实验一光电二极管、光电三极管光照特性的测试

合集下载

光电二三极管特性测试实验报告

光电二三极管特性测试实验报告

光电二三极管特性测试实验报告1.实验目的:1.1掌握光电二三极管的基本概念和工作原理;1.2测试光电二三极管的特性曲线,并分析其特性参数;1.3确定光电二三极管的灵敏度和响应速度。

2.实验原理:光电二三极管是一种能将光能转化为电能的器件,由光敏电阻和PN 结构二极管构成。

当光照射到光敏电阻上时,电阻的值会发生变化,从而改变了二极管的电流和电压特性。

光电二三极管的响应速度较快,可以用于光电转换和光控开关等应用。

3.实验器材:3.1光源:可调节亮度的LED灯;3.2光电二三极管:选择适合实验的光电二三极管,如LS7180;3.3直流电源:提供稳定电压;3.4示波器:用于测量和观察电流和电压波形;3.5多用电表:用于测量电流和电压的值。

4.实验步骤:4.1搭建光电二三极管测试电路:将直流电源的正极连接到光电二三极管的阳极,负极连接到二极管的阴极,将示波器的探头连接到二极管的阳极和阴极之间,设置示波器的触发模式为自由触发。

4.2调节光源的亮度:将LED灯的亮度调节到适当的强度,使光照射到光电二三极管的光敏电阻上。

4.3测试静态特性:通过调节直流电源的电压,测量和记录不同电压下光电二三极管的电流和电压值,绘制出电流-电压特性曲线。

4.4测试动态特性:通过改变光源的亮度和频率,测量和记录光电二三极管的响应时间和灵敏度,分析其动态特性。

5.实验结果与讨论:5.1静态特性曲线图:根据实验数据绘制出光电二三极管的电流-电压特性曲线图,并进行分析。

通常光电二三极管处于正向偏置状态下工作,因此电流-电压曲线会呈现出非线性关系。

[插入电流-电压特性曲线图]5.2动态特性分析:根据实验数据和观察结果,分析光电二三极管的响应时间和灵敏度。

光电二三极管的响应时间较短,一般在微秒级别,灵敏度高,能够检测很低的光照强度变化。

6.实验结论:本实验通过测试光电二三极管的特性曲线和分析其特性参数,掌握了光电二三极管的基本工作原理和特性。

光电二三极管特性测试实验报告材料

光电二三极管特性测试实验报告材料

光电二三极管特性测试实验报告材料一、实验目的1.了解光电二三极管的结构和工作原理;2.熟悉光电二三极管的特性测试与分析方法;3.掌握光电二三极管的响应特性和光谱特性。

