数学建模作业数学规划模型----供应与选址的问题

合集下载

数学建模仓库选址问题

数学建模仓库选址问题

数学建模仓库选址问题(总10页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除仓库选址问题摘要随着全球经济的一体化,物资流通的范围已经不仅仅局限在国家内部,而是也走向来了世界各地。

面对多种多样的物资运输方案,就需要我们从中选择一种最节约费用的方案来实施。

基于此,本文针对美国超级医疗设备公司选址问题给出了两种数学模型。

全文首先对给出的题目进行数学分析,分析数据之间的直观联系和潜在联系,把数据从现实问题中抽离出来转化为纯粹的数学符号,然后借助于数学分析中求解重心坐标的公式(Dix--第i个地点的x坐标;Diy--第i个地点的y坐标;Vi--运到第i个地点或从第i个地点运出的货物量)两点间距离公式和数理统计中求解加权平均值的方法对数据进一步整合。

在此基础上,将之转化为MATLAB计算语言进行数据操作,一方面,借助于MAYLAB绘图工具将题中给出的数据再现于图中,直观明了,便于从图中发现些隐含信息;另一方面,利用MATLAB程序设计中的循环结构进行必要的编程和计算。

由于每种方案的均相等,所以只需比较一下每种方案的总成本(外向运输成本和内向运输成本)即可,总成本最低的城市即为最佳选址点,利用方案比较法最终得出结论。

关键词:重心法、加权平均值法一、问题重述美国超级医疗设备公司在亚利桑那州的菲尼克斯和墨西哥的蒙特雷生产零部件,然后由位于堪萨斯州堪萨斯城的一家仓库接受生产出来的零件,随后在分拨给位于美国和加拿大的客户。

但由于某些原因,公司要考虑仓库选址的最优化。

现已知若继续租赁原仓库,租金为每年每平方英尺美元,仓库面积为20万平方英尺,若在其他城市租同等规模的仓库,租金为每平方英尺美元,并且新租约或续租的期限均为5年。

假如转移仓库,则需一次性支付30万美元的搬迁费及其他选址费。

从工厂到堪萨斯仓库的运输费为2162535美元,从仓库到客户的运输费为4519569美元,仓库租赁费为每年100万美元。

数学建模报告选址问题

数学建模报告选址问题

长沙学院数学建模课程设计说明书题目选址问题系(部) 数学与计算机科学专业(班级) 数学与应用数学姓名学号指导教师起止日期 2015、6、1——2015、6、5课程设计任务书课程名称:数学建模课程设计设计题目:选址问题已知技术参数和设计要求:选址问题(难度系数1.0)已知某地区的交通网络如下图所示,其中点代表居民小区,边代表公路,边上的数字为小区间公路距离(单位:千米),各个小区的人数如下表所示,问区中心医院应建在哪个小区,可使离医院最远的小区居民人均就诊时所走的路程最近?各阶段具体要求:1.利用已学数学方法和计算机知识进行数学建模。

2.必须熟悉设计的各项内容和要求,明确课程设计的目的、方法和步骤。

3.设计中必须努力认真,独立地按质按量地完成每一阶段的设计任务。

4.设计中绝对禁止抄袭他人的设计成果。

5.每人在设计中必须遵守各组规定的统一设计时间及有关纪律。

6.所设计的程序必须满足实际使用要求,编译出可执行的程序。

7.要求程序结构简单,功能齐全,使用方便。

设计工作量:论文:要求撰写不少于3000个文字的文档,详细说明具体要求。

1v 5工作计划:提前一周:分组、选题;明确需求分析、组内分工;第一天:与指导老师讨论,确定需求、分工,并开始设计;第二~四天:建立模型并求解;第五天:完成设计说明书,答辩;第六天:针对答辩意见修改设计说明书,打印、上交。

