Matlab 概率论与数理统计

合集下载

第8章Matlab在概率统计中的应用(可编辑修改word版)

第8章Matlab在概率统计中的应用(可编辑修改word版)

第8章M a t l a b在概率统计中的应用概率论与数理统计是研究和应用随机现象统计规律性的一门数学科学。

其应用十分广泛,几乎遍及所有科学领域、工农业生产和国民经济各部门。

本章将利用Matlab 来解决概率统计学中的概率分布、数字特征、参数估计以及假设检验等问题。

8.1数据分析8.1.1几种均值在给定的一组数据中,要进行各种均值的计算,在Matlab 中可由以下函数实现。

mean 算术平均值函数。

对于向量X,mean (X) 得到它的元素的算术平均值;对于矩阵,mean (X)得到X 各列元素的算术平均值,返回一个行向量。

nanmean 求忽略NaN 的随机变量的算术平均值。

geomean 求随机变量的几何平均值。

harmmean 求随机变量的和谐平均值。

trimmean 求随机变量的调和平均值。

8.1.2数据比较在给定的一组数据中,还常要对它们进行最大、最小、中值的查找或对它们排序等操作。

Mtalab 中也有这样的功能函数。

max 求随机变量的最大值元素。

nanmax 求随机变量的忽略NaN 的最大值元素。

min 求随机变量的最小值元素。

nanmin 求随机变量的忽略NaN 的最小值元素。

median 求随机变量的中值。

nanmedian 求随机变量的忽略NaN 的中值。

mad 求随机变量的绝对差分平均值。

sort 对随机变量由小到大排序。

sortrows 对随机矩阵按首行进行排序。

range 求随机变量的值的范围,即最大值与最小值的差(极差)。

8.1.3累和与累积求向量或矩阵的元素累和或累积运算是比较常用的两类运算,在Matlab 中可由以下函数实现。

sum 若X 为向量,sum (X)为X 中各元素之和,返回一个数值;若X 为矩阵,sum (X)为X 中各列元素之和,返回一个行向量。

nansum 忽略NaN 求向量或矩阵元素的累和。

cumsum 求当前元素与所有前面位置的元素和。

返回与X 同维的向量或矩阵。

概率论matlab实验报告

概率论matlab实验报告

概率论与数理统计matlab上机实验报告班级:学号:姓名:指导老师:实验一常见分布的概率密度、分布函数生成[实验目的]1. 会利用MATLAB软件计算离散型随机变量的概率,连续型随机变量概率密度值。