二、实验原理三、实验仪器与材料1.光电二三极管;2.电源;3.电压表;4.电流表;5.光源;6.滤光片。

四、实验步骤1.组装实验电路:将光电二三极管连接到电源、电压表和电流表上,确保连接正确。

2.设置工作电压:调节电源的输出电压,将光电二三极管工作在正向偏置的工作点上。

3.测试光电流:用电流表测量光电流的大小,并记录数据。

4.测试响应时间:在光电二三极管上方以一定频率的光源扫描,记录响应时间。

5.测试光谱特性:将不同波长的光源照射到光电二三极管上,记录光照强度和光电流的关系,并绘制光电流-波长曲线。

五、实验结果与分析1.光电流与光照强度的关系:通过实验测得的数据,可以绘制光电流-光照强度曲线。

根据曲线的斜率可以得出光电二三极管的光电流灵敏度。

2.响应时间:通过实验测得的数据,可以计算出光电二三极管的响应时间。

响应时间越短,说明光电二三极管的响应速度越快,适用范围越广。

3.光谱特性:通过实验测得的数据绘制光电流-波长曲线,可以得出光电二三极管的光谱响应范围和峰值波长。

六、实验结论1.光电二三极管的响应特性:通过实验测得的数据可以得出光电二三极管的响应时间和响应速度。

响应时间越短,说明响应速度越快,适用范围越广。

2.光电二三极管的光谱特性:通过实验测得的数据可以得出光电二三极管的光谱响应范围和峰值波长。

七、实验心得通过本次实验,我对光电二三极管的特性有了更深入的了解。

光电二三极管在光电转换方面具有很大的应用潜力,可以广泛用于光学测量、光通信和光电子科学等领域。

实验中,我通过测量数据和分析结果,进一步认识到光电二三极管的重要性和特点。

对于今后的研究和应用,这些认识和经验对我来说是非常宝贵的。

同时,在实验中我也锻炼了实验操作的能力和数据处理的技巧,这对我的科研能力提升起到了积极的促进作用。

光电二三极管特性测试实验报告材料

光电二三极管特性测试实验报告材料

光电二三极管特性测试实验报告材料实验目的:通过实验,了解光电二三极管的基本结构和工作原理,掌握光电二三极管的特性测试方法,并探究光照强度对其电流特性的影响。

实验仪器与材料:1.光电二三极管2.光源3.恒流电源4.快速数字万用表5.电阻箱6.连线电缆实验原理:光电二三极管是能将光信号转化为电信号的光电器件,由半导体材料制成。

当光照射到光电二三极管的PN结时,光子能量会激发电子从固体内部跃迁到导带,形成电流。

实验中通过改变光照强度来探究其对光电二三极管电流特性的影响。

实验步骤:1.将光电二三极管插入电源以及数字万用表中,根据光电二三极管的正负极性正确连接。

2.将恒流电源与光电二三极管进行连接,设置合适的电流值。

(注意:尽量选取较小的电流,以避免光电二三极管受到过大的电流烧毁)3.打开光源,并将光源调到合适的位置,以使其尽可能均匀地照射到光电二三极管上。

4.用快速数字万用表测量光电二三极管的电流值,并记录下来。

5.改变光源的距离以调节光照强度,再次测量光电二三极管的电流值,记录下来。

6.依次改变光源的距离,重复步骤4和5,并记录相应的电流值。

7.将实验数据进行整理和分析。

实验数据记录与分析:通过实验,我们得到了一系列不同光照强度下的光电二三极管电流值。

根据光照强度与电流值的关系,我们可以发现,随着光照强度的增大,光电二三极管的电流值也随之增大。

这是因为光照强度的增大会使得光子的能量增加,从而激发更多的电子跃迁到导带,形成更大的电流。

实验总结与思考:通过本次实验,我们深入了解了光电二三极管的基本结构和工作原理,掌握了光电二三极管特性测试的方法,并通过实验数据分析研究了光照强度对其电流特性的影响。

在实际应用中,我们可以利用光电二三极管的特性,将其应用于光电传感器、光电开关、光照度计等领域。

然而,在实验中我们需要注意的是,光电二三极管对光照的敏感度较高,一些外界因素,如环境光的影响会对实验的结果产生一定的干扰,因此,尽量保持实验环境的一致性是十分重要的。

实验2-2光电二极管光电特性测试

实验2-2光电二极管光电特性测试

实验2-2 光电二极管光电特性测试实验目的1、了解光电二极管的工作原理和使用方法;2、掌握光电二极管的光照度特性及其测试方法。

实验内容1、暗电流测试;2、当光电二极管的偏置电压一定时,光电二极管的输出光电流与入射光的照度的关系测量。

实验仪器1、光电探测原理实验箱1台2、连接导线若干实验原理1、光电二极管结构原理光电二极管的核心部分也是一个PN结,和普通二极管相比有很多共同之处,它们都有一个PN结,因此均属于单向导电性的非线性元件。

但光电二极管作为一种光电器件,也有它特殊的地方。

例如,光电二极管管壳上的一个玻璃窗口能接收外部的光照;光电二极管PN结势垒区很薄,光生载流子的产生主要在PN 结两边的扩散区,光电流主要来自扩散电流而不是漂移电流;又如,为了获得尽可能大的光电流,PN结面积比普通二极管要大的多,而且通常都以扩散层作为受光面,因此,受光面上的电极做的很小。

为了提高光电转换能力,PN结的深度较普通二极管浅。

图2-2.1为光电二极管外形图(a)、结构简图(b)、符号(c)和等效电路图(d)。

光电二极管在电路中一般是处于反向工作状态(见图2-2.2,图中E为反向偏置电压),在没有光照射时,反向电阻很大,反向电流很小(一般小于0.1微安),这个反向电流称为暗电流,当光照射在PN结上,光子打在PN结附近,使PN结附近产生光生电子和光生空穴对,称为光生载流子。

