matlab在概率统计中的应用实例

合集下载

第8章Matlab在概率统计中的应用(可编辑修改word版)

第8章Matlab在概率统计中的应用(可编辑修改word版)

第8章M a t l a b在概率统计中的应用概率论与数理统计是研究和应用随机现象统计规律性的一门数学科学。

其应用十分广泛,几乎遍及所有科学领域、工农业生产和国民经济各部门。

本章将利用Matlab 来解决概率统计学中的概率分布、数字特征、参数估计以及假设检验等问题。

8.1数据分析8.1.1几种均值在给定的一组数据中,要进行各种均值的计算,在Matlab 中可由以下函数实现。

mean 算术平均值函数。

对于向量X,mean (X) 得到它的元素的算术平均值;对于矩阵,mean (X)得到X 各列元素的算术平均值,返回一个行向量。

nanmean 求忽略NaN 的随机变量的算术平均值。

geomean 求随机变量的几何平均值。

harmmean 求随机变量的和谐平均值。

trimmean 求随机变量的调和平均值。

8.1.2数据比较在给定的一组数据中,还常要对它们进行最大、最小、中值的查找或对它们排序等操作。

Mtalab 中也有这样的功能函数。

max 求随机变量的最大值元素。

nanmax 求随机变量的忽略NaN 的最大值元素。

min 求随机变量的最小值元素。

nanmin 求随机变量的忽略NaN 的最小值元素。

median 求随机变量的中值。

nanmedian 求随机变量的忽略NaN 的中值。

mad 求随机变量的绝对差分平均值。

sort 对随机变量由小到大排序。

sortrows 对随机矩阵按首行进行排序。

range 求随机变量的值的范围,即最大值与最小值的差(极差)。

8.1.3累和与累积求向量或矩阵的元素累和或累积运算是比较常用的两类运算,在Matlab 中可由以下函数实现。

sum 若X 为向量,sum (X)为X 中各元素之和,返回一个数值;若X 为矩阵,sum (X)为X 中各列元素之和,返回一个行向量。

nansum 忽略NaN 求向量或矩阵元素的累和。

cumsum 求当前元素与所有前面位置的元素和。

返回与X 同维的向量或矩阵。

14MATLAB在概率统计中的应用

14MATLAB在概率统计中的应用

(2) (X,Y)落在x+y=1,x=0,y=0所围成的区域内的概率。
程序:
>> syms x y
>> f=exp(-x-y);
>> P_XY=int(int(f,y,0,1),x,0,1)
>> P_G=int(int(f,y,0,1-x),x,0,1)
运行结果显示如下:
P_XY= exp(-2)-2*exp(-1)+1
0.1 0.08 0.06 0.04 0.02
0 0
5
10
15
20
25
30
图 2-1
4.指数分布 例4-10 >>x = 0:0.1:10; >>y = exppdf(x,2); >>plot(x,y)
0.正态分布 例4-16 >> x=-3:0.2:3; >> y=normpdf(x,0,1); >> plot(x,y)
k 1
k 1
的和为随机变量X的数学期望,记为E(X),即
E(X) xkpk (1) k1
说明: (1)E的 X 求 E (X 法 ) x : kpk k1
(2)数学期望 存在性的判断:
看 级 数 xk pk是 否 绝 对 收 敛 。 k 1 即 xk pk是 否 收 敛 ? k1
例1:某厂产品的次品率为0.2 ,每生产一件
解:设h为车门高度,X为身高,求满足条件 P{X>h}0.01的h,即P{X<h}0.99。
程序:
>> h=norminv(0.99,175,6)
结果:
h= 188.9581