2.会利用MATLAB软件计算分布函数值,或计算形如事件{X≤x}的概率。

3.会求上α分位点以及分布函数的反函数值。

[实验要求]1.掌握常见分布的分布律和概率密度的产生命令,如binopdf,normpdf2. 掌握常见分布的分布函数命令,如binocdf,normcdf3. 掌握常见分布的分布函数反函数命令,如binoinv,norminv[实验内容]常见分布的概率密度、分布函数生成,自设参数1、X~B(20,0.4)(1)P{恰好发生8次}=P{X=8}(2)P{至多发生8次}=P{X<=8}(1)binopdf(8,20,0.4)ans =0.1797(2)binocdf(8,20,0.4)ans =0.59562、X~P(2)求P{X=4}poisspdf(4,2)ans =0.09023、X~U[3,8](1)X=5的概率密度(2)P{X<=6}(1) unifpdf(5,3,8)ans =0.2000(2) unifcdf(6,3,8)ans =0.60004、X~exp(3)(1)X=0,1,2,3,4,5,6,7,8时的概率密度(2)P{X<=8}注意:exp(3)与教材中参数不同,倒数关系(1)exppdf(0:8,3)ans =Columns 1 through 30.3333 0.2388 0.1711Columns 4 through 60.1226 0.0879 0.0630Columns 7 through 90.0451 0.0323 0.0232(2) expcdf(8,3)ans =0.93055、X~N(8,9)(1)X=3,4,5,6,7,8,9时的概率密度值(2) X=3,4,5,6,7,8,9时的分布函数值(3)若P{X<=x}=0.625,求x(4)求标准正态分布的上0.025分位数(1)normpdf(3:9,8,3)ans =Columns 1 through 30.0332 0.0547 0.0807 Columns 4 through 60.1065 0.1258 0.1330 Column 70.1258(2)normcdf(3:9,8,3)ans =Columns 1 through 30.0478 0.0912 0.1587 Columns 4 through 60.2525 0.3694 0.5000 Column 70.6306(3)norminv(0.625,8,3)ans =8.9559(4)norminv(0.975,0,1)ans =1.96006、X~t(3)(1)X=-3,-2,-1,0,1,2,3时的概率密度值(2)X=-3,-2,-1,0,1,2,3时的分布函数值(3)若P{X<=x}=0.625,求x(4)求t分布的上0.025分位数(1)tpdf(-3:3,3)ans =Columns 1 through 30.0230 0.0675 0.2067 Columns 4 through 60.3676 0.2067 0.0675 Column 70.0230(2)tcdf(-3:3,3)ans =Columns 1 through 30.0288 0.0697 0.1955 Columns 4 through 60.5000 0.8045 0.9303 Column 70.9712(3)tinv(0.625,3)ans =0.3492(4)tinv(0.975,3)ans =3.18247、X~卡方(4)(1)X=0,1,2,3,4,5,6时的概率密度值(2) X=0,1,2,3,4,5,6时的分布函数值(3)若P{X<=x}=0.625,求x(4)求卡方分布的上0.025分位数(1)chi2pdf(0:6,4)ans =Columns 1 through 30 0.1516 0.1839 Columns 4 through 60.1673 0.1353 0.1026 Column 70.0747(2)chi2cdf(0:6,4)ans =Columns 1 through 30 0.0902 0.2642 Columns 4 through 60.4422 0.5940 0.7127 Column 70.8009(3)chi2inv(0.625,4)ans =4.2361(4)chi2inv(0.975,4)ans =11.14338、X~F(4,9)(1)X=0,1,2,3,4,5,6时的概率密度值(2) X=0,1,2,3,4,5,6时的分布函数值(3)若P{X<=x}=0.625,求x(4)求F分布的上0.025分位数(1)fpdf(0:6,4,9)ans =Columns 1 through 30 0.4479 0.1566 Columns 4 through 60.0595 0.0255 0.0122 Column 70.0063(2)fcdf(0:6,4,9)ans =Columns 1 through 30 0.5442 0.8218Columns 4 through 60.9211 0.9609 0.9788Column 70.9877(3)finv(0.625,4,9)ans =1.1994(4)finv(0.975,4,9)ans =4.7181实验二概率作图[实验目的]1.熟练掌握MATLAB软件的关于概率分布作图的基本操作2.会进行常用的概率密度函数和分布函数的作图3.会画出分布律图形[实验要求]1.掌握MATLAB画图命令plot2.掌握常见分布的概率密度图像和分布函数图像的画法[实验内容]任选四种分布,自设参数(已画八种分布图像,可熟悉各分布特点)1、X~B(20,0.4)代码:x=0:20;y=binopdf(x,20,0.4)plot(x,y,'.')结果:2、X~exp(3)概率密度图像代码:x=0:0.01:15;y=exppdf(x,3)plot(x,y)结果:分布函数代码:x=-1:0.01:15;y=expcdf(x,3)plot(x,y)结果:3、X~P(4)概率密度图形代码:x=0:10;y=poisspdf(x,4)plot(x,y,'.')结果:分布函数图形代码:x=0:0.01:10; y=poisscdf(x,4) plot(x,y)结果:4、X~U(3,8)概率密度图形代码:x=0:0.01:10;y=unifpdf(x,3,8)plot(x,y,'.')结果:分布函数图形代码:x=0:0.01:10;y=unifcdf(x,3,8) plot(x,y)结果:5、X~N(4,9)概率密度图形代码:x=-10:0.01:18;y=normpdf(x,4,3); plot(x,y)结果:分布函数图形代码:x=-10:0.01:18;y=normcdf(x,4,3); plot(x,y)结果:同一坐标系,均值是4,标准差分别为1,2,3的正态分布概率密度图形代码:x=-5:0.01:15;y1=normpdf(x,4,1);y2=normpdf(x,4,2);y3=normpdf(x,4,3);plot(x,y1,x,y2,x,y3)结果:6、X~t(3)概率密度图形代码:x=-10:0.01:10;y=tpdf(x,3);plot(x,y)结果:分布函数图形代码:x=-10:0.01:10; y=tcdf(x,3); plot(x,y)结果:7、X~卡方(4)概率密度图形代码:x=0:0.01:15;y=chi2pdf(x,4);plot(x,y)结果:分布函数图形代码:x=0:0.01:15; y=chi2cdf(x,4); plot(x,y)结果:8、X~F(4,9)概率密度图形代码:x=0:0.001:10;y=fpdf(x,4,9);plot(x,y)结果:分布函数图形代码:x=0:0.001:10; y=fcdf(x,4,9); plot(x,y)结果:实验三数字特征[实验目的]1 