它们在PN结处的内电场作用下作定向运动,形成光电流。

光的照度越大,光电流越大。

如果在外电路上接上负载,负载上就获得了电信号。

因此光电二极管在不受光照射时处于截止状态,受光照射时处于导通状态随着光电子技术的发展,光信号在探测灵敏度、光谱响应范围及频率特性等方面的要求越来越高,为此,近年来出现了许多性能优良的光伏探测器,如硅、锗光电二极管、PIN 光电二极管、雪崩光电二极管(APD)等。

光电二极管目前多采用硅或锗制成,但锗器件暗电流温度系数远大于硅器件,工艺也不如硅器件成熟,虽然它的响应波长大于硅器件,但实际应用尚不及后者广泛。

光电二三极管特性测试实验报告

光电二三极管特性测试实验报告

光敏二极管特性测试实验一、实验目的1.学习光电器件的光电特性、伏安特性的测试方法;2.掌握光电器件的工作原理、适用范围和应用基础。

二、实验内容1、光电二极管暗电流测试实验2、光电二极管光电流测试实验3、光电二极管伏安特性测试实验4、光电二极管光电特性测试实验5、光电二极管时间特性测试实验6、光电二极管光谱特性测试实验7、光电三极管光电流测试实验8、光电三极管伏安特性测试实验9、光电三极管光电特性测试实验10、光电三极管时间特性测试实验11、光电三极管光谱特性测试实验三、实验仪器1、光电二三极管综合实验仪 1个2、光通路组件 1套3、光照度计 1个4、电源线 1根5、2#迭插头对(红色,50cm) 10根6、2#迭插头对(黑色,50cm) 10根7、三相电源线 1根8、实验指导书 1本四、实验原理1、概述随着光电子技术的发发展,光电检测在灵敏度、光谱响应范围及频率我等技术方面要求越来越高,为此,近年来出现了许多性能优良的光伏检测器,如硅锗光电二极管、PIN光电二极管和雪崩光电二极管(APD)等。

光敏晶体管通常指光电二极管和光电三极管,通常又称光敏二极管和三敏三极管。

光敏二极管的种类很多,就材料来分,有锗、硅制作的光敏二极管,也有III-V族化合物及其他化合物制作的二极管。

从结构我来分,有PN结、PIN结、异质结、肖特基势垒及点接触型等。

从对光的响应来分,有用于紫外光、红外光等种类。

不同种类的光敏二极管,具胡不同的光电特性和检测性能。

例如,锗光敏二极管与硅光敏二极管相比,它在红外光区域有很大的灵敏度,如图所示。

这是由于锗材料的禁带宽度较硅小,它的本征吸收限处于红外区域,因此在近红外光区域应用;再一方面,锗光敏二极管有较大的电流输出,但它比硅光敏二极管有较大的反向暗电流,因此,它的噪声较大。