注意事项⏹提交文档➢长沙学院课程设计任务书(每学生1份)➢长沙学院课程设计论文(每学生1份)➢长沙学院课程设计鉴定表(每学生1份)指导教师签名:日期:教研室主任签名:日期:系主任签名:日期:长沙学院课程设计鉴定表目录第一章课程设计的目的、任务及要求 (2)1.1 目的 (2)1.2 主要任务 (2)1.3 要求 (2)摘要 (3)第二章问题重述 (4)2.1 问题背景 (4)2.2 问题重述 (4)第三章问题分析 (5)第四章假设与符号约定 (6)4.1 模型假设 (6)4.2符号说明 (6)第五章模型的建立与求解 (7)5.1.选定中心点 (7)5.1.1 模型一 (7)5.1.2 模型二 (7)5.2 题目引申 (9)第六章模型的结果分析与检验 (10)6.1 结果分析 (10)6.2 模型检验 (10)6.3 模型优缺点 (12)结论 (13)参考文献 (14)结束语 (15)附录 (16)第一章课程设计的目的、任务及要求1.1 目的1、巩固《数学建模》课程基本知识,培养运用《数学建模》理论知识和技能分析解决实际应用问题的能力;2、初步掌握数学建模的基本流程,培养科学务实的作风和团体协作精神;3、培养调查研究、查阅技术文献、资料、手册以及撰写科技论文的能力。

供应与选址_数学模型matlab[1]

供应与选址_数学模型matlab[1]

供应与选址 数学模型摘要:本文给出了有关制定某公司每天的供应计划与临时料场选址问题的相应数学规划模型。

问题一是一个线性规划问题,在考虑有直线道路连通的情况下,首先建立单目标的优化模型即用到临时料场的模型一,运用lingo 软件编程和处理相关数据,得到最优决策方案,即该公司每天向六个建筑工地运输水泥的供应计划如表1,从而可使得总的吨千米数最小.问题二是在问题一的基础上建立未用两个临时料场的一个非线性规划模型,保持供应计划不变的情况下,改变临时料场的位置以使吨千米数进一步减少。

同样用lingo 软件求解可得当新建的临时料场位于C(6,4),D(7,8)两位置时,节省的吨千米数可达到 30 .关键字:供应计划 线性规划 非线性规划 吨千米数一、 问题重述某公司有6个建筑工地要开工,每个工地的位置(用平面坐标系a ,b 表示,距离单位:千米)及水泥日用量d (吨)由下表给出. 目前有两个临时料场位于A (5,1),B (2,7),日储量各有30吨.(1)试制定每天的供应计划,即从A ,B 两料场分别向各工地运送多少吨水泥,使总的吨千米数最小?(2)为了进一步减少吨千米数,打算舍弃两个临时料场,改建两个新的,2.1问题的假设1、料场与工地之间有直线道路;2、两料场供应量应与工厂日用量达到平衡;3、改建后供应计划保持原计划不变;4、每个工地的位置用平面坐标的形式表示; 2.2问题的的分析:制定供应计划就是安排从两个料场向六个建筑工地运送水泥的方案,目标是使总的吨千米数最小。

每个工地的位置用平面坐标的形式表示即6个建筑工地位置坐标为(j a ,j b ) (j=1,2,…,6,)(单位:千米),水泥日用量j d (单位:吨),现有A(5,1),B(2,7) 两料场,记(i x ,iy ),i =(1,2),日储量i e 各有30吨. 从料场j 向工地i 的运送量为Cij 。

个新的临时料场,日储量各为20吨,求新建的料场的位置,在其它条件不变下使总吨公里数最小,此时节省的吨千米数最大.为此,需建立一个非线形规划模型.2.3基本符号说明 i :第i 个临时料场;j :第j 个建筑工地;j d :工地j 的水泥日用量;ijc:料场i 到工地j 的水泥运输量; ijr:料场i 到工地j 的距离;ie :料场i 的日储量;四.模型的建立及求解4.1.1模型一的建立使用两个临时料场A(5,1),B(2,7).求从料场i 向工地j 的运送量为Cij ,在各工地用量必须满足和各料场运送量不超过日储量的条件下,使总的吨千米数最小,是一个线性规划模型。

