.26
常见无机物的表面张力
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
联环己烷
丁基苯
环己胺
仲丁基苯
环己烯
叔丁基苯
环己酮
丁基乙基醚
环己醇
丁腈
环戊烷
1-丁硫醇
草酸二乙酯
2-丁酮
哌啶
丁酸
癸烷
丁酸甲酯
1-癸烯
丁酸乙酯
1-癸醇
1-丁醇
间氟代甲苯
1-丁醛
对氟代甲苯
三乙醇胺
氟代苯
1,2,3-三甲苯
2,2’-氧代二乙醇
1,2,4-三甲苯
2-氨基乙醇
1,3,5-三甲苯
1-氨基-2-甲基丙烷
常见物质的表面张力
常见无机物的表面张力
Surface Tensions of Common Minerals
分子式
(Molecular formula)
表面张力
(Surface tension)
分子式
(Molecular formula)
表面张力
(Surface tension)
a/(dyn/cm)
2-戊醇
2,4-二甲基戊烷
四氢-2-呋喃甲醇
二丙胺
1,2,3,4-四氢萘
二异丙胺
1,1,2,2-四氯乙烷
二丙基醚
四氯化碳
二异丙醚
1,1,2,2,-四溴乙烷
二戊基醚
肉桂酸乙酯
二异戊醚
辛烷
二卞胺
1-辛烯
二苯基醚
辛腈
1,4-二氧六烷
1-辛醇
二硫化碳
2-辛醇
1,1-二氯乙烷
吡啶
1,2-二氯乙烷
吡咯
二(2-氯乙基)醚
喹啉
马来酸二丁酯
DL-α-蒎烯
五氯乙烷
L-β-蒎烯
水杨酸甲酯
氰乙酸甲酯
水杨酸乙酯
氰乙酸乙酯
水杨醛
氯乙酸
壬烷
1-氯丁烷
1-壬烯
2-氯丁烷
1-壬醇
邻氯甲苯
甲苯
1-氯-2-甲基丙烷
邻甲苯胺
1-氯丙烷
间甲苯胺
2-氯丙烷
对甲苯胺
3-氯-1-丙烯
2-甲氧基乙醇
1-氯戊烷
甲氧基苯
氯仿
2-甲基丁烷
氯苯
3-甲基丁酸
邻氯苯胺
b
/[dyn/(cm·℃)]
a/(dyn/cm)
b
/[dyn/(cm·℃)]
Ar
N2
AsBr3
NO
AsCl3
N2O
BBr3
NOCl
BF3
NOF
B2H6
NO2F
Br2
O2
BrF3
PBr3
BrF5
PCl3
ClF3
PI3
ClO3F
POCl3
CO
PSCl3
COCl2
S2Cl2
(二聚物)
COS
SF4
DH
SF
F2
3-甲基丁酸乙酯
1-氯-2,3-环氧丙烷
2-甲基-2-丁醇
邻氯酚
3-甲基-1-丁醇
对氯酚
2-甲基己烷
1-氯萘
3-甲基己烷
溴乙烷
2-甲基丙基甲酸酯
1-溴丁烷
1-甲基丙基乙酸酯
2-溴丁烷
2-甲基丙基乙酸酯
1-溴己烷
2-甲基-1-丙醇
邻溴甲苯
2-甲基戊烷
1-溴丙烷
3-甲基戊烷
2-溴丙烷
4-甲基戊腈
溴苯
2-甲基-1-戊醇
2,2,3-三甲基丁烷
烯丙胺
2,2,3-三甲基戊烷

2,2,4-三甲基戊烷
硝基甲烷
三氟乙酸
硝基乙烷
1,1,1-三氯乙烷
1-硝基-2-甲氧基苯
1,1,2-三氯乙烷
1-硝基丙烷
三溴甲烷
2-硝基丙烷
己烷
硝基苯
1-己烯
邻硝基茴香醚
己腈
2-硫杂丁烷
己二腈
硫杂环戊烷
1-己醇
硫酸二甲酯
马来酸二甲酯
硫酸二乙酯
马来酸二乙酯
苄基氯
1,2-二氯丙烷
庚烷
1,3-二氯丙烷
1-庚烯
间二氯苯
乳酸乙酯
对二氯苯
苯乙腈
1,2-二溴乙烷
苯乙酮
二氯甲烷
苯甲腈
二溴甲烷
苯甲酰氯
二碘甲烷
苯甲酸甲酯
十一碳烷
苯甲酸乙酯
十二碳烷
苯甲酸苄酯
1-十二烷醇
苯甲醇
十三碳烷
苯甲醛
1-十三碳烯
苯胺
丁二腈,琥珀腈
苯酚
1-丁胺
苯硫醇
2-丁胺
苯酸丙酯
异丁胺环Βιβλιοθήκη 烷2-丁氧基乙醇1-溴萘
3-甲基-1-戊醇
碘代甲烷
4-甲基-1-戊醇
碘代乙烷
2-甲基-2-戊醇
1-碘代丙烷
3-甲基-2-戊醇
2-碘代丙烷
4-甲基-2-戊醇
碘代苯
2-甲基-3-戊醇
碳酸二乙酯
3-甲基-3-戊醇
噻吩
甲基环己烷
糠醛
顺-2-甲基环己醇
磷酸三丁酯
顺-3-甲基环己醇
-
-
-
丙酸
二乙醚
丙酸甲酯
二丁胺
丙酸乙酯
二丁基醚
1-丙醇
邻二甲苯
2-丙醇
间二甲苯
2,4-戊二酮
对二甲苯
戊烷
二(2-甲氧基乙基)醚
1-戊烯
二甲氧基甲烷
顺-2-戊烯
1,2-二甲氧基苯
反-2-戊烯
2,2-二甲基丁烷
戊腈
2,3-二甲基丁烷
2-戊酮
2,3-二甲基丁醇
3-戊酮
N,N-二甲基苯胺
1-戊酸
二甲基胺
1-戊醇
2,3-二甲基戊烷
(Surface tension)
名称(Name)
表面张力
(Surface tension)
a
/(dyn/cm)
b
/[dyn/(cm·℃)]
a
/(dyn/cm)
b
/[dyn/(cm·℃)]
1,2-乙二胺
顺-4-甲基环己醇
1,2-乙二醇
甲基环戊烷
乙苯
2-甲基吡啶
2-乙氧基乙醇
邻甲酚
乙氧基苯
间甲酚
乙基环己烷
SO2
GaCl3
SOCl2
HBr
SO2Cl2
HF
SbCl3
H2O2
SbF5
H2S
SeF4
H2Se
SiCl4
H2Te
SiHCl3
Hg
SnCl4
IF5
UF6
Kr
-
-
-
常见有机化合物的表面张力
Surface Tensions of Common Organic Substances
名称(Name)
表面张力
对甲酚
2,2-(亚乙基二氧基)二乙醇
甲酰胺
乙腈
甲酸
乙酸乙酰甲酯
甲酸甲酯
乙酰乙酸乙酯
甲酸乙酯
乙酰胺
甲酸丙酯
乙酸
甲酸丁酯
乙酸甲酯
甲醇
乙酸乙酯
丙二酸二乙酯
乙酸丙酯
1,3-丙二醇
乙酸异丙酯
2-丙炔-1-醇
乙酸丁酯
丙胺
乙酸戊酯
异丙胺
乙酸异戊酯
异丙基苯
乙酸酐
丙烯腈
乙酸烯丙酯
2-丙烯-1-醇
乙醇
丙腈
乙醛
丙酮
二乙胺
相关文档
最新文档