加深对数学期望,方差的理解2理解数学期望,方差的意义,以及具体的应用3 加深对协方差,相关系数的理解4 了解协方差,相关系数的具体的应用[实验要求]1 概率与频率的理论知识,MATLAB软件2 协方差,相关系数的理论知识,MATLAB命令cov,corrcoef [实验内容]P101-11代码:exp=[];price=[-200 100];exp(1)=expcdf(1,4)exp(2)=1-exp(1)Ey=exp*price'结果:exp =0.2212exp =0.2212 0.7788Ey =33.6402即平均获利为Ey=e^(-1/4)*300-200=33.6402p101-13代码:Syms x yfxy=(x+y)/3;Ex=int(int(fxy*x,y,0,1),x,0,2)Ey=int(int(fxy*y,y,0,1),x,0,2)Exy=int(int(fxy*x*y,y,0,1),x,0,2)E=int(int(fxy*(x^2+y^2),y,0,1),x,0,2)结果:Ex =Ey =5/9Exy =2/3E =13/6>>P102-22代码:Syms x yfxy=1;Ex=int(int(fxy*x,y,-x,x),x,0,1) Ey=int(int(fxy*y,y,-x,x),x,0,1)Ex2=int(int(fxy*x^2,y,-x,x),x,0,1) Ey2=int(int(fxy*y^2,y,-x,x),x,0,1) Dx=Ex2-Ex^2Dy=Ey2-Ey^2结果:Ex =Ey =Ex2 =1/2Ey2 =1/6Dx =1/18Dy =1/6>>P103-26代码:Syms x yfxy=2-x-y;Ex=int(int(fxy*x,y,0,1),x,0,1);Ey=int(int(fxy*y,y,0,1),x,0,1);Ex2=int(int(fxy*x^2,y,0,1),x,0,1);Ey2=int(int(fxy*y^2,y,0,1),x,0,1);Dx=Ex2-Ex^2;Dy=Ey2-Ey^2;Exy=int(int(fxy*x*y,y,0,1),x,0,1);Covxy=Exy-Ex*Eyrxy=Covxy/(sqrt(Dx)*sqrt(Dy))D=4*Dx+Dy结果:Covxy =-1/144rxy =-1/11D =55/144实验四统计中的样本数字特征实验五两个正态总体均值差,方差比的区间估计[实验目的]1掌握两个正态总体均值差,方差比的区间估计方法2会用MATLAB求两个正态总体均值差,方差比的区间估计[实验要求]两个正态总体的区间估计理论知识[实验内容]P175-27代码:x1=[0.143 0.142 0.143 0.137]x2=[0.140 0.142 0.136 0.138 0.140] x=mean(x1)y=mean(x2)s1=var(x1)s2=var(x2)s=sqrt((3*s1+4*s2)/7)t=tinv(0.975,7)d1=(x-y)-t*s*sqrt(1/4+1/5)d2=(x-y)+t*s*sqrt(1/4+1/5)结果:s =0.0026t =2.3646d1 =-0.0020d2 =0.0061即置信区间为(-0.0020,0.0061)P175-28代码:u=norminv(0.975,0,1)s=sqrt(0.035^2/100+0.038^2/100)d1=(1.71-1.67)-u*sd2=(1.71-1.67)+u*s结果:u =1.9600s =0.0052d1 =0.0299d2 =0.0501>>即置信区间为(0.0299,0.0501)P175-30代码:f1=finv(0.975,9,9)f2=finv(0.025,9,9)f3=finv(0.95,9,9)f4=finv(0.05,9,9)s12=0.5419s22=0.6065d1=s12/s22/f1d2=s12/s22/f2d3=s12/s22/f3d4=s12/s22/f4结果:d1 =0.2219d2 =3.5972d3 =0.2811d4 =2.8403>>即置信区间为(0.2219,3.5972),置信下界为0.2811,置信上界为2.8403实验五假设检验[实验目的]1 会用MATLAB进行单个正态总体均值及方差的假设检验2 会用MATLAB进行两个正态总体均值差及方差比的假设检验[实验要求]熟悉MATLAB进行假设检验的基本命令与操作[实验内容]P198-2原假设H0:平均尺寸mu=32.25;H1:平均尺寸mu<>32.25方差已知,用ztest代码:x=[32.56,29.66,31.64,30.00,31.87,31.03][h,sig,ci,zval]=ztest(x,32.25,1.1,0.05)[h,sig,ci,zval]=ztest(x,32.25,1.1,0.01)(注:h是返回的一个布尔值,h=0,接受原假设,h=1,拒绝原假设;sig表示假设成立的概率;ci为均值的1-a的置信区间;zval为Z统计量的值)结果:h =1sig =0.0124ci =30.2465 32.0068zval =-2.5014h =sig =0.0124ci =29.9699 32.2834zval =-2.5014即a=0.05时,拒绝原假设H0;a=0.01时,接受原假设H0p198-3原假设H0:总体均值mu=4.55;H1:总体均值mu<>4.55方差未知,用ttest代码:x=[4.42,4.38,4.28,4.40,4.42,4.35,4.37,4.52,4.47,4.56][h,sig,ci,tval]=ttest(x,4.55,0.05)结果:h =1sig =6.3801e-004ci =4.3581 4.4759tval =tstat: -5.1083df: 9sd: 0.0823h=1,即拒绝原假设H0p198-10是否认为是同一分布需要分别检验总体均值和方差是否相等原假设H0:mu1-mu2=0;H1:mu1-mu2<>0代码:x=[15.0,14.5,15.2,15.5,14.8,15.1,15.2,14.8]y=[15.2,15.0,14.8,15.2,15.1,15.0,14.8,15.1,14.8][h,sig,ci]=ttest2(x,y,0.05)结果:h =sig =0.9172ci =-0.2396 0.2646h=0,即接受原假设H0,mu1-mu2=0,两分布的均值相等;验证方差相等的matlab方法没有找到可采用以下语句整体检验两个分布是否相同,检验两个样本是否具有相同的连续分布[ h ,sig, ksstat]=kstest2(x,y,0.05)原假设H0:两个样本具有相同连续分布H1:两个样本分布不相同代码:x=[15.0,14.5,15.2,15.5,14.8,15.1,15.2,14.8]y=[15.2,15.0,14.8,15.2,15.1,15.0,14.8,15.1,14.8][ h ,sig, ksstat]=kstest2(x,y,0.05)结果:h =sig =0.9998ksstat =0.1528>>h=0,即接受原假设H0,两个样本有相同的连续分布。