数学建模 学校选址问题模型

数学建模 学校选址问题模型

学校选址问题摘 要本文针对某地新开发的20个小区建设配套小学问题建立了0-1规划模型和优化模型。

为问题一和问题二的求解,提供了理论依据。

模型一:首先:根据目标要求,要建立最少学校的方案列出了目标函数:∑==161i i x s然后:根据每个小区至少能被一所学校所覆盖,列出了20个约束条件;最后:由列出的目标函数和约束函数,用matlab 进行编程求解,从而得到,在每个小区至少被一所学校所覆盖时,建立学校最少的个数是四所,并且一共有22种方案。

模型二:首先:从建校个数最少开始考虑建校总费用,在整个费用里面,主要是固定费用,由此在问题一以求解的条件下,进行初步筛选,得到方案1,4,8的固定成本最少。

然后:在初步得出成本费用最少时,对每个这三个方案进一步的求解,求出这三个方案的具体的总费用,并记下这三套方案中的最小费用。

其次:对这三套方案进行调整,调整的原则是:在保证每个小区有学校覆盖的条件下,用多个固定成本费用低的备选校址替换固定成本费用高的备选校址。

在替换后,进行具体求解。

再次:比较各种方案的计算结果,从而的出了如下结论: 选用10,11,13,15,16号备选校址的选址方案,花费最少,最少花费为13378000元。

最后:对该模型做了灵敏度分析,模型的评价和推广。

关键字:最少建校个数 最小花费 固定成本 规模成本 灵敏度分析1. 问题重述1.1问题背景:某地新开发的20个小区内需要建设配套的小学,以方便小区内居民的的孩子上学。

但是为了节省开支,建造的学校要求尽量的少,为此,设备选定的16个校址提供参考,各校址覆盖的小区情况如表1所示:表1-1备选校址表备选校址1 2 345 6 7 8 覆盖小区1,2,3, 4,6 2,3,5,8, 11,20 3,5,11,201,4,6,7,12 1,4,7,8,9,11,13, 14 5,8,9,10 11,16,20 10,11,1516,19, 20 6,7,12, 13,17, 18 备选校址9 10 11 12 13 14 15 16覆盖小区 7,9,13, 14,15, 17,18, 199,10,14,15,16, 18,191,2,4,6, 75,10,11, 16,20,12,13,14,17, 189,10,14, 152,3,,5, 11,202,3,4,5,81.2 问题提出:问题一、求学校个数最少的建校方案,并用数学软件求解(说明你所使用的软件并写出输入指令)。

数学建模论文--物流及选址问题

数学建模论文--物流及选址问题

物流预选址问题2摘要错误!未定义书签。

一、问题重述3二、问题的分析32.1 问题一:分析确定合理的模型确定工厂选址和建造规模42.2 问题二:建立合理的仓库选址和建造规模模型42.3 问题三:工厂向中心仓库供货的最正确方案问题42.4 问题四:根据一组数据对自己的模型进展评价4三、模型假设与符号说明53.1条件假设53.2模型的符号说明5四、模型的建立与求解64.1 问题一:分析确定合理的模型为两个工厂合理选址并确定建造规模64.1.1模型的建立64.2 问题二:建立合理模型确定中心仓库的位置及建造规模84.2.1 基于重心法选址模型94.2.2 基于多元线性回归法确定中心仓库的建造规模104.3 问题三:工厂向中心仓库供货方案114.4 问题四:选用一组数据进展计算12五、模型评价175.1模型的优缺点175.1.1 模型的优点175.1.2 模型的缺点17六参考文献17物流预选址问题摘要在物流网络中,工厂对中心仓库和城市进展供货,起到生产者的作用,而中心仓库连接着工厂和城市,是两者之间的桥梁,在物流系统中有着举足轻重的作用,因此搞好工厂和中心仓库的选址将对物流系统作用的发挥乃至物流经济效益的提高产生重要的影响。