第六章 MATLAB在概率统计中的应用

第六章 MATLAB在概率统计中的应用

第六章MATLAB在概率统计中的应用概率统计的应用十分广泛,这不仅与概率的简洁直观有着密切的联系,还与实际问题中的众多现象的随机性、不确定性有着密切的联系。

概率统计几乎遍及所有科学技术领域以及工农业生产和国民经济的各个部门中。

例如,使用概率的方法可以进行天气预报、地震预测、产品的抽样检查、计算产品使用的平均寿命、置信估计等等。

有时也可通过概率统计的方法对实际问题进行仿真模拟。

随着概率统计方法的使用面的增加也出现的众多概率统计软件,例如SAS软件、R软件等等。

早期的MATLAB中有关概率统计的具体程序并不多见,但随着MATLAB版本的提高,也陆续引进的众多概率统计程序。

其中主要包括统计变量的数字特征、常用统计分布、常用随机数的产生、参数估计、区间估计、假设检验、方差分析和回归诊断及统计图的绘制等方面的各个程序。

6.1统计量的数字特征6.1.1简单数学期望和平均值Mean平均值函数对于一些服从特殊分布的随机变量而言直接利用数组的点乘和求和函数来获得数学期望值。

例如:X-202Pk0.40.30.3数学期望值E(X)的值可以通过下述方法获得>>x=[-202];>>Pk=[0.40.30.3]>>sum(x.*Pk)6.1.2数据的比较在给定的一组数据中,还常要对它们进行最大、最下、中值的查找或对它们排序等操作。

在MATLAB中提供了这些函数。

Max求随机变量的最大值元素Nanmax求随机变量的忽略nan的最大值运算Min求随机变量的最小值元素Median求随机变量的中值Sort对随机变量由小到大排序Sortrows对随机矩阵按首行进行行排序Range求随机变量的值范围,即最大值与最小值的差。

6.1.3方差和标准差Var(x)方差函数Std(x)标准差函数6.1.4偏斜度和峰度Skewness 随机分布的偏斜度函数Kurtosis 随机分布的峰度函数6.1.5协方差和相关系数Cov Corrcoef6.2常用的统计分布量6.2.1期望和方差(书292)6.2.3概率密度函数Y=pdf(name,X,A,B,C)6.2.4概率值函数6.2.5随机生成函数6.3参数估计利用样本对总体进行统计推断,主要有两大类,一类是参数估计,另一类是检验函数估计。

第7章-MATLAB在概率统计中的应用

第7章-MATLAB在概率统计中的应用

MATLAB在概率统计中的应用总结一、统计量的数字特征(一)简单的数学期望和几种均值●mean(x) 平均值函数当x 为向量时,得到它的元素平均值;当x 为矩阵时,得到一列向量,每一行值为矩阵行元素的平均值,举例1:求矩阵A的平均值。

D=[74.001 74.005 74.003 74.001 74.00 73.998 74.006 74.02]Mean(d)举例22E(x)的值X -2 0 2pk 0.4 0.3 0.3E(x)的值:x=[-2,0,2],pk=[0.4,0.3,0.3]sum(x.*pk)●E(3x2+5)的值。

x=[-2,0,2],pk=[0.4,0.3,0.3]z=3*x.^2+5sum(z.*pk)(二)数据比较⏹max 最大值⏹min 最小值⏹ median 中值 ⏹ sort 由小到大排序(三)求和与积⏹ sum 求向量或矩阵的元素累和 ⏹ prod : 求当前元素与所有前面元素的积 举例:下面的程序用来求向量各元素的之和prod=1 varx=[2,3,4] for x=varx prod=prod+x end(四)方差和标准差● 方差函数Var① Var(x) x 为向量,返回向量的样本方差;x 为矩阵,则返回矩阵各列的方差。

②Var(x,1) 返回向量(矩阵x )的简单方差(即置前因子为n1的方差) ③Var(x,w) 返回向量(矩阵)x 即以w 为权的方差。

● Std 标准差函数Std(x) 返回向量或矩阵x 的样本标准差(置前因子为1n−1)Std(x,1) 返回向量或矩阵x 的标准差(置前因子为1n)举例:d=[74.001,74.005,74.003,74.001,74.00,73.998,74.006,74.02] mean(d)var(d,1) %方差var(d) %样本方差std(d,1) %标准差std(d) %样本标准差(五)协方差和相关系数⏹cov(x):x为向量,返回向量的方差,x为矩阵时返回矩阵的协方差矩阵,其中协方差矩阵的对角元素是x矩阵的列向量的方差值。