Matlab在《概率论与数理统计》教学中的应用

Matlab在《概率论与数理统计》教学中的应用

Matlab在《概率论与数理统计》教学中的应用
Matlab提供了丰富的概率分布函数,可以帮助学生更好地理解不同的概率分布。

学生可以使用Matlab生成正态分布、二项分布、泊松分布等不同的概率分布,并画出相应的概率密度函数、累积分布函数等图形。

通过实际的计算和绘图,学生可以更直观地看到不同概率分布的特点,加深对概率分布的理解。

Matlab提供了各种统计函数,可以方便地进行数据的描述性统计和推断性统计。

学生可以使用Matlab计算样本的平均值、方差等描述性统计量,还可以使用Matlab进行假设检验、置信区间估计等推断性统计。

通过实际的计算和分析,学生可以更好地掌握统计学中的概念和方法。

Matlab还可以进行模拟实验,帮助学生理解概率和统计的原理。

学生可以使用Matlab 模拟抛硬币的实验,验证概率的定义和性质。

学生还可以使用Matlab模拟中心极限定理,观察样本均值的分布趋于正态分布的情况。

通过实际的模拟实验,学生可以更深入地理解抽样分布和极限定理等重要概念。

Matlab还可以用于数据的可视化。

学生可以使用Matlab绘制直方图、散点图、箱线图等图形,展示数据的分布和变化。

通过可视化的方式,学生可以更好地理解数据的特点和规律,并能够更直观地展示和解释统计分析的结果。

Matlab在《概率论与数理统计》教学中具有广泛的应用价值。

通过利用Matlab进行计算、模拟和可视化等任务,可以帮助学生更好地理解概率和统计的概念和方法,提高学习效果。

在教学中合理地使用Matlab可以有效地促进学生对概率论与数理统计的学习和理解。

概率论和数理统计的Matlab 实现

概率论和数理统计的Matlab 实现
0.6827 更一般地,若观测量取自参数为 和 µ 的正态分布,则它落在该区间中的概率 为 68%。
expcdf 函数 功能:计算累加指数分布函数。 语法:P = expcdf(X,MU) 描述:expcdf(X,MU) 计算参数为 MU 的数据 X 的累加指数分布函数。指数 MU 必须为
正。 累加指数分布函数的计算公式为:
概率论和数理统计的 Matlab 实现
1概 述
自然界和社会上会发生各种各样的现象,其中有的现象在一定条件下是一定要发生的, 有的则表现出一定的随机性,但总体上又有一定的规律可循。一般称前者为确定性事件, 后者为不确定性事件(或称随机事件)。概率论和数理统计就是研究和揭示不确定事件统计 规律性的一门数学学科。
f (x |l) =
lx x!
e-l
I (0,1,K )
(x)
y=
f (x | b) =
x b2
çæ - x 2 ÷ö
eçè 2b2 ÷ø
y
=
f
(x
| v)
=
Gçæ è
v
+ 2
1
÷ö ø
Gçæ è
v 2
÷ö ø
1
1
vp
ççèæ1 +
v +1
x2 v
÷÷øö
2
y=
f (x | N) =
1 N
I (1,..., N ) ( x)
y
=f(x|r,p)
=
ççèæ
r
+
x x
+
1÷÷øö
p
x
q
x
I
(
0,1,...)
(
x)
其中, q = 1 - p