本论文在综述工厂和中心仓库选址问题研究现状的根底上,对二者选址的模型和算法进展了研究。

对于问题一二,通过合理的分析,我们采用了重心法选址模型找到了工厂和中心仓库的大致位置并给出了确定工厂和中心仓库建造规模的参数和公式,通过用数据进展实例化分析,我们确定了工厂和中心仓库位置和建造规模。

对于问题三我们运用LINGO软件简单的解决了工厂对中心仓库的供货情况。

问题四我们选用了一组数据通过求解多元线性规划对问题进展了实例化分析。

为中心仓库的选址问题做了合理说明。

最后我们对模型进展了评价和分析。

关键词:物流网络重心法选址模型多元线性规划一、问题重述某公司是生产某种商品的省知名厂家。

该公司根据需要,方案在本省建立两个生产工厂和假设干个中心仓库向全省所有城市供货。

数学建模:配送中心选址10页

数学建模:配送中心选址10页

数学建模:配送中心选址10页一、问题描述在某个区域内,有多个顾客需要配送。

假设区域内每个顾客的需求量是一样的,也就是每个顾客需要一定数量的货物,并且在配送过程中需要考虑物流成本。

现在需要选取一个最优的配送中心位置,这个位置不仅要满足区域内所有顾客的需求,还要尽量降低物流成本。

请问应该如何选择配送中心的位置?二、模型建立1.建立数学模型假设有n个顾客,每个顾客的需求量为q,配送中心的位置为(x,y)。

我们的目标是找到最合适的(x,y),同时最小化总的物流成本。

设(xi,yi)为第i个顾客的位置,bi为从配送中心到第i个顾客的物流成本。

我们可以通过以下公式计算bi:bi = α*|xi-x| + β*|yi-y|α和β是权重系数,用来控制x轴和y轴的影响。

通常,重量系数水平一样,即α=β=1时。

最小化总物流成本的目标可以表示为:min{Σbi}+c其中,c是设施成本。

2.求解最优解我们可以使用最小二乘法来求解最优解。

最小二乘法的本质是寻找一个函数,使得在指定的点上函数的值和给定的值最接近。

我们可以通过求导来得到函数的最小值。

根据上述公式,我们可以得到如下最小二乘法的方程:Σ[(α(xi-x)+β(yi-y))^2] = min通过求偏导,我们可以得到x和y的最优解:三、实现为了实现方便,我们将上述模型用Python语言实现。

具体代码如下:import numpy as npdef optimize(x, y, xi, yi, q, alpha=1, beta=1, c=0): # 求解xnx = len(xi)nx_alpha = np.sum(alpha * xi)nx_beta = np.sum(beta * yi)nb = np.sum([alpha * (xi[i] - x) + beta * (yi[i] - y)for i in range(nx)])x_new = (nx_alpha + nb) / (nx_alpha + nx_beta + c) # 求解yny_alpha = np.sum(alpha * yi)ny_beta = np.sum(beta * xi)nb = np.sum([alpha * (yi[i] - y) + beta * (xi[i] - x)for i in range(nx)])y_new = (ny_alpha + nb) / (ny_alpha + ny_beta + c) return x_new, y_new# 初始化配送中心的位置x = np.mean(xi)y = np.mean(yi)# 计算总物流成本total_cost = np.sum([alpha * np.abs(xi[i] - x) + beta * np.abs(yi[i] - y)for i in range(n)]) + cprint('配送中心的位置为:({:.2f}, {:.2f})'.format(x, y))print('总物流成本为:{:.2f}'.format(total_cost))四、结论通过上述模型,在考虑物流成本和所有顾客需求的情况下,我们可以得到最优的配送中心位置。

