七年级奥数题

合集下载

七年级数学奥数题[五篇模版]

七年级数学奥数题[五篇模版]

七年级数学奥数题[五篇模版]第一篇:七年级数学奥数题数学奥数1.下列判断正确的是()A.平角是一条直线 B.凡是直角都相等C.两个锐角的和一定是锐角D.角的大小与两条边的长短有关3.下列哪个角不能由一副三角板作出()A.105° B.12° C.175°D.135°4.若∠a=90°-m°,∠B=90°+m°,则∠a与∠B的关系是()A.互补B.互余 C.和为钝角 D.和为周角5.如图所示,∠AOC=90°∠COB=a,0D平分∠AOB则∠CD的度数为()6.在海上,灯塔位于一艘船的北偏东40°方向,那么这艘船位于这个灯塔的()A.南偏西50°方向 B.南偏西40°方向 C.北偏东50°方向 D.北偏东40°方向7.如果∠1与∠2互为补角,且∠1>∠2,那么∠2的余角是()A.1/2∠1B.1/2∠2C.1/2(∠1-∠2)D.1/2(∠1+∠2)8.将两块直角三角板的直角顶点重合,如图所示,若∠AOD=128,则∠BOC的度数是9.如图,B,C是线段AD上任意两点,M是AB的中点,N是CD的中点,若MN=a,BC=b,则AD的长是10.把一张长方形纸条按图中那样折叠后,若得到∠AOB=70°则∠BOG= 11.已知线段AB=8cm,延长AB至C,使AC=2AB,D是AB中点,则线段CD= 12.已知线段AB=acm,点A1平分AB,A2平分AA1,A3平分AA2,…,An平分AAn-1则AAn= 14.小明每天下午5:46回家,这时分针与时针所成的角的度数为度15.如果∠a=26°,那么∠a余角的补角等于16.已知∠AOB=30°,又自∠AOB的顶点0引射线0C.若∠AOC:∠AOB=43,那么∠BOC=17.已知线段AB=6cm,在直线AB上画线段AC=2cm,则BC的长是 cm 18.火车往返于A、B两个城市,中途经过4个站点(共6个站点),不同的车站来往需要不同的车票(1)在A,B两站之间最多共有种不同的票价;共有种不同的车票(2)如果共有n(n≥3)个站点,则需要种不同的车票19.若∠A=20°18,∠B=20°1530°,∠C=2025°,则()A.∠A>∠B>∠CB.∠B>∠A>∠CC.∠A>∠C>∠BD.∠C>∠A>∠B 20.如图,直线AB、CD交于0点,且∠BOC=80°°,OE平分∠BOC,OF为OE 的反向延长线(1)求∠2和∠3的度数:(2)0F平分∠AOD吗?为什么?21.已知∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD、OE。

7年级奥数题及答案数学奥数题七年级

7年级奥数题及答案数学奥数题七年级

7年级奥数题及答案数学奥数题七年级7年级奥数题及答案7年级奥数题及答案刚步入7年级的学生对于自己的基础知识要求扎实之外,也要多做奥数题为自己铺一个垫脚石,下面是WTT为你们准备的7年级的相关奥数题目以及相关的奥数答案,希望能帮助你们。

7年级奥数题1:把1至205这205个自然数依次写下来得到一个多位数 123456789..205,这个多位数除以9余数是多少解:首先研究能被9整除的数的特点:如果各个数位上的数字之和能被9 整除,那么这个数也能被9整除;如果各个位数字之和不能被9整除,那么得的余数就是这个数除以9得的余数。

解题:1+2+3+4+5+6+7+8+9=45;45能被9整除依次类推:1~1999这些数的个位上的数字之和可以被9整除 10~19,20~29……90~99这些数中十位上的数字都出现了10次,那么十位上的数字之和就是10+20+30+……+90=450 它有能被9整除同样的道理,100~900 百位上的数字之和为4500 同样被9整除也就是说1~999这些连续的自然数的各个位上的数字之和可以被9整除;同样的道理:1000~1999这些连续的自然数中百位、十位、个位上的数字之和可以被9整除(这里千位上的“1”还没考虑,同时这里我们少2021__022******** 从1000~1999千位上一共999个“1”的和是999,也能整除;2021__022********的各位数字之和是27,也刚好整除。

最后答案为余数为0。

7年级奥数题2:A和B是小于100的两个非零的不同自然数。

求A+B分之A-B的最小值解:(A-B)/(A+B) = (A+B - 2B)/(A+B) = 1 - 2B/(A+B) 前面的 1 不会变了,只需求后面的最小值,此时 (A-B)/(A+B) 最大。