第8章 matlab 概率论与数理统计问题的求解

第8章 matlab 概率论与数理统计问题的求解

8.1.3 概率问题的求解
图4-9
• 例:
>> b=1; p1=raylcdf(0.2,b); p2=raylcdf(2,b); P1=p2-p1 P1 = 0.8449
>> p1=raylcdf(1,b); P2=1-p1 P2 = 0.6065
• 例:
>> syms x y; f=x^2+x*y/3; >> P=int(int(f,x,0,1/2),y,0,1/2) P= 5/192 >> syms x y; f=x^2+x*y/3; P=int(int(f,x,0,1),y,0,2) P= 1
8.1.2.3
பைடு நூலகம்
分布
• 例:
>> x=[-0.5:.02:5]‘; %x=[-eps:-0.02:-0.5,0:0.02:5]; x=sort(x’);替代 >> y1=[]; y2=[]; a1=[1,1,2,1,3]; lam1=[1,0.5,1,2,1]; >> for i=1:length(a1) y1=[y1,gampdf(x,a1(i),lam1(i))]; y2=[y2,gamcdf(x,a1(i),lam1(i))]; end >> plot(x,y1), figure; plot(x,y2)
8.1.2.2 正态分布
正态分布的概率密度函数为:
• 例:
>> x=[-5:.02:5]'; y1=[]; y2=[]; >> mu1=[-1,0,0,0,1]; sig1=[1,0.1,1,10,1]; sig1=sqrt(sig1); >> for i=1:length(mu1) y1=[y1,normpdf(x,mu1(i),sig1(i))]; y2=[y2,normcdf(x,mu1(i),sig1(i))]; end >> plot(x,y1), figure; plot(x,y2)