数学建模学校选址问题模型

数学建模学校选址问题模型

学校选址问题摘要本文针对某地新开发的20个小区建设配套小学问题建立了0-1规划模型和优化模型。

为问题一和问题二的求解,提供了理论依据。

模型一:首先:根据目标要求,要建立最少学校的方案列出了目标函数:然后:根据每个小区至少能被一所学校所覆盖,列出了20个约束条件;最后:由列出的目标函数和约束函数,用matlab进行编程求解,从而得到,在每个小区至少被一所学校所覆盖时,建立学校最少的个数是四所,并且一共有22种方案。

模型二:首先:从建校个数最少开始考虑建校总费用,在整个费用里面,主要是固定费用,由此在问题一以求解的条件下,进行初步筛选,得到方案1,4,8的固定成本最少。

然后:在初步得出成本费用最少时,对每个这三个方案进一步的求解,求出这三个方案的具体的总费用,并记下这三套方案中的最小费用。

其次:对这三套方案进行调整,调整的原则是:在保证每个小区有学校覆盖的条件下,用多个固定成本费用低的备选校址替换固定成本费用高的备选校址。

在替换后,进行具体求解。

再次:比较各种方案的计算结果,从而的出了如下结论:选用10,11,13,15,16号备选校址的选址方案,花费最少,最少花费为13378000元。

最后:对该模型做了灵敏度分析,模型的评价和推广。

关键字:最少建校个数最小花费固定成本规模成本灵敏度分析1.问题重述1.1问题背景:某地新开发的20个小区内需要建设配套的小学,以方便小区内居民的的孩子上学。

但是为了节省开支,建造的学校要求尽量的少,为此,设备选定的16个校址提供参考,各校址覆盖的小区情况如表1所示:表1-1备选校址表1.2 问题提出:问题一、求学校个数最少的建校方案,并用数学软件求解(说明你所使用的软件并写出输入指令)。

问题二、设每建一所小学的成本由固定成本和规模成本两部分组成,固定成本由学校所在地域以及基本规模学校基础设施成本构成,规模成本指学校规模超过基本规模时额外的建设成本,它与该学校学生数有关,同时与学校所处地域有关。

数学建模学校选址问题

数学建模学校选址问题

学校选址问题摘要本文为解决学校选址问题,建立了相应的数学模型。

针对模型一首先,根据信息,对题目中给出的数据进展处理分析。

在保证每个小区,学生至少有一个校址可供选择的情况下,运用整数规划中的0-1规划法,列出建校方案的目标函数与其约束条件,通过LINGO软件,使用计算机搜索算法进展求解。

得出建立校址的最少数目为4个。

再运用MATLAB软件编程,运行得到当建校的个数为4个时,学校选首先,对文中给出的学校建设本钱参数表和各校区1到6年级学龄儿童的平均值〔样本均值〕进展分析,可知20个小区估计共有4320个学龄儿童,当每个学校的平均人数都小于600时,至少需要建设8个学校;其次,模型一得到最少的建校数目为4个,运用MATLAB软件编程,依次列出学校个数为4、5、6、7、8时的最优建校方案,分别算出其最优建校方案下的总本钱;最后,通过比照得出,最低的建校总本钱为1650万,即选取校址10、11、13、14、15、16建设学校。

最后,我们不但对模型进展了灵敏度分析,,保证了模型的有效可行。

关键词:MATLAB灵敏度 0-1规划总本钱选址1 问题重述当代教育的普与,使得学校的建设已成为不得不认真考虑的问题。

1、某地新开发的20个小区需要建设配套的小学,备选的校址共有16个,各校址覆盖的小区情况如表1所示:2、在问题二中,每建一所小学的本钱由固定本钱和规模本钱两局部组成,固定本钱由学校所在地域以与根本规模学校根底设施本钱构成,规模本钱指学校规模超过根本规模时额外的建设本钱,它与该学校学生数有关,同时与学校所处地域有关。

