水表面张力介绍
水表面张力介绍

水表面张力介绍表面张力表面张力,是液体表面层由于分子引力不均衡而产生的沿表面作用于任一界线上的张力。
通常,处于液体表面层的分子较为稀薄,其分子间距较大,液体分子之间的引力大于斥力,合力表现为平行于液体界面的引力。
表面张力是物质的特性,其大小与温度和界面两相物质的性质有关。
1基本信息多相体系中相之间存在着界面(interface)。
习惯上人们仅将气-液,气-固界面称为表面(surface)。
表面张力,是液体表面层由于分子引力不均衡而产生的沿表面作用于任一界线上的张力。
将水分散成雾滴,即扩大其表面,有许多内部水分子移到表面,就必须克服这种力对体系做功——表面功。
显然这样的分散体系便储存着较多的表面能(surface energy)。
2相关数据在293K下水的表面张力系数为72.75×10-3N·m-1,乙醇为22.32×10-3N·m-1,正丁醇为24.6×10-3N·m-1,而水-正丁醇(4.1‰)的界面张力为34×10-3N·m-1。
表面张力的测值通常有多种方法,实验室及教科书中,通常采用的测试方法为最大气泡压法。
由于其器材易得,操作方法相对易于学生理解表面张力的原理,因而长期以来是教学的必备方法。
作为表面张力测试仪器的测试方法,通常有白金板法(du Nouy method)\白金环法(Wilhelmy plate method)\悬滴法\滴体积法\最大气泡压法等。
3测定方法(1)表面张力法。
表面张力测定法适合于离子表面活性剂和非离子表面活性剂临界胶束浓度的测定,无机离子的存在也不影响测定结果。
在表面活性剂浓度较低时,随着浓度的增加,溶液的表面张力急剧下降,当到达临界胶束浓度时,表面张力的下降则很缓慢或停止。
以表面张力对表面活性剂浓度的对数作图,曲线转折点相对应的浓度即为CMC。
如果在表面活性剂中或溶液中含有少量长链醇、高级胺、脂肪酸等高表面活性的极性有机物时,溶液的表面张力-浓度对数曲线上的转折可能变得不明显,但出现一个最低值(图2—15)。
水 表面张力

水表面张力水表面张力是流体力学中一个重要的概念,也是科学家研究传递、扩散、混合、热传导等物理过程的基础。
它描述了水表面的一种特殊性质,即当水表面拉伸或压缩时,水表面会产生一种抗力,其大小与表面形状相关。
水表面张力是由水分子之间的范德华力所致,它的特殊性质在于,当水分子被拉伸时,会有一种抗力,来阻止分子之间的距离增加。
因此,水表面受到的外力会被水表面张力所反弹,产生一种抵抗力,而这种抵抗力正是水表面张力。
水表面张力在一定程度上影响了一些重要的现象,比如气泡的稳定性、表面的弯曲性、液滴的形状及流体的稳定性等。
它与物体的漂浮、流体的拖曳力、表面活动物质的传播以及液态膜的形成等也有关系。
水表面张力的大小与表面的形状有关,形状越简单,水表面张力越大,它也与水的温度、盐分以及pH值有关,随着这些因素的变化,水表面张力也会发生变化。
水表面张力对流体力学有重要意义,简单来说,它决定了液体表面的形状,从而影响着物体的漂浮、流体的拖曳力、表面活动物质的传播以及液态膜的形成等。
此外,它还可以用来解释水滴的形成和电解质分离现象,以及气泡的稳定性和表面弯曲性等。
同时,水表面张力也是传热的重要原因之一,即流体表面的张力会影响表面的温度,从而影响传热率。
此外,由于水表面张力的特性,当水表面受到外力时,水表面会产生一种抗力,来阻止水分子之间的距离的变化,这就是所谓的抵抗力,也是水表面张力的来源。