(完整版)Matlab概率论与数理统计

(完整版)Matlab概率论与数理统计

Matlab 概率论与数理统计、matlab 基本操作 1. 画图【例01.01】简单画图hold off; x=0:0.1:2*pi; y=sin (x);plot(x,y, '-r'); x1=0:0.1:pi/2; y1=s in( x1); hold on;fill([x1, pi/2],[y1,1/2],'b');【例01.02】填充,二维均匀随机数hold off ;x=[0,60];y0=[0,0];y60=[60,60]; x1=[0,30];y1=x1+30; x2=[30,60];y2=x2-30;plot(x,y0, 'r' ,y0,x, plot(x1,y1, 'r' ,x2,y2, yr=u nifrnd (0,60,2,100);plot(yr(1,:),yr(2,:), axis( 'on'); axis( 'square' ); axis([-20 80 -20 80 ]);xv=[0 0 30 60 60 30 0];yv=[0 30 60 60 30 0 0]; fill(xv,yv, 'b');hold on ;'r' ,x,y60, 'r' ,y60,x,'r')'r');'m.')2. 排列组合kC=nchoosek(n,k) : CC n ,例 nchoosek(5,2)=10, nchoosek(6,3)=20.prod(n1:n2):从 n1 至U n2 的连乘【例01.03】至少有两个人生日相同的概率365 364|||(365 rs 1)rs365365 364 365 rs 1 365 365365rs=[20,25,30,35,40,45,50]; %每班的人数p1= on es(1,le ngth(rs)); p2=on es(1,le ngth(rs));%用连乘公式计算for i=1:le ngth(rs) p1(i)=prod(365-rs(i)+1:365)/365A rs(i); end%用公式计算(改进) for i=1:le ngth(rs)for k=365-rs(i)+1:365p2(i)=p2(i)*(k/365); end ; end%用公式计算(取对数) for i=1:le ngth(rs)p1(i)=exp(sum(log(365-rs(i)+1:365))-rs(i)*log(365)); end公式计算P 1n!C NN nN!1 (N n)!1N nN (N 1) (N n 1)、随机数的生成3. 均匀分布随机数rand(m,n);产生m行n列的(0,1)均匀分布的随机数rand(n);产生n行n列的(0,1)均匀分布的随机数【练习】生成(a,b)上的均匀分布4. 正态分布随机数randn(m,n); 产生m行n列的标准正态分布的随机数【练习】生成N(nu,sigma42)上的正态分布5. 其它分布随机数三、一维随机变量的概率分布1. 离散型随机变量的分布率(1) 0-1分布(2) 均匀分布_ k k n k(3) 二项分布:binopdf(x,n,p),若X ~ B(n, p),则P{X k} C n p (1 p),x=0:9 ;n=9;p=0.3;y= bin opdf(x ,n, p);plot(x,y,'b-',x,y,'r*')y=[ 0.0404, 0.1556, 0.2668, 0.2668, 0.1715, 0.0735, 0.0210, 0.0039, 0.0004, 0.0000 ]当n较大时二项分布近似为正态分布x=0:100; n=100;p=0.3;y= bin opdf(x ,n, p);plot(x,y,'b-',x,y,'r*')ke⑷泊松分布:piosspdf(x, lambda),若X ~ (),贝U P{ X k}k!x=0:9; lambda = 3;y= poisspdf (x,lambda);plot(x,y,'b-',x,y,'r*')y=[ 0.0498, 0.1494, 0.2240, 0.2240, 0.1680, 0.1008, 0.0504, 0.0216, 0.0081,0.0027]k 1⑸几何分布:geopdf (x, p),贝U P{X k} p(1 p)x=0:9;p=0.3y= geopdf(x,p);plot(x,y,'b-',x,y,'r*')y=[ 0.3000, 0.2100, 0.1470, 0.1029, 0.0720, 0.0504, 0.0353, 0.0247, 0.0173, 0.0121 ] x=0:10;N=20;M=8; n=4;y= hygepdf(x,N,M, n); plot(x,y,'b-',x,y,'r*')y=[ 0.1022, 0.3633, 0.3814, 0.1387, 0.0144, 0, 0, 0, 0, 0, 0 ]2. 概率密度函数(1)均匀分布:unifpdf(x,a,b) , f (x)其它a=0;b=1;x=a:0.1:b; y= uni fpdf (x,a,b);1 2 厂(x )2 ■厂ex=-10:0.1:12;mu=1;sigma=4;y= no rmpdf(x,mu,sigma);rn=10000;z= normrnd (mu,sigma,1,rn); % 产生 10000 个正态分布的随机数 d=0.5;a=-10:d:12;b=(hist(z,a)/rn)/d;%以a 为横轴,求出10000个正态分布的随机数的频率(6)超几何分布:hygepdf(x,N,M,n),则 P{Xk}C k nM CNC N(2)正态分布:normpdf(x,mu,sigma) , f (x)plot(x,y,'b-',a,b,'r.')1 _x⑶指数分布:exppdf(x,mu), f (x)其它x=0:0.1:10;mu=1/2;■ t京■I_ey= exppdf(x,mu); plot(x,y,'b-',x,y,'r*')1n i F⑷2分布:chi2pdf(x,n) , f (x; n) 2n ^( n 2) % e x 0hold onx=0:0.1:30;n=4;y= chi2pdf(x, n);plot(x,y,'b');%blue n=6;y= chi2pdf(x, n);plot(x,y,'r');%red n=8;y=chi2pdf(x ,n );plot(x,y,'c');%cya n n=10;y= chi2pdf(x, n);plot(x,y,'k');%black lege nd(' n=4', 'n=6', 'n=8', 'n=10');n 1((n 1) 2) x2 2⑸t 分布:tpdf(x,n) , f (x; n) ------------------ 1 -J n (n. 2) nhold onx=-10:0.1:10;n=2;y= tpdf(x, n);plot(x,y,'b');%bluen=6;y= tpdf(x, n);plot(x,y,'r');%redn=10;y= tpdf(x ,n );plot(x,y,'c');%cya nn=20;y= tpdf(x, n);plot(x,y,'k');%black lege nd(' n=2', 'n=6', 'n=10', 'n=20');((m山m 门2n2) 2)小2% 2 1 5 % 2(n2 2) n2n2x 0(6) F 分布:fpdf(x,n1,n2) , f (x; n「n2) (E 2)0 x 0hold onx=0:0.1:10;n1=2; n2=6;y= fpdf(x, n1, n2);plot(x,y,'b');%bluen1=6; n2=10;y= fpdf(x, n1, n2);plot(x,y,'r');%red n1=10; n2=6;y= fpdf(x, n1, n2);plot(x,y,'c');%cyann1=10; n2=10;y= fpdf(x, n1,n 2);plot(x,y,'k');%black legend(' n仁2; n2=6', ' n1= 6; n2=10', ' n仁10;n2=6', ' n仁10; n2=10');3.分布函数F(x) P{X x}【例03.01】求正态分布的累积概率值设X ~ N(3,22),求 P{2 X 5}, P{ 4 X 10}, P{ X 2}, P{X 3},14.逆分布函数,临界值y F(x) P{X x} , x F (y) , x称之为临界值【例03.02】求标准正态分布的累积概率值y=0:0.01:1;x=normin v(y,0,1);【例03.03】求2(9)分布的累积概率值hold offy=[0.025,0.975];x=ch i2in v(y,9);n=9;x0=0:0.1:30;y0=chi2pdf(x0, n); plot(x0,y0, 'r'); x1=0:0.1:x(1);y1=chi2pdf(x1, n);x2=x(2):0.1:30;y2=chi2pdf(x2 ,n);hold onfill([x1, x(1)],[y1,0], 'b');fill([x(2),x2],[0,y2], 'b');【练习1.1】二项分布、泊松分布、正态分布(1)对n 10, p 0.2二项分布,画出b(n,p)的分布律点和折线;(2)对np,画出泊松分布()的分布律点和折线;(3)对np, 2叩(1 p),画出正态分布N( , 2)的密度函数曲线;(4)调整n, p,观察折线与曲线的变化趋势。