概率论与数理统计MATLAB上机实验报告

概率论与数理统计MATLAB上机实验报告

《概率论与数理统计》MATLAB上机实验实验报告一、实验目的1、熟悉matlab的操作。

了解用matlab解决概率相关问题的方法。

2、增强动手能力,通过完成实验内容增强自己动手能力。

二、实验内容1、列出常见分布的概率密度及分布函数的命令,并操作。

概率密度函数分布函数(累积分布函数) 正态分布normpdf(x,mu,sigma) cd f(‘Normal’,x, mu,sigma);均匀分布(连续)unifpdf(x,a,b) cdf(‘Uniform’,x,a,b);均匀分布(离散)unidpdf(x,n) cdf(‘Discrete Uniform’,x,n);指数分布exppdf(x,a) cdf(‘Exponential’,x,a);几何分布geopdf(x,p) cdf(‘Geometric’,x,p);二项分布binopdf(x,n,p) cdf(‘Binomial’,x,n,p);泊松分布poisspdf(x,n) cdf(‘Poisson’,x,n);2、掷硬币150次,其中正面出现的概率为0.5,这150次中正面出现的次数记为X(1) 试计算X=45的概率和X≤45 的概率;(2) 绘制分布函数图形和概率分布律图形。

答:(1)P(x=45)=pd =3.0945e-07P(x<=45)=cd =5.2943e-07(2)3、用Matlab软件生成服从二项分布的随机数,并验证泊松定理。

用matlab依次生成(n=300,p=0.5),(n=3000,p=0.05),(n=30000,p=0.005)的二项分布随机数,以及参数λ=150的泊松分布,并作出图线如下。

由此可以见得,随着n的增大,二项分布与泊松分布的概率密度函数几乎重合。

因此当n足够大时,可以认为泊松分布与二项分布一致。

4、 设22221),(y x e y x f +−=π是一个二维随机变量的联合概率密度函数,画出这一函数的联合概率密度图像。

MATLAB在概率统计中的应用

MATLAB在概率统计中的应用

第7章 MATLAB在概率统计中的应用一、统计量的数字特征<一)简单的数学期望和几种均值●mean(x> 平均值函数当x 为向量时,得到它的元素平均值;当x 为矩阵时,得到一列向量,每一行值为矩阵行元素的平均值,举例1:求矩阵A的平均值。

D=[74.001 74.005 74.003 74.001 74.00 73.998 74.006 74.02]Mean(d>举例22的值E(x>的值●E(x>的值:x=[-2 0 2],pk=[0.4 0.3 0.3]sum(x.*pk>●E(3x2+5>的值。

x=[-2 0 2],pk=[0.4 0.3 0.3]z=3*x.^2+5sum(z.*pk><二)数据比较⏹max 最大值⏹min 最小值⏹median 中值⏹sort 由小到大排序<三)求和与积⏹ sum 求向量或矩阵的元素累和 ⏹ prod : 求当前元素与所有前面元素的积 举例:下面的程序用来求向量各元素的之和prod=1 varx=[2 3 4] for x=varx prod=prod*x end<四)方差和标准差为了反映随机变量与其均值的偏离程度 方差表示为标准差表示为: 样本方差为: 样本标准差为: ● 方差函数Var①Var(x> x 为向量,返回向量的样本方差;x 为矩阵,则返回矩阵各列的方差。

②Var(x,1> 返回向量<矩阵x )的简单方差<即置前因子为n1的方差) ③Var(x,w> 返回向量<矩阵)x 即以w 为权的方差。

● Std 标准差函数Std(x> 返回向量或矩阵x 的样本标准差<置前因子为11n ) Std(x,1> 返回向量或矩阵x 的标准差<置前因子为n1)举例: d=[74.001 74.005 74.003 74.001 74.00 73.998 74.006 74.02]mean(d>var(d,1> %方差 var(d> %样本方差 std(d,1> %标准差 std(d> %样本标准差<五)协方差和相关系数cov(x>:x 为向量,返回向量的方差,x 为矩阵时返回矩阵的协方差矩阵,其中协方差矩阵的对角元素是x 矩阵的列向量的方差值。