最后,水表面张力还可以用来描述液体的稳定性,当外力施加在液体上时,水表面张力会影响液体的稳定性,从而影响流体的流动、扩散和混合等现象。
当水表面张力越小时,液体的稳定性越高,液体的拖曳力越大,流动速度也会更快。
总之,水表面张力是流体力学中一个重要的概念,是科学家研究传递、扩散、混合、热传导等物理过程的基础。
它影响着液体表面现象,物体的漂浮、流体的拖曳力、表面活动物质的传播以及液态膜的形成等。
它也可以用来说明气泡的稳定性、表面的弯曲性、液滴的形状及流体的稳定性等,进而提高科学家对水表面张力的了解,以便做出更好的分析和应用。
水 表面张力

水表面张力
水表面张力是一种物理现象,即水的表面将比低于它的其他部分的内部能量抗拒任何外部力量的试图使其改变形状的潜在力。
它经常被描述为水的表面被加了一层“薄膜”,抵抗任何外部力量,所以它
容易形成小的液滴。
水表面张力是由水分子之间的强烈的空间和电荷相互作用所产
生的。
水分子之间有两种相互作用:电荷相互作用和局部刚性力学力。
它们存在于水分子之间的相互作用证明,这是水表面张力的原因。
被称为“超级膜”的受电荷作用的表面膜的存在使水的表面能够抵抗从任何外部源传来的任何改变其形状的力量。
水表面张力的功能之一就是使水变成小的液滴,当水从喷射器中以极高的压力喷射时,由于水的表面能量抵抗外部力的作用,所以水液滴会形成一个圆形的表面。
这种形状可以帮助水更容易地运输一些其他物质,如间接处理水中的成分。
另外,水表面张力还可以用来提高湿地,湖泊和河流的水质,从而保护水生物的环境。
此外,水表面张力也用于制作美丽的装饰品,比如水晶灯。
水表面张力让水滴变成各种漂亮的形状,这种形状可以像宝石般反光,这样就可以制造出绚丽的照明效果。
最后,水表面张力在科学实验中也有重要的应用。
例如,它可以用于实施特殊的染色和苗圃育种研究,因为它可以限定实验中液滴的大小,而且液滴可以在染色和培育过程中稳定保持形状。
总而言之,水表面张力是由空间和电荷的相互作用所产生的力量,
它具有多种应用,可以改善我们的生活,改变我们的工作效率和实验研究,并保护我们的环境。
它将继续在履行新的作用,以促进我们的发展。
水的表面张力

水的表面张力水是地球上最常见的物质之一,它的独特之处在于其表面张力。
表面张力是指液体表面上作用在单位长度上的内聚力,它使得水的表面呈现出一种类似薄膜的性质。
本文将讨论水的表面张力的原理、影响因素以及在自然界和日常生活中的应用。
一、表面张力的原理水的表面张力是由于液体分子间的相互作用引起的。
水分子由一个氧原子和两个氢原子组成,氧原子带有部分负电荷,而氢原子则带有部分正电荷。
由于这种不对称分布,水分子之间形成了较强的氢键。
在液面下方,分子间的引力平衡,导致内聚力相互抵消。
然而,液面上方的分子面临着向液体内部的引力不足以与其他分子相互抵消的情况,因此形成了向下的拉力,使液面尽可能小化,从而产生表面张力。
二、影响表面张力的因素1. 温度:温度是影响表面张力的重要因素。
一般来说,随着温度的升高,分子的平均动能增加,分子之间的相互作用减弱,导致表面张力降低。
2. 杂质:杂质的存在会破坏液面上水分子间的相互作用,从而降低表面张力。
3. 溶质的浓度:当水溶液中溶质含量增加时,溶质分子会与水分子竞争占据表面位置,增加了表面张力。
但是当溶质浓度极高时,由于表面活性剂的存在,表面张力会降低。
4. 外界应力: 外界的压力或拉伸力会影响水的表面张力,例如在吸管中吸水时,人的肺部产生的负压将引起液体的上升,并降低表面张力。