又如,PIN型或雪崩型光敏二极管与扩散型PN结光敏二极管相比具有很短的时间响应。

因此,在使用光敏二极管进要了解其类型及性能是非常重要的。

物理实验技术中的光电二极管特性测量与分析

物理实验技术中的光电二极管特性测量与分析

物理实验技术中的光电二极管特性测量与分析光电二极管是一种能够将光能转化为电能的器件,广泛应用在光电传感器、光通信、光电测量和光谱分析等领域。

在物理实验技术中,测量和分析光电二极管的特性对于研究光电效应、了解器件性能以及优化实验设计都具有重要意义。

一、光电二极管原理和基本特性光电二极管的原理是基于光电效应,利用光照射在PN结上产生电子-空穴对,使得PN结两端产生电压。

其关键特性包括响应频率、光电流、暗电流、光电流增益等。

测量这些特性需要合适的实验装置和方法来获取准确的结果。

二、光电二极管特性的测量方法1. 频响特性测量频响特性测量是评估光电二极管对光信号变化的响应速度的重要方法。

常用的实验装置包括函数发生器、光源和示波器。

通过改变函数发生器输入的正弦光信号频率,测量光电二极管输出的电流或电压的变化,从而得到频响特性曲线。

这些曲线反映了光电二极管的截止频率、带宽和相移等信息。

2. 光电流和暗电流测量光电流和暗电流是衡量光电二极管敏感度的重要指标。

光电流指的是光照射下二极管产生的输出电流,可以通过连接电流表或电流放大器进行测量。

而暗电流是指在没有光照射的情况下,二极管自身产生的微弱电流。

暗电流直接影响光电二极管的信噪比和稳定性,需要特殊的实验装置和方法进行测量。

三、光电二极管特性分析测量得到的光电二极管特性数据可以通过分析得到有关器件性能的重要信息。

以下是几个典型的分析方法:1. 截止频率和带宽分析利用频响特性曲线可以确定光电二极管的截止频率和带宽。

截止频率是指光电二极管对信号频率的响应达到3dB衰减的频率,可以通过对频响特性进行插值计算得到。

带宽是指光电二极管在特定条件下能够传输信号的频率范围,可以根据频响特性曲线的满足条件进行判断。

2. 光电流增益分析光电流增益是指光电二极管单位光功率入射时输出电流的增益。

可以通过将测得的光电流与已知的入射光功率相除得到。

光电流增益反映了光电二极管对光信号的放大效果,是评估器件性能的重要指标。

实验一-万用表测量二极管、三极管

实验一-万用表测量二极管、三极管

实验一万用表测量二极管、三极管一、实验目的1.熟练掌握指针式万用表和数字万用表的使用方法。

1.熟练掌握用指针式万用表测量普通二极管和三极管。

2.熟练掌握用数字万用表测量普通二极管和三极管。

二、主要元件及仪器1、MF-47指针式万用表2、VC890D数字万用表3、1N4001~1N4007系列普通整流二极管4、1N4735(6.2V)、1N4738(8.2V)稳压二极管5、9011~9014小功率晶体三极管二、实验原理(一)指针式万用表测量二极管:二极管参数的测试可用晶体管图示仪,或其它仪器进行测试。

在没有仪器的情况下也可用万用表来简单检查二极管的好坏,但这种检测方法不能测量二极管的参数。

初学者在业余条件下可以使用万用表测试二极管性能的好坏。

测试前先把万用表的转换开关拨到欧姆档的RX1k档位(注意不要使用RX1档,以免电流过大烧坏二极管,也不要用RX10K,该档电压太高,可能击穿管子),再将红、黑两根表笔短路,进行欧姆调零。

正向特性测试:把万用表的黑表笔(表内正极)搭触二极管的正极,红表笔(表内负极)搭触二极管的负极。

若表针不摆到0值而是停在标度盘的中间,这时的阻值就是二极管的正向电阻,一般小功率锗管的正向电阻为1KΩ左右,硅二极管约为5KΩ左右。

一般正向电阻越小越好。

若正向电阻为0值,说明管芯短路损坏,若正向电阻接近无穷大值,说明管芯断路。

短路和断路的管子都不能使用。

反向特性测试:把万用表的红表笔搭触二极管的正极,黑表笔搭触二极管的负极,若表针指在无穷大值或接近无穷大值,管子就是合格的。

一般小功率锗管的反向电阻为几十KΩ,硅二极管约为500KΩ以上。

1.普通二极管的检测(包括检波二极管、整流二极管、阻尼二极管、开关二极管、续流二极管)是由一个PN结构成的半导体器件,具有单向导电特性。

通过用万用表检测其正、反向电阻值,可以判别出二极管的电极,还可估测出二极管是否损坏。

(1)极性的判别将万用表置于R×100档或R×1k档,两表笔分别接二极管的两个电极,测出一个结果后,对调两表笔,再测出一个结果。

实验一 发光二极管特性测试实验

实验一 发光二极管特性测试实验

发光二极管特性测试实验一、实验背景介绍(一)发光二极管的工作原理发光二极管是半导体二极管的一种,可以把电能转化成光能;常简写为LED (light-emitting diode)。

由镓(Ga)与砷(AS)、磷(P)的化合物制成的二极管,当电子与空穴复合时能辐射出可见光,因而可以用来制成发光二极管。

在电路及仪器中作为指示灯,或者组成文字或数字显示。

它是半导体二极管的一种,可以把电能转化成光能;发光二极管与普通二极管一样是由一个PN结组成,也具有单向导电性。

当给发光二极管加上正向电压后,从P区注入到N区的空穴和由N区注入到P区的电子,在PN结附近数微米内分别与N区的电子和P区的空穴复合,产生自发辐射的荧光。

不同的半导体材料中电子和空穴所处的能量状态不同。

当电子和空穴复合时释放出的能量多少不同,释放出的能量越多,则发出的光的波长越短。

常用的是发红光、绿光或黄光的二极管。

磷砷化镓二极管发红光,磷化镓二极管发绿光,碳化硅二极管发黄光。

其工作原理图如下:(二)发光二极管的特性参数IF 值通常为20mA被设为一个测试条件和常亮时的一个标准电流,设定不同的值用以测试二极管的各项性能参数,具体见特性曲线图。