[Matlab在概率统计中的应用]概率统计在教学管理中的应用

[Matlab在概率统计中的应用]概率统计在教学管理中的应用

《[Matlab在概率统计中的应用]概率统计在教学管理中的应用》摘要:(一)样本统计量及经验分布函数Matlab中,函数[h, stats]=cdfplot(X)返回样本经验分布函数图像和样本数据的几个重要统计量,包括最小值、最大值、均值、中值和标准差,数理统计中常用的X2分布、t分布、F分布,Matlab中也有相应的函数计算其概率密度,分别为chi2pdf(X, V), tpdf(X, V), fpdf(X, V1, V2),其用法与前面介绍的计算其他常用分布的概率密度的函数相似,MATLAB数理统计分析[M]. 北京: 国防工业出版社,2009. [2]王正林,刘明. 精通MATLAB7[M]. 北京: 电子工业出版社,2006. (作者单位:华北电力大学数理系)概率论与数理统计是现代数学的重要分支。

近年来,随着计算机的迅速普及,概率统计在经济、管理、金融、保险、生物、医学等方面的应用得到长足发展。

正是这种广泛应用性,使得概率统计成为今天各类各专业大学生最重要的数学必修课之一。

然而,传统的概率统计教学过于偏重理论的阐述、公式的推导、繁琐的初等运算;同时,缺乏与计算机的结合,给学生的学习带来很多困难。

本文介绍概率统计中的主要问题在Matlab中的实现,把学生从繁琐的计算中解放出来,把更多的时间和精力用于基本概念和基本理论的思考和方法的创新,从而提高教师的教学效率和学生的学习效率。

一、常用概率密度的计算Matlab中计算某种概率分布在指定点的概率密度的函数,都以代表特定概率分布的字母开头,以pdf(probability density function)结尾,例如:unidpdf(X, N):计算1到N上的离散均匀分布在X每一点处的概率密度;poisspdf(X, Lambda):计算参数为Lambda的泊松分布在X每一点处的概率密度;exppdf(X, mu):计算参数为mu的指数分布在X每一点处的概率密度;normpdf(X, mu, sigma):计算参数为mu, sigma的正态分布在X每一点处的概率密度。

matlab概率统计

matlab概率统计

MATLAB概率统计1. 概述概率统计是数学中的一个重要分支,用于研究随机现象的规律性和不确定性。

MATLAB作为一种强大的数值计算和数据可视化工具,提供了丰富的函数和工具箱,使得概率统计分析变得简单而高效。

本文将介绍MATLAB中常用的概率统计函数和方法,并结合实例进行详细说明。

2. 概率分布2.1 常见概率分布函数在概率统计中,常见的概率分布函数有正态分布、均匀分布、二项分布等。

MATLAB 提供了相应的函数来生成这些概率分布。

•正态分布:normrnd函数用于生成服从正态分布的随机数。

x = normrnd(mu, sigma, [m, n]);其中,mu表示均值,sigma表示标准差,[m, n]表示生成随机数矩阵的大小。

•均匀分布:unifrnd函数用于生成服从均匀分布的随机数。

x = unifrnd(a, b, [m, n]);其中,a和b表示均匀分布区间的上下界。

•二项分布:binornd函数用于生成服从二项分布的随机数。

x = binornd(n, p, [m, n]);其中,n表示试验次数,p表示成功的概率。

2.2 概率密度函数和累积分布函数除了生成随机数,MATLAB还提供了计算概率密度函数(PDF)和累积分布函数(CDF)的函数。

•概率密度函数:对于连续型随机变量,可以使用normpdf、unifpdf等函数计算其概率密度函数值。

y = normpdf(x, mu, sigma);其中,x表示自变量的取值,mu和sigma表示正态分布的均值和标准差。

•累积分布函数:使用normcdf、unifcdf等函数可以计算连续型随机变量的累积分布函数值。

y = normcdf(x, mu, sigma);其中,参数的含义同上。

对于离散型随机变量,可以使用相应的离散型概率分布函数来计算其概率质量函数(PMF)和累积分布函数(CDF)。

3. 统计描述3.1 均值与方差均值和方差是统计学中常用的描述统计量,MATLAB提供了相应的函数来计算均值和方差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于全国受旱灾土地总面积的数理分析
提出问题:下表是从1990年至2010年全国因干旱而受灾的土地总面积(单位:千公顷)数。