设第i 个备选校址的建校本钱i c 可表示为(单元:元)学生人数)600-(50100200010⎩⎨⎧⨯⨯⨯+=i i i c βα,假如学生人数超过600人,其中i α和i β由表2给出:并且考虑到每一小区的学龄儿童数会随住户的迁移和时间发生变化,当前的准确数据并不能作为我们确定学校规模的唯一标准,于是我们根据小区规模大小用统计方法给出每个小区的学龄儿童数的估计值,见表3:1、要求建立数学模型并利用数学软件求解出学校个数最少的建校方案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0];
f1=0;
fori=1:6
s(i)=sqrt((x(13)-a(i))^2+(x(14)-b(i))^2);
f1=s(i)*x(i)+f1;
end
f2=0;
fori=7:12
s(i)=sqrt((x(15)-a(i-6))^2+(x(16)-b(i-6))^2);
f2=s(i)*x(i)+f2;
end
X12=X 7,X22=X 8,,X32=X 9,X42=X 10,X52=X 11,,X62=X 12
改建两个新料场的情形:
改建两个新料场,要同时确定料场的位置(xj,yj)和运送量 ,在同样条件下使总吨千米数最小.这是非线性规划问题.非线性规划模型为:
设X11=X1,X21=X2,X31=X3,X41=X4,X51=X5,,X61=X6
二、问题分析
对于问题(1),确定用A,B两料场分别向各工地运送水泥,使运输费用(总的吨千米数)最小,即要知道两点间线段最小,料场到工地的路线是直的,而要满足六个工地的需求,又要考虑到A、B两个料场的供应量,即在各工地用量必须满足和各料场运送量不超过日储量的条件下,使总的吨千米数最小,这是线性问题。。
0 0 0 0 0 0 1 1 1 1 1 1];
B=[20;20];
Aeq=[1 0 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0 1 0
一、问题提出
某公司有6个建筑工地要开工,每个工地的位置(用平面坐标系(a,b)表示,距离单位:km)及水泥日用量d(吨)由下表给出。目前有两个料场位于A(5,1),B(2,7),日储量各有20吨。
(1)试制定每天的供应计划,即从A,B两料场分别向各工地运送多少水泥,可使运输费用(总的吨千米数)最小,并求出吨千米数。
3.0000 5.0000 4.0000 7.0000 1.0000 0 0 0
Columns 9 through 16
0 0 5.0000 11.0000 5.6962 4.9289 7.2500 7.7500
fval =
89.8835
exitflag =
5
程序结果截图如下:
即两个新料场的坐标分别为(5.6962,4.9289),(7.2500,7.7500),由料场A、B向6个工地运料方案为:
x0=[5,2];
y0=[1,7];
plot(x,y,'*b');
holdon;
plot(x0,y0,'or');
text(1.25,1.25,'¹¤µØ1');
text(8.75,0.75,'¹¤µØ2');
text(0.5,4.75,'¹¤µØ3')
text(5.75,5,'¹¤µØ4');
text(3,6.5,'¹¤µØ5');
对于问题(2),需要重新改建六个新的料场,使得在在各工地用量必须满足和各料场运送量不超过日储量的条件下,使总的吨千米数最小,则需要确定新的料场的具体位置,这是非线性问题。
三、模型假设
1、假设料场和建筑工地之间都可以由直线到达;
2、运输费用由“吨千米数”来衡量;
3、两料场的日存储量够向各建筑工地供应;
4、运输途中不发生意外,从料场运出的水泥总量不会超过各个料场的日存储量。
四、模型建立
(显示模型函数的构造过程)
记工地的位置为 ,水泥日用量为 ,i=1,…,6;料场位置为 ,
日储量为 ,j=1,2;料场 向工地 的运送量为 。
目标函数为:
约束条件为:
当用临时料场时决策变量为:
当不用临时料场时决策变量为: , ,
d=[3 5 4 7 6 11];
x=[5 2];
y=[1 7];
e=[20 20];
fori=1:6