三、水的表面张力在自然界中的应用1. 水面昆虫:部分昆虫能在水面行走,其中一个关键因素就是水的表面张力。
昆虫体表覆盖着一层蜡质,可以减小它们与水接触的表面积,从而减小了与水发生相互作用的力,使其能够在水面行走。
2. 水滴和雨滴:水的表面张力使得水滴呈球形。
在无外界力的作用下,水滴的表面积趋向最小值,而球形形状正好能够实现这一点。
此外,雨滴的形成也与表面张力有关,当足够多的水蒸汽凝聚成液态水,形成一个小水滴时,它的自身表面张力将使其保持为一个球形,直到重力使其下落。
3. 植物的输送:水的表面张力能够使水在植物体内部上升,帮助植物输送水分和营养物质。
水的表面张力标准值

水的表面张力标准值水的表面张力是指水分子在水面上形成的一种薄膜状的力,使得水面呈现出一种类似弹性的特性。
这种特性使得水能够形成水滴、水珠等形状,并且在一定程度上影响着水的吸附、润湿等性质。
水的表面张力是由水分子之间的相互作用力所决定的,而这种相互作用力又受到温度、压力等因素的影响。
因此,水的表面张力并不是一个固定不变的数值,而是会随着环境条件的变化而发生变化的。
根据国际标准,水的表面张力的标准值在20摄氏度下约为0.072 N/m。
这个数值是在标准大气压下得出的,如果环境条件发生变化,比如温度、压力等因素发生变化,水的表面张力也会相应地发生变化。
在实际应用中,我们需要根据具体的环境条件来确定水的表面张力的数值,以便更好地进行相关的实验和应用。
水的表面张力对于很多领域都有着重要的影响,比如在生物学、化学、材料科学等领域都有着广泛的应用。
在生物学中,水的表面张力影响着植物的水分吸收和输送,以及昆虫在水面上行走的能力。
在化学中,水的表面张力影响着液体的润湿性和表面活性剂的应用。
在材料科学中,水的表面张力影响着涂层的涂布性能和材料的表面性质。
因此,了解水的表面张力的数值对于这些领域的研究和应用都具有着重要的意义。
除了了解水的表面张力的数值之外,我们还需要了解如何测量水的表面张力。
常见的测量方法包括测量水滴的形状、利用悬浮法测量水的表面张力、利用压降法测量水的表面张力等。
这些方法都可以用来测量水的表面张力,并且在实际应用中都有着一定的适用范围和精度。
通过这些测量方法,我们可以更准确地了解水的表面张力的数值,为相关领域的研究和应用提供更为准确的数据支持。
总的来说,水的表面张力是一个重要的物理性质,它对于很多领域都有着重要的影响。
了解水的表面张力的标准值,以及如何测量水的表面张力,对于相关领域的研究和应用都具有着重要的意义。
因此,我们需要重视对水的表面张力的研究,以便更好地发挥其在各个领域的作用。
同时,我们也需要注意到水的表面张力是会随着环境条件的变化而发生变化的,因此在实际应用中需要根据具体的环境条件来确定水的表面张力的数值。
水 表面张力

水表面张力水表面张力(SurfaceTension)是水中分子之间互相作用的结果,是一种力,它使水溶质分子形成液体表面的张力,使表面有某种不可抗拒的现象,因此被称为水表面张力。
它是液体内力的最重要的部分,它使液体表面看起来很平整,像一块做成的玻璃。
水表面张力是一种强大的力,它可以使物体悬浮在水表面上,而不会立即沉没下去。
这是由于水表面张力使水分子彼此吸引,所以悬浮物体会受到张力的支撑,不会立刻沉没到水底。
科学家在他们的实验中发现,当数据的重量超过一定的限度,水表面张力不足以支持悬浮物体,物体就会沉下去。
它也可以让液体的一小部分向上攀爬,形成一个液珠,这是由于水分子的张力使它们向液珠的最高点偏向,液珠可以悬挂在柱子或线上,不会滴下来。