(数据来源于全国统计局官网)
试解决一下问题:
(1)计算所给样本的均值与标准差;
(2)检验在显著水平为0.05的情况下,全国每年因干旱而受灾的土地总面积是否服从正态分布?
(3)如果服从正态分布,用极大似然估计法对未知参数μ和σ作出估计;
(4)若年受旱灾总面积大于35000千公顷即为重灾年,根据估计出的μ值和σ值,计算当年为重灾年的概率。

分析问题:这是一个样本均值和标准差的计算以及正态性检验和计算的一系列问题。

对于此类问题可以应用数学软件MATLAB进行处理,应用MATLAB可以很容易的计算出均值及标准差,此外,采用Jarque-Beran检验即可知道其是否服从正态分布,并估计出总体的均值μ和标准差σ。

解决问题:下面计算样本的均值和标准差
MATLAB程序代码如下
clear
X=[18175 24917 32981 21097 30423 23455 20152 33516 14236 30156 40541 38472 22124 24852 17253 16028 20738 29386 12137 29259 13259];
[h,stats]=cdfplot(X)
运行程序后,输出如下
h =152.0022
stats =
min: 12137
max: 40541
mean: 2.4436e+004
median: 23455
std: 8.1234e+003
从输出结果可看出,样本的最小值为12137,最大值为40541,
中值为23455,均值为24436,标准差为8123.4。

下面检验其是否服从正态分布
MATLAB程序代码如下
clear all;
X=[18175 24917 32981 21097 30423 23455 20152 33516 14236 30156 40541 38472 22124 24852 17253 16028 20738 29386 12137 29259 13259];
normplot(X);[h,P,Jbstat,CV]=jbtest(X,0.05)
title('正态概率图')
xlabel('数据');
ylable('概率')
运行程序后,输出如下
h= 0
p= 0.5477
Jbstat= 1.2039
CV= 5.9915
由输出结果h=0且Jbstat<CV可得出结论,在置信度α=0.05下,受灾面积(原始数据)服从正态分布,且在正态概率图中,各点均落在直线两侧,也可说明这一结论是成立的。

再用极大似然估计法对未知参数μ和σ作出估计:
MATLAB程序代码如下
clear all;
X=[18175 24917 32981 21097 30423 23455 20152 33516 14236 30156 40541 38472 22124 24852 17253 16028 20738 29386 12137 29259 13259];
phat=mle(X,'distribution','norm','alpha',0.05)
运行程序后,输出如下
phat =
1.0e+004 *
2.4436 0.7928
即受灾面积的μ估计值为24436,σ估计值为7928。

最后根据估计出的μ值和σ值,计算出每年的受灾面积大于35000千公顷的概率:
MATLAB程序代码如下
clear all;
p=normspec([35000 inf],24436,7928)
运行程序后,输出如下
P=0.0913
密度函数图
根据输出结果可知,为重灾年的概率为0.0913.
学习总结:通过对1990年至2010年全国因干旱而受灾的土地总面积的分析,我们得出这些数据服从正态分布。

运用MATLAB 程序,得出年均受灾土地总面积为24436公顷,根据图表可清晰地看出每年受灾总面积的分布状况,可以根据对这些数据的具体分布,采取相应的措施,从而最大程度的减小受灾。

经过此次对实际问题的解决,让我们共同认识到概率统计的知识在我们的生活中无处不在,概率论在我们学习和生活中的应用也给人们带来了极大地便利。

在对数据处理的过程中,对于很多数学工具的应用,如MATLAB等数学软件可让数据处理变得更加简单,从而引导我们更深层次的去探讨数学问题。

在小组合作中让我们体会到小组分工合作的重要性,让我们受益匪浅。

相关文档
最新文档