IF 特性:1. 以正常的寿命讨论,通常标准IF 值设为20 -30mA,瞬间(20ms )可增至100mA。

2. IF 增大时LAMP 的颜色、亮度、VF 特性及工作温度均会受到影响,它是正常工作时的一个先决条件,IF 值增大:寿命缩短、VF 值增大、波长偏低、温度上升、亮度增大、角度不变,与相关参数间的关系见曲线图;1.VR (LAMP 的反向崩溃电压)由于LAMP 是二极管具有单向导电特性,反向通电时反向电流为0 ,而反向电压高到一定程度时会把二极管击穿,刚好能把二极管击穿的电压称为反向崩溃电压,可以用“VR ”来表示。

VR 特性:1. VR 是衡量P/N 结反向耐压特性,当然VR 赿高赿好;2. VR 值较低在电路中使用时经常会有反向脉冲电流经过,容易击穿变坏;3. VR 又通常被设定一定的安全值来测试反向电流(IF 值),一般设为5V ;4. 红、黄、黄绿等四元晶片反向电压可做到20 -40V ,蓝、纯绿、紫色等晶片反向电压只能做到5V 以上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

可编辑版
1-20
2. 供电分压器和输出电路
光电倍增管的极间电压的分配一般是由图2所示的串联 电阻分压器执行。
最佳的极间电压分配取决于三个因素:阳极峰值电流、 允许的电压波动以及允许的非线性偏离。
K
A
D1 D2 D3 D4 D5 D6 D7 D8
IK
12 3 4 5 6 7 8 9 -HV
图2 光电倍增管供电电路
可编辑版
1-18
二、实验原理
1. 工作原理
光电倍增管是由半透明的光电发射阴极、倍增极和阳 极所组成的,由图1所示。
a) 侧窗式
b) 端窗式
c) 原理示意图
图1 光电倍增管外形与结果原理示意图
可编辑版
1-19
当入射光子照射到半透明的光电阴极K上时,将发射出光 电子,被第一倍增极D1与阴极K之间的电场所聚焦并加速 后与倍增极D2碰撞,一个光电子从D1撞击出3个以上的新电 子,这种新电子叫做二次电子。这些二次电子又被D1~D2 之间的电场所加速,打到第二个倍增极D2上。并从D2上撞 击出更多的新的二次电子。如此继续下去,使电子流迅速 倍增。最后被阳极A收集。收集的阳极电子流比阴极发射 的电子流一般大105~104倍。这就是真空光电倍增管的电 子内倍增原理。
可编辑版
1-0
实验一 光电二极管、光电三极管
光照特性的测试
-、目的要求
1. 掌握光电二极管的工作原理和使用方法。 2. 进一步了解光电二极管的光照特性和伏安特
性,为设计光电系统前置放大器打下基础。
可编辑版
1-2
二、工作原理
1. 光电二极管是结型半导体光伏探测器件。当入射光子 能量大于材料禁带宽度时,半导体吸收光子能量将产 生电子空穴对。产生在PN结内的电子空穴对在内建电
图4 光电二极管光照特性测试装置
可编辑版
1-7
实验二 硅光电池负载特性的测试
一、实验目的
1. 掌握硅光电池的正确使用方法。 2. 了解光电池零负载,以及不同负载时光电流
与照度的关系。
可编辑版
1-9
二、工作原理
1. 光电池具有半导体结型器件无源直接负载下的工作特