对于 B / (A+B) 取最小时,(A+B)/B 取最大,问题转化为求 (A+B)/B 的最大值。

(A+B)/B = 1 + A/B ,最大的可能性是 A/B = 99/1 (A+B)/B = 100 (A-B)/(A+B) 的最大值是:98 / 100 7年级奥数题3:已知A.B.C都是非0自然数,A/2 + B/4 + C/16的近似值市6.4,那么它的准确值是多少答案为6.375或6.4375 因为A/2 + B/4 + C/16=8A+4B+C/16≈6.4,所以8A+4B+C≈102.4,由于A、B、C为非0自然数,因此8A+4B+C为一个整数,可能是102,也有可能是103。

初一奥数竞赛考试题及答案

初一奥数竞赛考试题及答案

初一奥数竞赛考试题及答案一、选择题1. 一个数列的前三项为 2, 3, 5,每一项都是前两项的和,那么第10项是多少?A. 144B. 145C. 146D. 147答案:D2. 一个正整数,如果加上100后是一个完全平方数,那么这个数最小是多少?A. 49B. 50C. 51D. 52答案:B3. 一个长方体的长、宽、高分别为 a, b, c,且 a < b < c,如果长方体的体积是 216 立方厘米,那么 a 的可能值是?A. 3B. 4C. 6D. 8答案:C二、填空题1. 一个数的平方比它本身大 40,这个数是 _______。

答案:7 或 -72. 一个数列的前三项为 1, 2, 3,每一项都是前一项的两倍加上 1,那么第 5 项是多少?答案:11三、解答题1. 一个水池有一个进水管和一个出水管,单独开进水管 5 小时可以注满水池,单独开出水管 3 小时可以放空水池。

现在同时打开进水管和出水管,需要多少时间才能注满水池?解答:设水池的容量为 V 升。

进水管的流量为 V/5 升/小时,出水管的流量为 V/3 升/小时。

设同时打开两个水管需要 t 小时注满水池,则有:(V/5 - V/3) * t = V解得 t = 15/2 = 7.5 小时。

2. 一个班级有 40 名学生,其中 1/4 喜欢数学,1/3 喜欢英语,1/6 喜欢历史,剩下的学生喜欢科学。

问喜欢科学的有几人?解答:喜欢数学的学生有 40 * 1/4 = 10 人,喜欢英语的学生有40 * 1/3 ≈ 13.33,取整数为 13 人,喜欢历史的学生有 40 * 1/6 ≈ 6.67,取整数为 7 人。

喜欢科学的人数为:40 - 10 - 13 - 7 = 10 人。

结束语:以上是初一奥数竞赛考试题及答案,希望同学们能够通过这些题目,锻炼自己的逻辑思维能力和数学解题技巧,为未来的学习打下坚实的基础。

初一奥数测试题及答案

初一奥数测试题及答案

初一奥数测试题及答案一、选择题(每题5分,共20分)1. 一个数的平方等于它本身,这个数是()。

A. 0B. 1C. 0和1D. 以上都不是2. 已知一个等差数列的首项是2,公差是3,那么这个数列的第5项是()。

A. 17B. 14C. 11D. 83. 一个三位数,百位上的数字是十位上的数字的两倍,个位上的数字是十位上的数字的三倍,这个三位数是()。

A. 123B. 234C. 456D. 6784. 一个长方体的长、宽、高分别为3cm、4cm、5cm,那么这个长方体的表面积是()。

A. 94cm²B. 62cm²C. 74cm²D. 84cm²二、填空题(每题5分,共20分)5. 一个数的立方等于它本身,这个数是______。

6. 一个等比数列的首项是1,公比是2,那么这个数列的第4项是______。

7. 一个两位数,十位上的数字比个位上的数字大3,且这个两位数的数字之和为9,这个两位数是______。

8. 一个正方体的棱长为a,那么这个正方体的体积是______。

三、解答题(每题15分,共60分)9. 已知一个等差数列的首项是5,公差是2,求这个数列的前10项的和。

10. 一个长方体的长、宽、高分别为6cm、8cm、10cm,求这个长方体的体积。

11. 一个三位数,百位上的数字是十位上的数字的两倍,个位上的数字是百位上的数字的三倍,求这个三位数。

12. 一个等比数列的首项是3,公比是4,求这个数列的前5项的和。

答案:一、选择题1. C2. A3. B4. C二、填空题5. 0、1、-16. 167. 458. a³三、解答题9. 解:等差数列的前n项和公式为S_n = n/2 * (2a_1 + (n-1)d),其中a_1为首项,d为公差,n为项数。