水表面张力也可以影响温度。
研究表明,水表面张力会减少水的热导率,也就是水在表面上受热的能力不如在它内部受热的能力。
所以水的内部温度比水表面的温度高得多,有助于温度的平衡。
水表面张力也可以影响液体的电性质。
它可以影响电荷的分布,从而影响液体的pH值。
液体表面张力增加时,电荷分布会不均匀,从而使pH值发生变化。
另外,水表面张力也可以影响流体的流动性。
当水表面张力增大时,流速变慢,流量变小。
这是因为水表面张力可以抵消水流之间的摩擦,减小水的流动粘度,使流体流动减慢。
最后,水表面张力也可以影响液体的毛细管反应和表面活性剂的作用。
液体毛细管是一种微小的通道,可以用来输送小分子,由于水表面张力的存在,毛细管反应受到了影响,也会影响表面活性剂的作用,如洗涤剂和抗菌剂的作用也会受到影响。
总之,水表面张力是一种微小而又重要的力量。
它的作用主要体现在物体悬浮、液体温度、电荷分布、流体流动性以及液体毛细管反应和表面活性剂的作用上。
它的作用可以被用来研究许多物理、化学以及生化过程,也可以应用于日常生活中。
因此,水表面张力为人类的生活和科学研究提供了很多方便。
水的表面张力简单解释

水的表面张力简单解释
水的表面张力是指水的表面像一张弹性薄膜一样,由于液滴内的水分子之间的引力和水分子与表面分子之间的引力而形成的张力作用。
表面张力被广泛用于描述液体表面的物理现象。
它可用来解释小水滴如何形成圆形的表面,以及溶剂在油水界面建立桥接作用,使得液体能够渗入纤维状物质的表面等现象。
水的表面张力是由水分子之间的引力和水分子与表面分子之间的引力共同作用形成的。
当液滴内的水分子之间形成引力关系时,它们会产生张力作用,使液滴表面更加紧凑,形成圆形;此外,当水分子与表面分子之间发生氢键关联时,也会出现表面张力作用,促使液体渗入纤维状物质的表面。
总之,水的表面张力是指由水分子之间的引力和水分子与表面分子之间的引力共同作用形成的张力作用,它原本是水分子之间电性质的差异所致,能够起到把液体均匀地分布在表面上的作用,从而形成小水滴的圆形,使得溶剂能够渗入纤维状物质的表面等现象。
水 表面张力

水表面张力
水是我们生活中不可或缺的重要元素,而水表面张力也是水相关物理性质之一,它具有一定的重要性,能够影响水波的形成、水流的形成以及其他水动力相关的现象。
水表面张力是一种物理性质,它描述了一个物体在水面上表面(例如人的皮肤或水滴)之间的张力。
在水表面上,该张力类似于一层薄膜。
水表面张力的有效作用范围不仅限于水的表面,它也可以影响水深处的流动形式。
比如,只要水表面上有张力,水深处的流向就可以受到其影响。
这就是为什么水表面上的流动会呈现出“漩涡”和“涡流”的原因,这些流动是由水表面张力所束缚的。
水表面张力的另一个重要影响是它能够激发出复杂的水动力现象,例如流浪的水滴、静水的涡流,晃动的水草以及湍流等等。
这些现象都是由水表面张力产生的,对此,能够更全面地了解水表面张力的重要性及其对水的影响。
水表面张力的测量是一种有趣的研究。
自古以来,人们一直在尝试着研究水表面张力的影响范围、张力大小以及改变水表面张力的因素。
考虑到水表面张力的重要作用,科学家们发现它也能与气象有关,因此他们开始探索水表面张力在气象中的影响。
经过大量的研究,科学家们发现,水表面张力不仅会影响水体的形成,还会影响气象变化,从而影响我们的生活。
基于上述分析,可以清楚地看出,水表面张力是水相关物理性质中十分有趣的一项,它不仅影响水体的形成,还会影响气象变化等等,