3. 的电流: IC(1)IpIp
4. β为电流放大倍数。
图2 光电三极可管编辑工版作原理图
1-4
3. 光电二极管和光电三极管的伏安特性曲线
I
E4>E3>E2>E1>E0
E4
E3 E2
E1 E0
0
U
图3(a)光电二极管伏安特性曲线
I
E4>E3>E2>E1>E0
E4
E3 E2 E1
E0
0
U
(b)光电三极管伏安特性曲线
I2R 3(I1I2)R40
则光电流为:
I2(R 4R 4R 3)I1(1 0 0 1 0 0 1 0 0 )I11 2I1
可编辑版
1-16
实验三 光电倍增管特性和参数的
测试
一、实验目的
1. 了解光电倍增管的基本特性。 2. 学习光电倍增管基本参数的测量方法。 3. 学会正确使用光电倍增管。

S为光电流灵敏度,短路电流ISC和照度E成正比。
② 当开路时,(RL=∞),(1)式外电流I=0则开路电压为:
Voc
VT
ln(1
Ip ISC
)
开路电压Voc与照度E几乎无关;所有照度下的开路电压Voc趋 于光电池正向开启电压V=0.6伏,并小于这个电压值。
可编辑版
1-11
③ 最佳负载,负载在RL=0~∞之间变化按经验公式求出最佳


N
P
ID
RL
I
A
图1 光电池工作原理图
可编辑版
1-10
2. I为通过负载的外电流:
IIIDIIsc(ev/vT 1)
时其,中负ISC载为R光L上电的流电反压向V饱=I和RL电给流光。电当池V正T 向KqT偏为压温。度电压当量 ① 当零负载时(RL=0),(1)式外电流为短路电流:

Isc Ip SE
B
图2 光电池负载实验装置
可编辑版
μA
VE
G
1-15
光电池受光照后,产生光电流I2。在A、B两点的毫 伏电压会产生偏转。调节稳压电源VE后,产生补偿 电流I1,I1和光电流I2方向相反。调节电位计R5(粗 调)和R6(细调)使补偿电流I1与光电流I2相减,并
促使毫伏电压表G1指示为零。此时,表示A点和B点 电位相同。相当于光电池在A、B二点外电路为零状 态下工作,根据电路平衡条件:
可编辑版
11
IA
10
1-21
3. 光电倍增管的特性和参数
① 阴极光照灵敏度

阴极光照灵敏度定义为光电阴极的光电流IK除
以入射光通量φ所得的商:
SK
IK
(A
Lm)
国际照明委员会的标准光照相应于分布温度为
2859K的绝对黑体的辐射。
② 阳极光照灵敏度
阳极光照灵敏度定义为阳极输出电流IA除以入射光
通量φ所得的商:
可编辑版
1-5
三、实验内容
1. 测量光电二极管的光电流和照度特性曲线。 2. 测量光电二极管不同照度下的伏安特性曲线。
可编辑版
1-6
四、实验仪器及装置
1. 实验仪器:光电二极管、钨丝灯、调压变压器、照度 表、毫安表、直流稳压电源等。
2. 实验装置如图4。
照度计
直流稳压电源
μA
调压变压器
光电探测器
场(光电二极管工作时加反向偏压Vb)作用下被分离,
形成光生电势,产生光电流,如图1所示
图1 光电二极管工作原理图
可编辑版
1-3
2. 光电三极管的原理性结构如图2所示。正常运用时,集电 极加正电压。因此,集电结为反偏置,发射结为正偏置, 集电结为光电结。当光照到集电结上时,集电结即产生光
电流Ip向基区注入,同时在集电极电路产生了一个被放大
2. 测定光电池不同负载情况下特性数据。
可编辑版
1-13
四、实验仪表和器材
硅光电池、照度计、钨丝灯、调压变压器、直流 稳压电源、毫伏电压表、微安表、电阻和电位计 等。
可编辑版
1-14
五、实验线路装置
光电池负载实验线路装置如图2所示。
照度计 调压变压器
RL
A R3
R5
R6
C
100Ω
mv
G1
I2 R4 I1 100Ω
负载:
R o p tV Im m(0 .6~ Is 0 c.8 )V o c(0 .6~0 .8 )V S o E c
当RL≤Ropt时,并忽略光电池结电流,负载电流近似等于恒
定短路电流。
当RL>Ropt时,光电池结电流按指数增加,负载电流近似于指
数形式减小。
可编辑版
1-12
三、实验内容
1. 测定电池零负载下Ip和E的关系。
SA
IA
(A
Im)
可编辑版
1-22
③ 电流增益
相关文档
最新文档