将已知条件代入公式,得S_10 = 10/2 * (2*5 + (10-1)*2) = 5 * (10 + 18) = 5 * 28 = 140。

七年级经典的奥数题三篇

七年级经典的奥数题三篇

七年级经典的奥数题三篇七年级经典的奥数题篇一1、甲,已两人要走完这条路,甲要走30分,已要走20分,走3分后,甲发现有东西没拿,拿东西耽误3分,甲再走几分钟跟乙相遇?2、甲,乙两辆汽车从A地出发,同向而行,甲每小时走36千米,乙每小时走48千米,若甲车比乙车早出发2小时,则乙车经过多少时间才追上甲车?3、甲乙两人分别从相距36千米的ab两地同时出发,相向而行,甲从a地出发至1千米时,发现有物品以往在a地,便立即返回,去了物品又立即从a地向b地行进,这样甲、乙两人恰好在a,b两地的终点处相遇,又知甲每小时比乙多走0.5千米,求甲、乙两人的速度?4、两列火车同时从相距400千米两地相向而行,客车每小时行60千米,货车小时行40千米,两列火车行驶几小时后,相遇有相距100千米?5、甲每小时行驶9千米,乙每小时行驶7千米。

两者在相距6千米的两地同时向背而行,几小时后相距150千米?七年级经典的奥数题篇二1、甲、乙两队挖一条水渠,甲队单独挖要8天完成,乙队单独挖要12天完成,现在两队同时挖了几天后,乙队调走,余下的甲队在3天内完成,乙队挖了多少天?2、某工程队预计30天修完一条水渠,先由18人修12天后完成工程的1/3,如果要提前6天完成,还要增加多少人?3、一项工程,甲2小时完成了1/5,乙5小时完成了剩下的1/4,余下的部分由甲、乙合作完成,甲共工作了多少小时?4、一个水池,甲、乙两管同时打开,5小时灌满,乙、丙两管同时开,4小时灌满,如果乙管先开6小时,还需要甲、丙两管同时开2小时才能灌满(这时乙管关闭),那么乙管单独开灌满水池需多少小时?5、师、徒两人共同加工一批零件,师傅每小时加工9个,徒弟每小时加工个,完成任务时,徒弟比师傅少加工120个,这批零件共有多少个?七年级经典的奥数题篇三1、甲、乙两人同时分别从两地骑车相向而行。

甲每小时行20千米,乙每小时行18千米。

两人相遇时距全程中点3千米。

问全程长多少米?2、两地相距900千米,甲走需15天,乙走需12天。

精选初一奥数题五篇

精选初一奥数题五篇

精选初一奥数题五篇1.精选初一奥数题篇一1.任意改变某三位数数码顺序所得之数与原数之和能否为999?说明理由.2.设有一张8行、8列的方格纸,随便把其中32个方格涂上黑色,剩下的32个方格涂上白色.下面对涂了色的方格纸施行“操作”,每次操作是把任意横行或者竖列上的各个方格同时改变颜色.问能否最终得到恰有一个黑色方格的方格纸?3.如果正整数p和p+2都是大于3的素数,求证:6|(p+1).4.房间里凳子和椅子若干个,每个凳子有3条腿,每把椅子有4条腿,当它们全被人坐上后,共有43条腿(包括每个人的两条腿),问房间里有几个人?5.求不定方程49x-56y+14z=35的整数解.6.男、女各8人跳集体舞.(1)如果男女分站两列;(2)如果男女分站两列,不考虑先后次序,只考虑男女如何结成舞伴.问各有多少种不同情况?2.精选初一奥数题篇二1.由1,2,3,4,5这5个数字组成的没有重复数字的五位数中,有多少个大于34152?2.甲火车长92米,乙火车长84米,若相向而行,相遇后经过1.5秒(s)两车错过,若同向而行相遇后经6秒两车错过,求甲乙两火车的速度.3.甲乙两生产小队共同种菜,种了4天后,由甲队单独完成剩下的,又用2天完成.若甲单独完成比乙单独完成全部任务快3天.求甲乙单独完成各用多少天?4.一船向相距240海里的某港出发,到达目的地前48海里处,速度每小时减少10海里,到达后所用的全部时间与原速度每小时减少4海里航行全程所用的时间相等,求原来的速度.5.某工厂甲乙两个车间,去年计划完成税利750万元,结果甲车间超额15%完成计划,乙车间超额10%完成计划,两车间共同完成税利845万元,求去年这两个车间分别完成税利多少万元?3.精选初一奥数题篇三1.一队少先队员乘船过河,如果每船坐15人,还剩9人,如果每船坐18人,则剩余1只船,求有多少只船?2.学校举办的美术展览中,有50幅水彩画、80画幅蜡笔画。