对我们的生活也有着重要的作用。
如果我们能够更加深入地了解水表面张力,就能够更好地把握水相关物理性质,并且为气象研究提供有效的支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水表面张力介绍表面张力表面张力,是液体表面层由于分子引力不均衡而产生的沿表面作用于任一界线上的张力。
通常,处于液体表面层的分子较为稀薄,其分子间距较大,液体分子之间的引力大于斥力,合力表现为平行于液体界面的引力。
表面张力是物质的特性,其大小与温度和界面两相物质的性质有关。
1基本信息多相体系中相之间存在着界面(interface)。
习惯上人们仅将气-液,气-固界面称为表面(surface)。
表面张力,是液体表面层由于分子引力不均衡而产生的沿表面作用于任一界线上的张力。
将水分散成雾滴,即扩大其表面,有许多内部水分子移到表面,就必须克服这种力对体系做功——表面功。
显然这样的分散体系便储存着较多的表面能(surface energy)。
2相关数据在293K下水的表面张力系数为72.75×10-3N·m-1,乙醇为22.32×10-3N·m-1,正丁醇为24.6×10-3N·m-1,而水-正丁醇(4.1‰)的界面张力为34×10-3N·m-1。
表面张力的测值通常有多种方法,实验室及教科书中,通常采用的测试方法为最大气泡压法。
由于其器材易得,操作方法相对易于学生理解表面张力的原理,因而长期以来是教学的必备方法。
作为表面张力测试仪器的测试方法,通常有白金板法(du Nouy method)\白金环法(Wilhelmy plate method)\悬滴法\滴体积法\最大气泡压法等。
3测定方法(1)表面张力法。
表面张力测定法适合于离子表面活性剂和非离子表面活性剂临界胶束浓度的测定,无机离子的存在也不影响测定结果。
在表面活性剂浓度较低时,随着浓度的增加,溶液的表面张力急剧下降,当到达临界胶束浓度时,表面张力的下降则很缓慢或停止。
以表面张力对表面活性剂浓度的对数作图,曲线转折点相对应的浓度即为CMC。
如果在表面活性剂中或溶液中含有少量长链醇、高级胺、脂肪酸等高表面活性的极性有机物时,溶液的表面张力-浓度对数曲线上的转折可能变得不明显,但出现一个最低值(图2—15)。
这也是用以鉴别表面活性剂纯度的方法之一。
(2)电导法。
本法仅适合于表面活性较强的离子表面活性剂CMC的测定,以表面活性剂溶液电导率或摩尔电导率对浓度或浓度的平方根作图,曲线的转折点即CMC。
溶液中若含有无机离子时,方法的灵敏度大大下降。
(3)光散射法。
光线通过表面活性剂溶液时,如果溶液中有胶束粒子存在,则一部分光线将被胶束粒子所散射,因此测定散射光强度即浊度可反映溶液中表面活性剂胶束形成。
以溶液浊度对表面活性剂浓度作图,在到达CMC时,浊度将急剧上升,因此曲线转折点即为CMC。
利用光散射法还可测定胶束大小(水合直径),推测其缔合数等。
但测定时应注意环境的洁净,避免灰尘的污染。
(4)染料法。
一些有机染料在被胶团增溶时。
其吸收光谱与未增溶时发生明显改变,例如频那氰醇溶液为紫红色,被表面活性剂增溶后成为蓝色。
所以只要在大于CMC的表面活性剂溶液中加入少量染料,然后定量加水稀释至颜色改变即可判定CMC值。
采用滴定终点观察法或分光光度法均可完成测定。
对于阴离子表面活性剂,常用的染料有频那氰醇、碱性蕊香红G;阳离子表面活性剂可用曙红或荧光黄;非离子表面活性剂可用频那氰醇、四碘荧光素、碘、苯并紫红4B等。