概率论与数理统计MATLAB上机实验报告

概率论与数理统计MATLAB上机实验报告

《概率论与数理统计》MATLAB上机实验实验报告一、实验目的1、熟悉matlab的操作。

了解用matlab解决概率相关问题的方法。

2、增强动手能力,通过完成实验内容增强自己动手能力。

二、实验内容1、列出常见分布的概率密度及分布函数的命令,并操作。

概率密度函数分布函数(累积分布函数) 正态分布normpdf(x,mu,sigma) cd f(‘Normal’,x, mu,sigma);均匀分布(连续)unifpdf(x,a,b) cdf(‘Uniform’,x,a,b);均匀分布(离散)unidpdf(x,n) cdf(‘Discrete Uniform’,x,n);指数分布exppdf(x,a) cdf(‘Exponential’,x,a);几何分布geopdf(x,p) cdf(‘Geometric’,x,p);二项分布binopdf(x,n,p) cdf(‘Binomial’,x,n,p);泊松分布poisspdf(x,n) cdf(‘Poisson’,x,n);2、掷硬币150次,其中正面出现的概率为0.5,这150次中正面出现的次数记为X(1) 试计算X=45的概率和X≤45 的概率;(2) 绘制分布函数图形和概率分布律图形。

答:(1)P(x=45)=pd =3.0945e-07P(x<=45)=cd =5.2943e-07(2)3、用Matlab软件生成服从二项分布的随机数,并验证泊松定理。

用matlab依次生成(n=300,p=0.5),(n=3000,p=0.05),(n=30000,p=0.005)的二项分布随机数,以及参数λ=150的泊松分布,并作出图线如下。

由此可以见得,随着n的增大,二项分布与泊松分布的概率密度函数几乎重合。

因此当n足够大时,可以认为泊松分布与二项分布一致。

4、 设22221),(y x e y x f +−=π是一个二维随机变量的联合概率密度函数,画出这一函数的联合概率密度图像。

概率与数理统计matlab实验报告1

概率与数理统计matlab实验报告1
>> p=[nchoosek(3,1)*nchoosek(2,1)*nchoosek(9,3)*nchoosek(6,3)]/[nchoosek(12,4)*nchoosek(8,4)]
p =
0.2909
(2).
>> p=[nchoosek(3,1)*nchoosek(9,3)*nchoosek(6,3)]/[nchoosek(12,4)*nchoosek(8,4)]
p =
0.1455
二.1.
>> p=1-0.98^200-nchoosek(200,1)*0.02*0.98^199
p =
0.9106
2.
>> p=normcdf(22,20,1.5)-normcdf(19,20,1.5)
p =
0.6563
三.1.
>> x=-10:0.01:10;
y1=normpdf(x,2,9);y2=normpdf(x,4,9);y3=normpdf(x,6,9);
plot(x,y1,x,y2,x,y3)






(2)
.>> y=-10:0.01:10;
>> x1=normpdf(y,0,1);x2=normpdf(y,0,4);x3=normpdf(y,0,9);
>> plot(x1,y,x2,y,x3,y)




熟练掌握matlab的使用方法。
13-14-2电子信息工程实验报告1
姓名魏丰Βιβλιοθήκη 学号20120506305
班级
1203
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Matlab 概率论与数理统计
一、matlab 基本操作
1. 画图
【例
【例
2. C=nchoosek(n,k):k
n C C =,例nchoosek(5,2)=10, nchoosek(6,3)=20.
prod(n1:n2):从n1到n2的连乘
【例01.03】至少有两个人生日相同的概率
公式计算n
n n
n N
N
n N N N N n N N N C n p )1()1(1)!
(!
1!1+--⋅-=--=-
=
二、随机数的生成
3.均匀分布随机数
rand(m,n); 产生m行n列的(0,1)均匀分布的随机数rand(n); 产生n行n列的(0,1)均匀分布的随机数
【练习】生成(a,b)上的均匀分布
4.正态分布随机数
randn(m,n); 产生m行n列的标准正态分布的随机数【练习】生成N(nu,sigma.^2)上的正态分布
三、一维随机变量的概率分布
1. 离散型随机变量的分布率
(1) 0-1分布 (2) 均匀分布
(3) 二项分布:binopdf(x,n,p),若~(,)X B n p ,则{}(1)k k n k
n P X k C p p -==-,
(4) 泊松分布:piosspdf(x, lambda),若~()X πλ,则{}!
k e P X
k k λ
λ-==
(5) 几何分布:geopdf (x,p ),则1
{}(1)
k P X k p p -==-
(6) 超几何分布:hygepdf(x,N,M,n),则{}k n k M N
M
n
N
C C P X k C --== 2. 概率密度函数
(1) 均匀分布:unifpdf(x,a,b),1()0
a x b
f x b a
⎧≤≤⎪
=-
⎨⎪⎩其它
(2) 正态分布:normpdf(x,mu,sigma),221
()2()
x f x μσ
--=
(3) 指数分布:exppdf(x,mu),11()0
x e a x b f x θθ
-⎧≤≤⎪
=⎨⎪⎩
其它
(4) 2
χ分布:chi2pdf(x,n),12221
0(;)2(2)
00
n x n x e x f x n
n x --⎧≥⎪=Γ⎨⎪<⎩
(5) t 分布:tpdf(x,n),2
2
(;)1x f x n n
-