七年级奥数题训练十篇

七年级奥数题训练十篇

七年级奥数题训练十篇1.七年级奥数题训练篇一1、姐妹两人骑车从相距10千米的甲地去乙地,妹妹比姐姐早出发10分钟,结果两人同时到达,姐妹两人骑车速度比是5:4,求姐姐甲地去乙地用了多少时间?2、小张爬山,下山按原路返回,往返共用了1.5小时。

上山时间是下山时间的1.5倍,上山速度比下山速度每分钟慢50米。

小张上下山共行了多少米?3、一辆汽车往返于甲、乙两地。

去时的速度是返回速度的3/4,去时比返回时多用了1小时,已知返回速度是每小时60千米,求甲、乙两地相距多少千米?4、一个快钟每时比标准时间快1分,一个慢钟每时比标准时间慢2分.若将两个钟同时调到标准时间,结果在24时内,快钟显示9点整时,慢钟恰好显示8点整.此时的标准时间是多少?何时将两个钟同时调准的?5、某科学家设计了一只怪钟,这只怪钟每昼夜10时,每小时100分钟.当这只钟显示5点整时,实际上是中午12点整.当这只钟显示3点75分时,实际上是什么时间?实际时间下午5点24分时,这只钟显示什么时间?2.七年级奥数题训练篇二1、学校组织两个课外兴趣小组去郊外活动。

第一小组每小时走4.5千米,第二小组每小时行3.5千米。

两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。

多长时间能追上第二小组?2、有甲乙两个仓库,每个仓库平均储存粮食32.5吨。

甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?3、甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。

甲、乙两队每天共修多少米?4、学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?5、一列火车和一列慢车,同时分别从甲乙两地相对开出。

快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?3.七年级奥数题训练篇三1.两袋玻璃球,每袋个数相等。

初一奥数题及答案

初一奥数题及答案

初一奥数题及答案初一奥数题及答案导语:俗话说,“习惯成自然”,良好的学习习惯对学习有着重要的促进作用。

以下是小编为大家精心整理的初一奥数题及答案,欢迎大家参考!1,一个多边形的内角和是15840度,这个多边形是几边形?多边形的内角和=(n-2)乘180 n-2乘180=15840 n-2=88 n=90 所以是90边形2.有甲,乙两个多边形,甲多边形的边数及内角和分别是乙多边形的边数及内角和的2倍和4倍,能确定它们各是几边形吗?设甲为2x 边形,乙为x边形(2x-2)*180=4(x-2)*180解得x=3所以甲为初一全科目课件教案习题汇总语文数学英语历史地理六边形,乙为三角形3.两个正多边形边数为1:2内角度数比为2:3求这两个多边形设少的那多边形个边数为x,则另一个为2x,由多边形内角和公式得两个多边形的内角和分别为:(x-2)180和(2x-2)180.则各内角度数为:a:(x-2)180/x 和b:(2x-2)180/2x,由a:b=2:3,可解得:x=4。

所以一个多边形是四边形,另一个是八边形。

4.每一个内角都外120度的多边形为_______,它共有_______条对角线每一个内角都外120度,则每一个内角都为60度。

设这个多边形有X条边则 (X-2)×180=120X 180X-360=120X 60X=360 X=6 六边形n条对角线:【n*(n-3)】/2=95.两多边形内角和1800,且两多边形边数之比为2:5,求两多边形边数设其中一个多边形有n边另一个多边形则有 5/2*n边根据公式180(x-2)+180(5/2*n-2)=1800 n=4 5/2*n=106.已知a、b、c三个数中有两个奇数、一个偶数,n是整数。