采用染料法测定CMC可因染料的加入影响测定的精确性,尤其对CMC 较小的表面活性剂的影响更大,另外,当表面活性剂中含有无机盐及醇时,测定结果也不甚准确。
目前还有许多现代仪器方法测定CMC,如荧光光度法、核磁共振法、导数光谱法等。
[1]4详解定义①促使液体表面收缩的力叫做表面张力[2]。
②液体表面相邻两部分之间,单位长度内互相牵引的力。
单位表面张力的单位在SI制中为牛顿。
表面张力系数的单位在SI制中为牛顿/米(N/m),但仍常用达因/厘米(dyn/cm),1dyn/cm = 1*10-3N/m[1]。
说明①表面张力的方向和液面相切,并和两部分的分界线垂直,如果液面是平面,表面张力就在这个平面上。
如果液面是曲面,表面张力就在这个曲面的切面上。
②表面张力是分子力的一种表现。
它发生在液体和气体接触时的边界部分。
是由于表面层的液体分子处于特殊情况决定的。
液体内部的分子和分子间几乎是紧挨着的,分子间经常保持平衡距离,稍远一些就相吸,稍近一些就相斥,这就决定了液体分子不像气体分子那样可以无限扩散,而只能在平衡位置附近振动和旋转。
在液体表面附近的分子由于只显著受到液体内侧分子的作用,受力不均,使速度较大的分子很容易冲出液面,成为蒸汽,结果在液体表面层(跟气体接触的液体薄层)的分子分布比内部分子分布来得稀疏。
相对于液体内部分子的分布来说,它们处在特殊的情况中。
表面层分子间的斥力随它们彼此间的距离增大而减小,在这个特殊层中分子间的引力作用占优势。
因此,如果在液体表面上任意划一条分界线MN 把液面分成a、b两部分。
Fa表示a部分表面层中的分子对b部分的吸引力,Fb表示b部分表面层中的分子对a部分的吸引力,这两部分的力一定大小相等、方向相反。
这种表面层中任何两部分间的相互牵引力,促使了液体表面层具有收缩的趋势,由于表面张力的作用,液体表面总是趋向于尽可能缩小,因此空气中的小液滴往往呈圆球形状。
③表面张力F的大小跟分界线MN的长度成正比。
可写成F=σL或σ=F/L。
比值σ叫做表面张力系数,它的单位常用dyn/cm。
在数值上表面张力系数就等于液体表面相邻两部分间单位长度的相互牵引力。
液膜表面张力系数=液膜的表面能/液膜面积=F表面张力/(2*所取线段长)。
表面张力系数与液体性质有关,与液面大小无关。
5在自然界在自然界中,我们可以看到很多表面张力的现象和对张力的运用。
比如,露水总是尽可能的呈球型(题图),而某些昆虫则利用表面张力可以漂浮在水面上。
6实验例一这个实验,也可以说是一个关于表面张力的小游戏。
先找一个朋友和你一起来进行这个游戏,然后准备一杯水(把水加到杯子的边缘处,目视水至杯口齐平处),16枚1元的硬币(也可以更多)。
然后是这个游戏的规则,和朋友每人一次向杯子里轮流投放硬币,每次投放硬币数没有限制,可以一次放进1枚,可以2或3枚,或者更多,直到谁先把水溢出杯子为止。
投放硬币的时候用拇指和食指捏住硬币轻轻的放进盛满水的杯子。
其实这个实验也可以放入回形针等较小的物品(即苏教版物理初二上册的实验),起初回形针可能会浮在水面上,也可能会沉下去,但是在表面张力完好时杯中的水不会溢出,当表面张力小于回形针的作用力时,它就会被破坏,表现为水溢出。
例二用孔纸片托水材料:瓶子一个、大头针一个、纸片一张,有色水一满杯操作:1.在空瓶内盛满有色水。
2.用大头针在白纸上扎许多孔。
3.把有孔纸片盖住瓶口。
4.用手压着纸片,将瓶倒转,使瓶口朝下。
5.将手轻轻移开,纸片纹丝不动地盖住瓶口,而且水也未从孔中流出来。