=
+⎪

(6) F 分布:fpdf(x,n1,n2),1
1212
22
12112121222
(()2)10(;,)(2)(2)00
n n n n n n n n x x x f x n n n n n n x +-
-⎧⎛⎫⎛⎫
Γ+⎪⎪+≥ ⎪
⎪=⎨ΓΓ⎝⎭⎝⎭

<⎪⎩
3. 分布函数(){}F x P X x =≤ 【例03.01】求正态分布的累积概率值
设2
~(3,2)X N ,求{25},{410},{2},{3}P X P X P X P X <<-<<>>,
4. 逆分布函数,临界值(){}y F x P X x ==≤,1
()x F y -=,x 称之为临界值 【例03.02】求标准正态分布的累积概率值
【例03.03】求2
(9)χ分布的累积概率值
【练习1.1】二项分布、泊松分布、正态分布
(1) 对10,0.2n p ==二项分布,画出(,)b n p 的分布律点和折线; (2) 对np λ=,画出泊松分布()πλ的分布律点和折线;
(3) 对2,(1)np np p μσ==-,画出正态分布2(,)N μσ的密度函数曲线; (4) 调整,n p ,观察折线与曲线的变化趋势。

已知某种股票现行市场价格为100元/股,假设该股票每年价格增减是以0.4,10.6
=-=呈20%与
p p
-10%两种状态,(1)求10
n=年后该股票价格的分布,画出分布律点和折线;(2)求n年之后的平均价格,画出平均价格的折线。

a=[1.2,1.2^2,1.2^3,1.2^4,1.2^5,1.2^6,1.2^7,1.2^8,1.2^9,1.2^10];
b=[0.9^10,0.9^9,0.9^8,0.9^7,0.9^6,0.9^5,0.9^4,0.9^3,0.9^2,0.9];
x=100*a.*b;
m=1:10;
n=10;p=0.4;
y=binopdf(m,n,p);
plot(x,y,'b-',x,y,'r.')
x2=x.*y
x3=geomean(x2)
x4=[x3,x3];
y4=[0,0.3];
hold on
plot(x4,y4,'b-')
设数X 在(0,1)上随机取值,当观察到,(01)X x x =<<时,数Y 在区间(,1)x 上随机取值,(1)求Y 的密度函数()Y f y ,画出密度函数曲线;(2)模拟该过程,产生10000n =个随机数X ,在根据每个X 的值,产生一个随机数Y (共有10000n =),画出Y 的样本密度曲线。

【练习1.4】 二项分布、正态分布、切比雪夫不等式
在每次实验中,事件A 发生的概率是0.5,求在1000次独立实验中,事件A 发生的次数在475~525之间的概率。

(1)用二项分布公式精确计算;(2)用正态分布近似计算;(3)用切比雪夫不等式进行估计。

> k=475:525;
y=0.5.^k.*0.5.^(1000-k); >> sum(y) ans = 4.7596e-300
(2)
y1=normrnd(500,sqrt(250),1,1000) ; j=0;
for k=1:1000;
if y1(k)>=475&&y1(k)<=525 j=j+1; end ; end ; m=j/1000
m = 0.8920
(3)
y1=binornd(1000,0.5,1,1000) ; y2=ones(1,1000); for k=1:1000;
y2(k)=(y1(k)-500)^2; end ;
y=sum(y2)/25^2/1000
y = 0.4192
【练习1.5】 正态分布
对正态分布的3σ法则进行演示,设22~(,)(1,2)X N N μσ=, (1)画出其密度函数曲线()X f x ;(2)分别对(),μσμσ-+,()2,2μσμσ-+,()3,3μσμσ-+进行填充;(3)分别求出随机变量X 落在这三个区间内的概率;(4)产生10000n =个随机数,计算其分别落在这三个区间的频率。

x=rand(1,10000); for k=1:10000;
y=x(k)+(1-x(k)).*rand(1,10000); end
x1=0.05:0.05:1; for k=0;j=1:20; for i=1:10000;
if y(i)>=j&&y(i)<=j+0.1 k=k+1; end ; end ;
p1(j)=k/1000; end ;
plot(x1,p1,'b-')。

相关文档
最新文档