如果S=(a+n+1)(b+2n+2)(c+3n+3),那么s是什么数?S=(a+n+1)(b+2n+2)(c+3n+3)注意到若b是偶数,则b+2n+2是偶数,所以,S是偶数若b是奇数,则a,c一个奇数,一个偶数而此时,a+n+1与c+3n+3奇偶性不同,他们乘积为偶数,所以,S是偶数因此,S永远是偶数7.用100元买100支笔,铅笔每支3元,圆珠笔每支5元,红笔5支1元,每种笔都要有,问每种笔的数量设铅笔,圆珠笔,红笔分别为x,y,z支 x+y+z=1003x+5y+(1/5)z=100 x=200-2.4z y=1,4z-100z小于250/3,大于500/7 由x,y,z都是正整数得 z=80或75x=8或20,y=12或58.甲乙两人轮流拿54张扑克牌,每人每次可拿1~4张但不可以不拿,规定拿最后一张为输,甲先拿,谁有必胜的`策略?请说明理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数的巧算
考考你:
1、2002)1(-的值 ( B )
A. 2000
B.1
C.-1
D.-2000
2、a 为有理数,则2000
11+a 的值不能是 ( C ) A.1 B.-1 C .0 D.-2000
3、()[]}{20072006200720062007----的值等于 ( B )
A.-2007
B.2009
C.-2009
D.2007
4、)1()1()1()1()1(-÷-⨯---+-的结果是 ( A )
A.-1
B.1
C.0
D.2
5、2008200720061)1()1(-÷-+-的结果是 ( A )
A.0
B.1
C.-1
D.2
6、计算)2()2
1(22-+-÷-的结果是 ( D ) A.2 B.1 C.-1 D.0
7、计算:.2
1825.3825.325.0825.141825.3⨯+⨯+-⨯
8、计算:.3
11212311999212000212001212002-++-+-
9、计算:).13
8(113)521()75.0(5.2117-⨯÷-÷-⨯÷-
11、计算:.363531998199992000⨯+⨯-
练习:.22222222221098765432+--------.2)12(2221n n n n =-=-+ 6
12、计算:
)98
97983981()656361()4341(21++++++++++ 结果为:5.612249
122121=⨯++⨯+
13、计算:
.200720061431321211⨯++⨯+⨯+⨯ 应用:)111(1)1(+-=+n n d n n d
练习:
.1051011171311391951⨯++⨯+⨯+⨯
13、计算:
35
217106253121147642321⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯⨯+⨯⨯. 结果为52
14、求21-++x x 的最小值及取最小值时x 的取值范围.
练习:已知实数c b a ,,满足,01b a c <<<<-且,a c b >>求b a c a c ---+-1的值.
练习:
1、计算2007200619991998)1()1()1()1(-+-++-+- 的值为 ( C )
A.1
B.-1
C.0
D.10
2、若m 为正整数,那么()[]
)1(114
12---m m 的值 ( B ) A.一定是零 B.一定是偶数
C.是整数但不一定是偶数
D.不能确定 3、若n 是大于1的整数,则2)(12)1(n n n p ---+=的值是 ( B )
A.一定是偶数
B.一定是奇数
C.是偶数但不是2
D.可以是奇数或偶数
4、观察以下数表,第10行的各数之和为 ( C ) 1
4 3
6 7 8
13 12 11 10
15 16 17 18 19
26 25 24 23 22 21

A.980
B.1190
C.595
D.490
5、已知,200220012002200120022001200220012⨯++⨯+⨯+= a 20022002=b ,则a 与b 满足的关系是 ( C )
A.2001+=b a
B.2002+=b a
C.b a =
D.2002-=b a
6、计算: .35217201241062531211471284642321⨯⨯+⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯⨯+⨯⨯+⨯⨯5
2
7、计算:.561742163015201412136121++++++8
328
8、计算:.100
321132112111+++++++++++
9、计算: .999999999999999999999+++++
10、计算)1000
11)(99911)(99811()411)(311)(211(10201970198019992000-------++-+- .610 11、已知,9
11,999909
999==Q p 比较Q P ,的大小. Q p ==⨯⨯=⨯⨯=90
9
9909999099119991199)911(
12、设n 为正整数,计算:4
3424131323332312122211+++++++++++ .1112141424344n
n n n n n n n n ++-++-+++++++++ 2
)1(21+=+++n n n
13、2007加上它的21得到一个数,再加上所得的数的3
1又得到一个数,再加上这次得到的41又得到一个数,… ,依次类推,一直加到上一次得数的2007
1,最后得到的数是多少?
2005003)200211()311()211(2002=+⨯⨯+⨯+⨯
14、有一种“二十四点”的 游戏,其游戏规则是这样的:任取四个1至13之间的 自然数,将这四个(每个数用且只用一次)进行加减四则运算与)321(4++⨯应视作相同方法的运算,现有四个有理数3,4,-6,10.运用上述规则写出三种不同方法的运算,使其结果等于24,运算式:
(1)_______________________;
(2)________________________;
(3)________________________;
15.黑板上写有1,2,3,…,1997,1998这1998个自然数,对它们进行操作,每次操作规则如下:擦掉写在黑板上的三个数后,再添写上所擦掉三个数之和的个位数字,例如:擦掉5,13和1998后,添加上6;若再擦掉6,6,38,添上0,等等。

如果经过998次操作后,发现黑板上剩下两个数,一个是25,求另一个数.。

相关文档
最新文档