讲解薄纸片能托起瓶中的水,是因为大气压强作用于纸片上,产生了向上的托力。
小孔不会漏出水来,是因为水有表面张力,水在纸的表面形成水的薄膜,使水不会漏出来。
这如同布做的雨伞,布虽然有很多小孔,仍然不会漏雨一样。
部分液体或固体的表面张力/表面能数据:(25度)理论纯净水(DI Water) 72 mN/m碳氢类表面活性剂(Hydrocarbon surfactant) 约35 mN/m聚硅氧烷类表面活性剂(Silicon Surfactant) 约25 mN/m氟碳氢类表面活性剂(Fluorinate surfactant) 约< 20 dynes/cm (0.01-0.1%)环氧树脂(Epoxy Resin) = 47 dynes/cm聚酰胺类聚合物(Polyamide)(尼龙)= 46 dynes/cm纤维素(Cellulose) = 45 dynes/cm聚酯类聚合物(PET Polymer) 约= 43 dynes/cm聚氯乙烯类聚合物(Polyvinyl Chloride Polymer) 约= 39 dynes/cm聚丙烯酸酯类聚合物(Poly acrilic polymer) 约= 35 dynes/cm聚乙烯类聚合物(Poly stylene polymer) 约= 33 dynes/cm聚胺脂类聚合物(Poly urithane polymer) 约= 30 dynes/cm矽胶类聚合物(Silicon polymer) 约= 24 dynes/cmTeflon = 18 dynes/cm(摘录自美国杜邦化学数据,中译或有错误,请网友指正。
)例三准备一盆清水和一根绣花针,将针小心翼翼地,水平地,放在平静的水面,针就会浮着啦。
这是因为水分子紧紧地结合在一起,产生了表面张力,把针给“撑”了起来。
拿起洗清液,往水里一挤,针沉下去了,因为洗清液破坏了表面张力,所以针沉了。
例四准备一根细长的木棍或牙签,用小刀雕刻成独木舟的样子,在独木舟的一端沾上一点洗发水,再将它放在一盆清水中,不用任何动力,独木舟就自己走了起来。
这是因为在洗发水中含有表面活性剂,这些活性剂可以减弱水的表面张力,因此独木舟上沾有洗发水一端周围的水面张力减弱,而其另一端的张力不变,两端的张力差形成了对独木舟的推力,独木舟自然就会自己前进了。
7其它实验塑料薄膜表面张力检测一、用BOPP单面胶带进行剥离检验将BOPP单面胶带粘贴在待测薄膜表面,压紧,而后再撕开。
如果薄膜的表面张力达到使用要求,那么剥离时很用力,而且声音小;相反则很容易剥离,并伴有"沙沙"声。
二、利用达因测试笔进行测试薄膜表面张力值符合要求时(BOPP:3.8x10-2N/m,PET:5.0x10-2N/m,尼龙:5.2x10-2N/m),测试笔划过的地方液痕均匀,无断痕,不收缩;否则测试液将收缩。
如果一部分收缩,一部分不收缩,说明处理得还不够。
值得一提的是,检测PET和尼龙时,需选用大一级的测试笔。
表面张力测试笔的常用规格有:3.8×10-2N/m、4.0×10-2N/m、4.2×10-2N/m、4.4×10-2N/m、4.8×10-2N/m (测铝箔用)、5.2x10-2N/m(测尼龙膜用) 6种。
三、自行配制表面张力测试液部分表面张力测试液配方见附表。
测试方法是用棉球蘸少许测试液涂布在处理面,判断方法与第2点大致相同。
处理后的薄膜不宜放置时间过长,最多放7天。
时间越长,表面张力值降低越明显。
如果需要放置较长时间,则在处理薄膜时,表面张力初期值要提高(2~4)×10-2N/m。