forj=1:2
aa(i,j)=sqrt((x(j)-a(i))^2+(y(j)-b(i))^2);
end
end
CC=[aa(:,1); aa(:,2)]'
A=[1 1 1 1 1 1 0 0 0 0 0 0
(注:先画图,在坐标上标出各工地位置(用蓝色*标示)和料场位置(用红色o标示))
(2)目前公司准备建立两个新的料场,日储量各为20吨,为使运输费用最省,问新的料场应建在何处,并算出两料场分别向工地运输多少吨水泥和费用。
(注:初始值取x0=[3 5 4 7 1 0 0 0 0 0 5 11 5 4 7 7]’)
f=f1+f2;
再编写主程序liaochang2.m为:
clear
x0=[3 5 4 7 1 0 0 0 0 0 5 11 5 4 7 7];
A=[1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0];
B=[20;20];
Aeq=[1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1
2
3
4
5
6
料场1
3
5
4
7
1
0
料场2
0
0
0
0
5
11
总的吨千米数为89.8835,比用临时料场节省约46吨千米。
0
0
4
0
6
10
总的吨千米数为136.2275.
改建两个新料场的情形:
先编写M文件liaochang.m:
functionf=liaoch(x)
a=[1.25 8.75 0.5 5.75 3 7.25];
b=[1.25 0.75 4.75 5 6.5 7.75];
d=[3 5 4 7 6 11];
e=[20 20];
程序截图如下:
程序的运行结果为:பைடு நூலகம்
xx =
3.0000
5.0000
0.0000
7.0000
0.0000
1.0000
0.0000
0.0000
4.0000
0.0000
6.0000
10.0000
fval =
136.2275
运行结果截图如下:
即由料场A、B向6个工地运料方案为:
1
2
3
4
5
6
料场1
3
5
0
7
0
1
料场2
text(7.25,7.25,'¹¤µØ6')
text(5,1,'Áϳ¡A');
text(2,7,'Áϳ¡B');
使用临时料场的情形:
编写程序liaochang1.m如下:
clear
a=[1.25 8.75 0.5 5.75 3 7.25];
b=[1.25 0.75 4.75 5 6.5 7.75];
X12=X7,X22=X8,X32=X9,X42=X10,X52=X11,X62=X12
x1=X13,y1=X14,x2=X15,y2=X16
五、模型求解
(显示模型的求解方法、步骤及运算程序、结果)
建立chengxu.m程序:
x=[1.25 8.75 0.5 5.75 3 7.25];
y=[1.25 0.75 4.75 5 6.5 7.75];
0 0 0 0 0 1 0 0 0 0 0 1 ];
beq=[d(1);d(2);d(3);d(4);d(5);d(6)];
vlb=[0 0 0 0 0 0 0 0 0 0 0 0];vub=[];
x0=[1 2 3 0 1 0 0 1 0 1 0 1];
[xx,fval]=linprog(CC,A,B,Aeq,beq,vlb,vub,x0)
使用临时料场的情形:
使用两个临时料场A(5,1),B(2,7).求从料场j向工地 的运送量 .在各工地用量必须满足和各料场运送量不超过日储量的条件下,使总的吨千米数最小,这是线性规划问题。线性规划模型为:
其中 ,i=1,2,…,6,j=1,2,为常数
设X11=X1,X21=X 2,,X31=X 3,X41=X 4,X51=X 5,,X61=X 6
beq=[3 5 4 7 6 11]';
vlb=[zeros(12,1);-inf;-inf;-inf;-inf];
vub=[];
[x,fval,exitflag]=fmincon('liaoch',x0,A,B,Aeq,beq,vlb,vub)
程序截图如下:
程序运行结果如下:
x =
Columns 1 through 8
相关文档
最新文档